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1 Introduction

Background. In large network systems, one of the prerequisites for efficiently utilizing confidential/
authenticated communications by common-key cryptography is to develop superior key sharing schemes
which ensure conveniently sharing cryptographic keys among communication partners. The KPS (Key
Predistribution Systems) [1] is a large class of such key sharing schemes covering several variants of
concrete schemes in [2, 3, 4, 5] as well as the linear schemes [1] versions of which have been realized
(eg.[6]). The remarkable property of KPS is that for the purpose of key sharing there are no need to send
messages between the entities who will make a cryptographic communication using the obtained key. Each
of the entity should just input the partner’s identifier to its tamper-resistant module (TRM) containing a
common algorithm and an individual data provided by one or plural system center(s).

Motivation. The total security of KPS would be based on lack of information, physical infeasibility, and
computational infeasibility. By completely broken we mean a state that an attacker has gotten sufficient
information to produce every individual data in the system. There exists a KPS which cannot be completely
broken unless extracting m individual data from at least m TRMs. And this is proved optimal. More
precisely, the ratio (minimum number of TRMs to attack)/(memory per key-bit per entity) is one. Can
the ratio become larger if plural TRMs can be used by each user 7 In other words, is a concurrent use of
a set of key-sharing systems meaningful?

Methodology. Assigning several key-sharing systems to each entity can be interpreted as making an
incidence structure, or equivalently, constructing a (0, 1)-matrix having certain desirable properties. Thus,
combinatorics can serve a reasonable tool to apply.

We have observed in [8] that the desirable incidence structures are represented by normal, cohestve,
constant-row-weight matrices having exponential number of rows in terms of row-dimension and greater
ratio (row-dimension)/(row-weight) > 1. (Each technical term will be explained in the body of the paper.)
Then we have proposed a binary operation over the set of all binary matrices and show that it is very
helpful to provide concrete incidence structures desirable for our application.

We develop an efficient algorithm to calculate the contents of the row corresponding to a given index for
a type of desirable incidence matrices recursively defined by the binary operation.

Organization. Section 2 describes our method using terminology of incidence structures and what are
desirable for the method. Section 3 redescribes a binary operation to produce new incidence structures
with preserving desirable properties for our application. Section 4 proposes an algorithm that transforms
a given index to the contents of the row. Section 5 concludes the paper.

2 A Way of Using Plural Key-Sharing Systems
2.1 Primitive Key-Sharing Systems

Environment. By an entity we denote what processes/sends/receives information, like a person/a group
of persons, an equipment/a set of devices, or, a program/a set of programs. Let £ = {entityO0,-- -,
entityv — 1} be the set of all entities to be considered. Let Z be a set and assume that each entity, say,
entity %, has its own identifier (ID) ID; (€ Z) such that entity ¢ and entity j coincide if ID; = ID;.

Model Key-Sharing System. See Figure 1. When entity ¢ joins the system, by a single system
center or a set of plural system centers, entity ¢ is supplied a tamper resistant module (TRM) which stores
(after some preparatory interaction with the system center(s)) an individual data z; (€ {0,1}**™) and
a common algorithm alg, where A and m are positive integers. The hAm-bit data z; depends on ID; and
the secret of the system center(s). Algorithm alg acts as follows. On input z; and ID; € 7, alg outputs
ki; = alg(z;,ID;) (€ {0, 1}h), the master-key for the pair of entities < and j, where alg and every z;, z;
are designed so that alg(z,,IDy) = alg(zy, ID,) holds for any entities a, b € £. The TRM is designed so
that entity ¢ can input I.D; and execute alg inside the TRM and obtain the output k;; but for anybody
even entity ¢ it is physically and logically very hard to read out or infer hidden ; correctly from the
TRM. This system is a typical implementation of Key Predistribution System (KPS). Note that for the
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Figure 1: Primitive Key Predistibution System

purpose of key sharing there are no need to send messages between the entities. Note also that the above
mentioned idea can be readily modified to cope with the key sharing among three or more entities.
Security. By completely broken we mean a state that an attacker has gotten sufficient information to
produce every individual data in the system. And to attain such a state is called complete breaking. There
exists such a KPS which cannot be completely broken unless extracting m individual data (z;’s) from at
least m TRMs. And this is proved optimal.

2.2 Incidence Structures

Notation 1. For positive integers v and b, let I(v,b) denote the set of all (0, 1)-matrices each of which
has v rows and b columns.

Definition 1. A finite incidence structure is a triple D = (V,B, F) where V and B are any two disjoint
finite sets and F is a binary relation between V and B, ie., F C V x B [7]. The elements of V are
called points, those of B blocks and those of F' flags. Let label the points as pg,---,py—1 and the blocks
By, -+, By_1. Then the matrix D = [Dj;]o<i<v0<j<b € I(v,b) defined by

Dy = {1 if (p;, B;) € F,

0 otherwise,

is called an incitdence matriz for D. D depends on the labeling used, but it is unique up to column and
row permutations. Conversely, every (0, 1)-matrix determines an incidence structure.

Definition 2. Let D = [D;;] € I(v,b) and D be the incidence structure determined by D. The it*
row’s weight of D, or the i** point’s degree of D, is defined as R;(D) = Zg;(l, D;;. The §* column’s
weight of D, or j** block’s degree, of D is defined as K;(D) = Y'24 D;j. The meeting number of the i*»
row and the j** row of D, or the meeting number of the i*" point and the j** point of D, is defined as

b
Ayj(D) = T54 Dig Dy
1) D and D are called normal if R;(D) < b and K;(D) < v for every ¢ and j.
2) D and D are called cohesive if A;;(D) > 1 for every i and j.
3) D is called constant-row-weight with R(D) and D is called constant-point-degree with R(D) if
R;(D) = R(D) for every 1.
4) D is called constant-column-weight with K (D) and D is called constant-block-degree with K (D) if
K;(D) = K(D) for every j.
5) D and D are called tactical with R(D) and K (D) if R;(D) = R(D) and K;(D) = K(D) for every ¢
and j.
Notation 2. If D € I(v,b) is tactical with R(D) =r and K(D) =k,
we denote this fact by D € T'(v,b,r, k).

)
)



Example 1. All of the following matrices are normal, cohesive, and tactical.

e
P=1|1 0 1| €eT(3,3,22), Q=] o 1 1| €T(4433),
011 0 1 1 1
(1 1 1 0 0]
11001 1 1 01 0 0 0]
100 11
1010001
00 1 1 1
01 110 0100011
R= €7(10,5,3,6), S=|[1 0 0 0 1 1 0| ¢€T(7,7,3,3).
11010
0001101
1 010 1
0011010
o101 0110100
1 0110 : .
[0 1 1 0 1)

Observation 1. Given a normal cohesive tactical matrix C' € T'(v,b, 7, k), for any integer V < v we can
construct a normal cohesive constant-row-weight matrix D € I(V,b) with R(D) = r by selecting any V
rows from C.

2.3 Assigning Plural Systems Using Incidence Structures

Environment. Assume a set £ of v entities each of which (say entity ¢) has unique identifier (ID; € T)
as before and a set of b key-sharing systems B = {By,---,Bp_1}. Let V = {pg,-+-,pv—1} be a set of v
elements and H an one-way function from 7 to V.

The Method. We propose a way of assigning each entity a subset of B so that any two entities have at
least one common key-sharing system with which they can share an A-bit common key. This is nothing
but determining a cohesive incidence structure with point set V and block set B. We denote its incidence
matrix by
D(0)
D= € I(v,b)
D(v—-1)

with D(i) € I(1,b). We assume that there is an efficient algorithm Ap to compute a row in D given an
index for the row.

Procedure. Let entity a and entity b be the entities of concern. Firstly entity a and b independently
compute 1 = H(ID,) and j = H(ID;) and find D(i) = Ap(i) and D(j) = Ap(j). Of course entity a
and entity b can record D(:) and D(j), respectively. Secondary, they calculate the common key-sharing
system(s) indicated by both D(:) and D(j). See Figure 2.

Memory per Entity. If row D(:) shows a subset {Sp,---,S,_1} C B then by the system centers
for Syp---,S,_1, respectively, entity 7 is supplied r tamper-resistant modules (TRMs) containing data
depending on the entity’s identifier, I D;, and the secret information for the corresponding key-sharing
system. As described in 2.1 since there is a key-sharing system which cannot be completely broken unless
at least m TRMs are successfully attacked to infer m pieces of A X m-bit data inside them, assume that
every system in B has such a property. Then if D is constant-row-weight with R(D) = r then each entity
has r TRMs which contain » x A X m-bit data in total, while the minimum number of TRMs to attack for
complete breaking is b x m. Thus, the ratio (minimum number of TRMs to attack)/(total memory per
key-bit per entity) is b/r. Generally we adopt the following definition.

Definition 3. For matrix D € I(v,b) and its corresponding incidence structure D, the gain I'(D) of D

and D is defined as
b vb

B 1s Ri(D) - > Ri(D)

I'(D)
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Figure 2: Using Plural Subsysems

Proposition 1. If D is constant-row-weight with R(D) = r we have I'(D) = b/r.

Observation 2. The conventional method using a single key-sharing system corresponds to matrix
J1 € I(v,1) each of which entry is 1. Thus its gain is I'(J;) = 1. The same gain is attained by the method
using r = b TRMs per entity with b key-sharing systems. This is corresponding to matrix J, € I(v,b)
each of which entry is 1. The proposed assignment using a larger gain will save memory per entity to yield
the same security level measured by the tamper-resistance required for complete breaking. For example,
matrices R and S in Example 1 yield I'(R) = 5/3 and I'(S) = 7/3, respectively.

Desirable Incidence Structures. Let D be a cohesive incidence matrix defining our assignment. If
there is an all-one column in D then the key-sharing system corresponding to the column can be always
used. This is somewhat redundant, so we prefer to let D be normal. And the situation where every
entity uses the same number of TRMs is easy to treat in theory and in practice, we prefer to let D be
constant-row-weight. Another important condition to D is that it must have a lot of rows so that the
method can be applied to large networks containing a lot of entities. Summing up all the conditions we



have the following criterion:
Matrix D € I(v,b)
¢ should be normal, cohesive, constant-row-weight,
e should yield a large gain, I'(D),
¢ should have v which is exponential in r,

¢ should have an efficient algorithm Ap to compute a row from its index.

3 Constructing Desirable Incidence Structures

Most of the contents of Section 3 have appeared in [8] although some notations are changed.

3.1 Examination of All Constant-Weight Vectors of Fixed Dimension
2n+1
n+1
),2n+1,n+1, (2:)) Similarly, for any integer

Fact 1. For any positive integer n, a matrix Wa, 1 which has ( ) rows of dimension 2n+ 1 and weight

n+1 is normal, cohesive, and tactical with W, 4; € T((2"+1

n+1
n > 2, a matrix Wa, which has (ffl) rows of dimension 2n and weight n 4+ 1 is normal, cohesive, and

tactical with Wo,, € T((fﬁl), n,n + 1, (Zn—l)).

n

Example 2. Three matrices in Example 1 can be interpreted as P = W3, Q = W4, and R = Ws.

Observation 3. The above construction can achieve large values of v and k with keeping b and r small.
However, there is a limitation; b/r < 2. Namely, the incidence structures defined by the all r-out-of-b
vectors can be used for our application, but the gain b/r attained is always upper-bounded by two.

3.2 Examination of Finite Projective Planes

Fact 2. For any prime power g, there exists a projective plane PG(2,q) of order ¢ [7]. In fact, by letting
W be the vector space of dimension 3 over GF(q), all 1-dimensional subspaces of W as the points, and all
2-dimensional subspaces of W as the blocks, constitute an incidence structure PG(2, ¢), which is normal,
cohesive, and tactical with incidence matrix G4 € T(¢*+q+1,¢ +q+1,q+1,q+1).

Example 3. Matrix S in Example 1 determines PG(2,2).

Observation 4. If a normal cohesive tactical matrix D € T'(v,b,r, k) shows another regularity that
A;;(D) = 1 for every pair of different rows of D, then D defines an incidence structure called a block
design [7]. Projective planes are examples of block designs. For any incidence matrix for any block design,
we have a famous restriction on the parameters; v < b, known as Fisher’s inequality [7]. For this reason,
the block designs cannot serve as a good source of incidence structures desirable for our application.
Nevertheless, since the gain b/r = (¢ + ¢+ 1)/(g + 1) > ¢ can be large, projective planes could be used
as seeds with which generate desirable incidence structures.

3.3 A Binary Operation
Definition 4a. Let v, b, B be positive integers and C € I(v,b), D € I(1, B) be matrices such that

C(0)
C= , Ci) € I(1,b), D =[Dy,---,Dp-1], Dj;e€{0,1}.
Cv-1)
Let wo(D) =0 and w;(D) = ;;%, D, for j=1,---,B.
Ifv > 1let i(f) (€ {0,---,v —1}) denote the f** (€ {0,---,wp(D) — 1}) digit of the radix-v expression

of integer i (€ {0,---,v"B(P) —1}).
Then C%D is defined as the matrix

E= [EU]OSK'U“’B(D),OSKB € I(’UwB(D), b- B)



such that
1) when v =1,
B — { [0,---,0] € I(1,b) if D; =0,
2) when v > 1,
7\ Ci(wy(D))) € I(L,b) if D; =1.
Remark. In Definition 4B, ‘the f** digit * is somewhat ambiguous. We define i(f) as one satisfying
wp(D)—1

i = Z ,U'U)B(D)_l_fi(f).
=0
Definition 4b. Let v, b, V', B be positive integers and C € I(v,b), D € I(V, B) be matrices such that
D(0)
p=| : |, DG)eIB).
DV -1)
Then C%D is defined by
C%D(0)
C%D = :
C%D(V —1)
Proposition 2. For matrices C' € I(v,b) and D € I(V, B) we have C%D € I(X) v®(P) b B).
In particular, if D is constant-row-weight with R(D), we have C%D € I(v®(P) .V b B).
Proposition 3. Operation % is associative, i.e., for matrices C, D, E we have
(CHDY%BE = C%(D%E).
Example 4.
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3.4 The Operation Preserves Useful Properties
Theorem 1. For matrices C € I(v,b) and D € I(V, B), we have the following properties.
1) C%D is non-zero if C and D are non-zero.
2) C%D is normal if C and D are normal.
3) C%D is cohesive if C and D are cohesive.
)

4) C%D is constant-row-weight if C and D are constant-row-weight. Moreover,
R(C%D) = R(C) - R(D).
5) C%D is tactical if C' and D are tactical. Moreover, K(C%D) = v®P)-1. K(C) - K(D).

3.5 Recursively Constructing Desirable Structures
Definition 5. For a positive integer n and a binary matrix D, we define

D ifn=1
D(n) — )
{ D%D" 1) ifn > 2.

Remark. In [8] weused D(* V%D. But this difference does not affect the defined object since Proposision
3 holds.

Theorem 2. For C € T(v,b,r,k) and D € T(V, B, R, K), we have
C%D e T(v®-V,b-B,r-RvE . k. K),
c™ e T(v%,b",r",v%_n k™).

Observation 5. Using the technique developed in this section we can see that many examples almost
meet the criterion for desirable incidence structures. As stated in Observation 1, from these we can derive
a lot of desirable normal cohesive constant-row-weight matrices. The remaining task is to devise a good
row calculating algorithm.

4 Calculating a Row from Its Index

Definition 6. Let F' = [fo,---, fy_1] be a binary b-tuple of (Hamming) weight r and [Gq,---,Gr_1] be a
r-tuple of binary b-tuples. We define the #-product of F' and [Gy, - -+, G,_1] by

F#(Go, -+, Gra] = Holl -+ | Hp—1,

where for j =0, ---, b — 1, H; is the binary b-tuple determined by
Ho— {[O,'H,O] € I(1,b) %ffj =0,

Y Gt fi—1 if f; =1,

and || denotes the operation of concatenating two tuples.
D(0)
Definition 7. Let D = : with D(¢) € I(1,b) be a normal cohesive tactical matrix and
D(v—1)

D € T(v,b,r,k). Let i = [ig, 41, *,im_p)jr—1)] € {05+, v — 1} =0/=1) pe a v-ary (#* —1)/(r — 1)-

tuple. For matrix D and positive integer n we define the algorithm A, that transforms ¢ into a binary
tuple

Apwm (@) =(--( ( D(io)
# [D(i1), -, D(r)])
# [D(ir1), -+, Dipyr2)]) -0
# [D(ir-1_1)/(—1))s" s DEn_pyr—1))]-



Theorem 3. Let e,,(i) = Z;T:O_T)/(T_l) v'i;. Then Apm (i) is the ey, (3) th row of matrix D™. In
particular, for any i € {0,---,v — 1}{7"~1/(r=1) Ap(7) is a binary b™-tuple of weight ™. And for any 7
and j € {0,---,v — 1} D/("=1)  the weight of A (3) A Apwm)(j) is positive.

Example 6. Let

»)

I
o~
=

0
1 | €7T(3,3,2,2)
1

and n = 3.
For ¢ =10,1,2,1,0,2,1], = [1,0,2,0,1,1,2], and [ = [2,0,1,0,2, 2,1], we have

Ape (i) = ([110]#[[101], [011]])#[[101], [110], [011], [101]]
[101011000]#[[101], [110], [011], [101]]
= [101000110000011101000000000],

Ape(j) = ([101]#([110], [011]])#[[110], [101], [101], [011]
[110000011]#[[110], [101], [101], [011]]
[110101000000000000000101011],

Ape (1) = ([011]#{[110], [101]])#([110], [011], [011], [101]]
[000110101]#[[110], [011], [011], [101]]
= [000000000110011000011000101].

Thus we have

Ape (i) A Aps () = [100000000000000000000000000],
Ap@ (i) A Ape (1) = [000000000000011000000000000],
Apes (J) A Ape(l) = [000000000000000000000000001].

Observation 6. We can derive an efficient meeting-point calculating algorithm by modifying the above
row calculating algorithm. For details consult ref [9].

5 Discussion and Conclusion

1) For the key sharing problem, we have shown a way of using plural tamper-resistant modules per
entity to achieve the same level of security with reduced memory.

2) We have set the criterion for the desirable incidence structure for this purpose and constructed
several nice candidates.

3) We have devised an efficient row calculating algorithm for the obtained incidence structures. The
property of operation % is effectively used to construct the algorithm.

4) The newly introduced approach for assigning key-sharing systems is promising and worth while to
further develop theoretically and practically.

5) The present author is leading a project to implement and evaluate the approach by adopting the
KPSs.
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