
Classification of URL bitstreams
using Bag of Bytes

Keiichi Shima∗, Daisuke Miyamoto†, Hiroshi Abe∗, Tomohiro Ishihara‡,
Kazuya Okada‡, Yuji Sekiya‡, Hirochika Asai§ and Yusuke Doi§

∗ Internet Initiative Japan Inc., 2-10-1 Fujimi, Chiyoda-ku, Tokyo 102-0071, Japan
Email: keiichi@iijlab.net and abe@iij.ad.jp

† Nara Advanced Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
Email: daisu-m@is.naist.jp

‡ The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
Email: sho@c.u-tokyo.ac.jp, okada@ecc.u-tokyo.ac.jp and sekiya@nc.u-tokyo.ac.jp
§ Preferred Networks, Inc., 1-6-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan

Email: asai@preferred.jp and doi@preferred.jp

Abstract—Protecting users from accessing malicious web sites
is one of the important management tasks for network oper-
ators. There are many open-source and commercial products
to control web sites users can access. The most traditional
approach is blacklist-based filtering. This mechanism is simple
but not scalable, though there are some enhanced approaches
utilizing fuzzy matching technologies. Other approaches try to use
machine learning (ML) techniques by extracting features from
URL strings. This approach can cover a wider area of Internet
web sites, but finding good features requires deep knowledge
of trends of web site design. Recently, another approach using
deep learning (DL) has appeared. The DL approach will help to
extract features automatically by investigating a lot of existing
sample data. Using this technique, we can build a flexible filtering
decision module by keep teaching the neural network module
about recent trends, without any specific expert knowledge of the
URL domain. In this paper, we apply a mechanical approach to
generate feature vectors from URL strings. We implemented our
approach and tested with realistic URL access history data taken
from a research organization and data from the famous archive
site of phishing site information, PhishTank.com. Our approach
achieved 2˜3% better accuracy compared to the existing DL-
based approach.

I. INTRODUCTION

As the Internet grows and becomes more stable, the im-
portance of its networking function as a social infrastructure
becomes greater and greater. Although abuse was observed
from the beginning of the Internet, as the Internet is being
relied on by business activities etc., business-oriented attacks
have increased. From the viewpoint of network management,
we need to consider several different kinds of threats to
protect both network operational stability and the users who are
connected and using the network. We need to protect against
(D)DoS attacks, unintended network accesses, virus infection,
and so on.

Phishing is one such threat to which network operators
must pay attention. An attacker tries to make users access
faked sites that look similar to existing web service pages,
typically banking sites or shopping sites. In such faked pages,
the attacker provides a faked login screen to steal account
numbers and passwords of victims. A document[1] published

by Anti-Phishing Working Group1 revealed that more than
1.2 million phishing attacks were reported in 4Q 2016 which
is 65% larger than 4Q 2015. Because the document covered
only reported attacks, we can guess there was more hidden or
unnoticed attacks in reality.

Network operators need to protect their users from access-
ing such malicious sites. If you are an operator of an ISP or
a similar kind of service aggregator, then you need to take
care of your customer’s network service operations too. Since
the number of phishing sites is huge and growing (100 of
thousands of unique sites are reported in the document[1]
and they keep changing their site locations), we need an
automated and adaptive approach to defend customers from
such activities.

The rest of the paper is structured as follows. We discuss
related work in Section II. Our proposed idea to form a unique
URL feature vector is introduced in Section III. The neural
network topology used to classify URLs in our experiments is
disclosed in Section IV. The datasets and evaluation results are
explained in Section V and VI. We conclude the achievementss
and future directions of this work in SectionVII.

II. RELATED WORK

Garera et al. proposed a framework to detect phishing sites
using machine learning technique in [2]. They defined several
features which they thought important to classify benign URLs
and malicious URLs. Examples of the features are a page rank
value, a type of domain names (e.g. whether the host part
consists of IP address numbers or a hostname, whether the
number of sub-domains are too large, etc), and so on. Ma et
al. proposed [3] a URL classification method using very high
dimensional feature vectors generated from lexical features
of URL strings and host name features such as reputation.
Prakash et al. proposed a new blacklist generation mechanism
in [4]. Their idea is that attackers often use similar URLs to
those they were using before and use slightly modified strings
in new phishing attacks. They proposed some rules to generate
potential blacklist URLs to protect future phishing attacks.

1https://antiphishing.org/



URL Classification with Stupid URL Vectorizer

We need Vectors
To utilize ML/DL techniques, we need to encode target entities into vectors.
OK, then, how can we encode URLs to vectors?

URL2CSV

Classification using URL2CSV and SVM
We tried to classify 25,000 "white 
URLs" captured at WIDE project and 
26,000 "black URLs" provided by 
phishtank.com.  
The result shows that the vector 
trends of white URLs and black URLs 
a r e q u i t e d i ff e r e n t a n d 
distinguishable with high accuracy.

Keiichi SHIMA (IIJ Innovation Insitute / WIDE Muscle Learning Team)

東大マーク集 2

3-
東大マーク　基本型〈タテ〉

基本型〈タテ〉

03 04 05 06 07 08 09 10 11 12 13 14 15

15mm

東大マークには、使用時の最小サイズが設定
されています。本項で示された最小サイズ以
下で使用すると、東大マークの再現性を著し
く損なう恐れがあり、表示を正確に伝達するこ

とができなくなります。この最小使用サイズは
、東大マークの印刷物における再生上の規定
です。使用する媒体の特性やスペース等を十
分に検討し、最適のサイズで使用してくださ

い。また、印刷方式、媒体の条件などによって
もマークの再現性が異なることについても
注意が必要です。

最小サイズ

01 02

PROJECT

We invented a stupidly simple method to vectorize a URL as shown below.
www.iij.ad.jp/index.html

w w w . i i j . a d . j p / i n d e x . h t m l

77,77,77,77,77,72,2E,
E6,69,96,69,96,6A,A2,
2E,E6,61,16,64,42,2E,
E6,6A,A7,70

3F,F6,69,96,6E,E6,64,
46,65,57,78,82,2E,68,
87,74,46,6D,D6,6C

Split characters

Convert the URL into HEX values

Extract 8-bits values by shifting 4 bits in the HEX values

Count the number of unique values for the host part and the URL 
path part respectively (Bag of features)

7777772E69696A2E61642E6A703F696E6465782E68746D6C

Fig. 1. The procedure to extract byte values from a URL string

So far, the previous work is based on string analysis and
external information (such as page rank) to define feature
vectors of URLs. Since they are based on expert knowledge
studied when they were working on the classification issue, if
the assumptions of the knowledge changes then the mechanism
may lose accuracy.

The other approach is to inspect the contents of the
target URLs. Zhang et al. proposed a phishing site detection
mechanism by looking into the contents of the target sites[5].
This approach apparently works more precisely; however ac-
cessing the target sites causes different issues, such as network
traffic overhead, possible risks to access (possibly) malicious
contents.

Saxe et al. proposed a deep neural networking-based ap-
proach named eXpose[6] to classify URLs, file names, and
registry keys. In contrast to the past works, they tried not to
define any feature vectors using expert knowledge. Instead,
they tried to offload the work to extract feature vectors to their
deep neural network model. They expand each character of a
URL string using the embedding technique and apply four dif-
ferent sizes of convolutional neural networking layers to extract
URL features. In their paper, their approach achieved better
accuracy than an expert knowledge based feature extraction
approach and an N-gram based feature extraction approach.
They imply better accuracy may be achieved by using different
URL vectorization methods and/or different neural network
topologies. In this paper, we follow this approach and try to
achieve simpler and better result.

III. BAG OF BYTES AND URL VECTOR

We tried not to use any expert knowledge of a specific
domain, in this case, knowledge of URL structures. In that
sense, the direction of our approach is same as eXpose[6] took.
In eXpose, they used the last 200 characters of a URL string
and converted it into a 200× 32-dimensional vector using an
embedding technique. The reason why they cut the string to
200 characters is that 95% of URL strings are shorter than 200
characters in their investigation. In our approach, we also try
to convert URL strings mechanically but use all the characters
included in the URL strings.

Fig. 1 shows how a URL string is converted. The basic
idea is to count byte values included in the URL string.
The point is that we extract byte values not only from each
character but also overlapping parts of neighboring characters
by shifting 4-bits when extracting byte values. By using

A URL string

512 Dim

256 Dim

[v0, v2, v3, v4, v5, ......, v507, v508, v509, v510, v511]

[w0, w2, w3, ......, w253, w254, w255]

256 Dim [x0, x2, x3, ......, x253, x254, x255]

2 Dim [y0, y1]

Dropout 0.75

Dropout 0.75

(Bag of bytes)

(Linear)

(Linear)

(Linear)

Fig. 2. The neural network model for URL classification

intersecting bits between two neighboring cahracters, we can
embed combination information of two characters appearing
sequentially. After extracting the byte values, we count how
many times each value appears in the original URL string. We
perform the extraction operation for both the host part and the
path part separately, and achieve a 512-dimensional vector that
represents the original URL. Finally, each vector is normalized
and we treat the final vector value as a URL vector.

IV. NEURAL NETWORK TOPOLOGY

The neural network topology we used for classification is
not complex. The topology is a basically multi-layer linear (or
sometimes called a ‘dense’) topology. Fig. 2 depicts the neural
network topology for URL classification.

The first layer is a 512-dimensional array of nodes which
receives the vector value of a URL, the first half comes from
the host part, the latter part comes from the path part. The
value will be passed to a 256-dimension array twice using
linear connections. To suppress over-fitting, links are dropped
out with the ratio of 0.75. The dropout ratio value is decided
based on our experience of several trials of training. Finally,
the 256-dimension array will be mapped to two classes that
indicate whether the input URL is a benign URL or a malicious
URL.

V. DATASETS

The datasets we used to evaluate the proposed model
consist of two sources. One is a set of URLs retrieved from
the PhishTank.com2. The site provides information on phishing
sites based on the reports submitted by users. The submitted
URLs are manually checked to see if the URL is a real phishing
site; if so, it is marked as active. PhishTank.com distributes
latest active phishing site list which can be used for access
filtering. We retrieved the recorded set of phishing URLs and
used them as a blacklist.

For a whitelist, we collected access log data of a research
organization. A difficult point is that it is impossible to prepare
a pure white URL access list from a real access log. There
is always the possibility that the list we collected includes
malicious URLs. To minimize the effect, we try to clean up
the access list by removing all the URL entries listed in the
phishing site list retrieved from PhishTank.com.

2https://www.phishtank.com/



TABLE I. URL DATASETS FOR TRAINING

Type Content Count

Blacklist 1 Phishing site URLs reported at PhishTank.com before
2017-04-25. This list is used as a blacklist for learning
and testing in conjunction with the Whitelist 1.

26,722

Blacklist 2 Phishing site URLs reported at PhishTank.com before
2017-10-03. This list is used to cleanse the target
access log captured at the anonymous research or-
ganization X.

68,172

Whitelist 1 A sampled list of URL access log captured at the
anonymous research organization X on 2017-04-25
excluding the entries listed in the Blacklist 2. This
list is used for learning and testing in conjunction
with the Blacklist 1.

26,722

from chainer import Chain
import chainer.functions as F
import chainer.links as L
class Model(Chain):

def __init__(self):
super(Model, self).__init__()
with self.init_scope():

self.l1 = L.Linear(None, 256)
self.l2 = L.Linear(None, 256)
self.l3 = L.Linear(None, 2)

def __call__(self, x):
h1 = F.dropout(F.relu(self.l1(x)),

ratio=0.75)
h2 = F.dropout(F.relu(self.l2(h1)),

ratio=0.75)
y = self.l3(h2)
return y

Fig. 3. The code fragment that implements our proposed neural network
model using Chainer

Table I shows the datasets we prepared for training. The
number of entries in each dataset is also shown in the table.

The main target is the URL access list captured at an
anonymous research organization X on 2017-04-25. The access
list contains more than 142 million entries. The list contains
not only benign URLs but also phishing site URLs. We tried
to clean the list with the phishing site URL data reported
at PhishTank.com from 2017-04-24 to 2017-10-03. Using the
blacklist data, including future entries beyond the target data,
will help to remove some of URLs that had not been found at
the day of 2017-04-25 and make the white URL a bit whiter.

We prepared a balanced dataset to fit the neural network for
both malicious URL features and benign URL features evenly.
Since the number of the white URSs was larger than that of
the black URLs, we first picked 10,000 entries of the URL
access log from each hour, i.e. 240,000 entries, and randomly
selected the 26,722 entries from the list which was the same
size as Blacklist 1.

VI. EVALUATION

We implemented our idea described in section IV using
Chainer3. The code of the model is shown in Fig. 3.

We used the datasets shown in Table I. The URL entries
included in the Blacklist 1 and the Whitelist 1 are mixed and
randomly shuffled. The ratio of training and validating is 80%
and 20%. The mini-batch size is set to 100, and the number
of epochs is 20.

3https://chainer.org

TABLE II. RESULTS OF ACCURACY AND TRAINING TIME USING
WHITELIST 1 AND BLACKLIST 1 IN TABLE I

Optimizer Accuracy (%) Training time (s)

Our method Adam 94.18 32

– AdaDelta 93.54 31

– SGD 88.29 31

eXpose[6] Adam 90.52 119

– AdaDelta 91.31 119

– SGD 77.99 116

TABLE III. URL DATASETS FOR PREDICTING

Type Content Count

Blacklist 3 Phishing site URLs reported at PhishTank.com before
2017-05-25. This list is used as a black list for
learning and testing in conjunction with the white list.

39,776

Whitelist 2 A sampled list of URL access log captured at the
anonymous research organization X on 2017-05-25
excluding the entries listed in the Blacklist 2. This
list is used for test the neural network model trained
with the Blacklist 1 and Whitelist 1.

39,776

We tested our neural network model using three different
optimizers, Adam, AdaDelta, and SGD. Among them, Adam
was the best optimizer with an accuracy of 94.18%.

As mentioned above, eXpose[6] tried to classify URLs
using a convolutional neural network. Unfortunately, while
they described their neural network model, they didn’t provide
their code and dataset used in their evaluation. In their paper,
they said they achieved more than 99.9% accuracy. To compare
their approach to ours, we implemented their neural network
model using Chainer and evaluated it with the same dataset
we used for our cases. The results are also shown in the same
table. Although the result using SGD as an optimizer was a
bit low; however, with the other optimizers, their approach
achieved almost same but a bit lower accuracy than ours. We
also measured the time consumed for training because they are
using more complex neural networking topology. Their model
requires four times more training time than ours.

Fig. 4 shows the learning curves (accuracy and loss values
at each epoch). eXpose quickly converged to the stable state
compared to our method; although the final accuracy is lower
than ours using our datasets. When looking at the loss values,
eXpose looks to be over-fitting when the count of epochs
increase. Our proposal uses a dropout ratio of 0.75 between
neural network layers to suppress over-fitting, while eXpose
uses 0.5 as is specified in the eXpose paper. The larger dropout
value may contribute less over-fitting in the eXpose case.

We tried to apply the neural network model trained with
the dataset of Blacklist 1 and Whitelist 1 on a different dataset
containing data captured later than the training data as shown
in Table III. The evaluation results are shown in Table IV.
Our method achieved 95.17% of accuracy with 0.9525 of F-
measure score. We tried to predict the same dataset with the
eXpose model trained with the same trainer dataset too. The
results are also shown in Table IV. eXpose achieved good but
slightly lower score than our method. The Receiver Operating
Characteristic (ROC) curves and Area Under the Curve (AUC)
values are shown in Fig. 5.

It is difficult to say if our neural network model is ap-
plicable to a specific real operation or not given the results



(a) Our method (optimizer = Adam)

(b) eXpose (optimizer = Adam)

Loss of training data
Loss of validation data

Loss of training data
Loss of validation data

Accuracy of training data
Accuracy of validation data

Accuracy of training data
Accuracy of validation data

Fig. 4. Learning curves of our method (a) and eXpose (b): The blue lines indicate results of training data and the orange lines indicate results of validation
data of each epoch while training each model.

TABLE IV. PREDICTION RESULTS OF THE DATASET SHOWN IN
TABLE III USING THE TRAINED NEURAL NETWORK MODEL WITH THE

DATASET SHOWN IN TABLE I

Accuracy (%) Precision (%) Recall (%) F-measure

Our method 95.17% 93.76% 96.78% 0.9525

eXpose 92.99% 93.00% 92.99% 0.9299

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 ra
te

ROC curves

Our method (AUC = 0.99)
eXpose (AUC = 0.98)

Fig. 5. ROC curves and AUC values measured with the prediction datasets
as shown in Table III using our model and eXpose model

shown only in this paper. The accuracy may change depending
on the target environment. The eXpose paper showed their
classification accuracy was more than 99.9%; however as we

show, if we change the dataset the result changes. For the same
reason, if the data sources are changed, our mechanism may
produce lower accuracy than in this paper.

One of the issues when working on this type of research
is that using a generalized dataset is really difficult. The
approaches sometimes optimized to the target datasets, which
are the only datasets that the authors can access in many
cases. In the image recognition field, researchers have several
common datasets such as MNIST4 that can be used to evaluate
each researchers’ proposal with a same baseline. Probably we
need to start the effort to build shared datasets for network
data too.

VII. CONCLUSION

In this paper, we proposed a new neural network model
for classifying URLs into benign and phishing. The learning
overhead of the proposed network is light because the topology
consists of just three layers of linear networks. Shorter learning
time make it possible to try with many different kinds of data
to optimize the neural network topology. Since the accuracy is
sometimes affected by the quality of training data, more trials
may result in more suitable networks.

The debatable point is that it is not possible to prove which
method is better or best. In this area, analyzing network log
data using neural network technologies, we lack a common

4http://yann.lecun.com/exdb/mnist/



dataset to compare approaches. In this paper, we could achieve
better performance than the past work, however, it might be
worse if we used other datasets. Thus, all the researchers in this
community need to start building a dataset to share among re-
searchers working on network log analysis using machine/deep
learning approaches to improve the technologies.

The datasets we used in this paper were taken from the
famous phishing URL archive site PhishTank.com and from
an anonymous research organization’s network. With these
realistic datasets, our model resulted in 94.18% accuracy in the
training/validation phase and 95.17% when classifying newer
dataset then the training phase, which was higher than the
previously proposed neural network model published in [6]
which uses more complex neural network topology.

ACKNOWLEDGMENT

This work was supported by JST CREST Grant Number
JPMJCR1783, Japan.

REFERENCES

[1] “Phishing activity trends report - 4th quarter 2016,” Anti-Phishing
Working Group, Inc., Tech. Rep., February 2017.

[2] S. Garera, N. Provos, M. Chew, and A. D. Rubin, “A framework for
detection and measurement of phishing attacks,” in Proceedings of the
2007 ACM Workshop on Recurring Malcode, ser. WORM ’07. New
York, NY, USA: ACM, November 2007, pp. 1–8.

[3] J. Ma, L. K. Saul, S. Savage, and G. M. Voelker, “Beyond blacklists:
Learning to detect malicious web sites from suspicious URLs,” in
Proceedings of the 15th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, ser. KDD ’09. New York,
NY, USA: ACM, June 2009, pp. 1245–1254.

[4] P. Prakash, M. Kumar, R. R. Kompella, and M. Gupta, “PhishNet:
Predictive blacklisting to detect phishing attacks,” in 2010 Proceedings
IEEE INFOCOM, ser. INFOCOM, 2010, pp. 1–5.

[5] Y. Zhang, J. I. Hong, and L. F. Cranor, “CANTINA: A content-based
approach to detecting phishing web sites,” in Proceedings of the 16th
international conference on World Wide Web, ser. WWW ’07. ACM,
May 2007, pp. 639–648.

[6] J. Saxe and K. Berlin, “eXpose: A character-level convolutional neural
network with embeddings for detecting malicious URLs, file paths and
registry keys,” CoRR, vol. abs/1702.08568, February 2017.


