
AJNA: Anti-Phishing JS-based Visual Analysis,
to Mitigate Users’ Excessive Trust in SSL/TLS

Pernelle Mensah∗†, Gregory Blanc∗, Kazuya Okada†, Daisuke Miyamoto‡ and Youki Kadobayashi†

∗Institut Mines-Télécom/Télécom SudParis
Université Paris-Saclay

9 rue Charles Fourier, 91011 Évry, France
pernelle.mensah@gmail.com, gregory.blanc@telecom-sudparis.eu

†Graduate School of Information Science
Nara Institute of Science and Technology

8916-5 Takayama, Ikoma, Nara, 630-0192 Japan
kazuya-o@is.naist.jp, youki-k@is.aist-nara.ac.jp

‡Information Technology Center
The University of Tokyo

2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-8658 Japan
daisu-mi@nc.u-tokyo.ac.jp

Abstract—HTTPS websites are often considered safe by the
users, due to the use of the SSL/TLS protocol. As a consequence
phishing web pages delivered via this protocol benefit from that
higher level of trust as well.
In this paper, we assessed the relevance of heuristics such as
the certificate information, the SSL/TLS protocol version and
cipher-suite chosen by the servers, in the identification of phishing
websites. We concluded that they were not discriminant enough,
due to the close profiles of phishing and legitimate sites. Moreover,
considering phishing pages hosted on cloud service platform or
hacked domains, we identified that the users could easily be fooled
by the certificate presented, since it would belong to the rightful
owner of the website.
Hence, we further examined HTTPS phishing websites hosted on
hacked domains, in order to propose a detection method based
on their visual identities. Indeed, the presence of a parasitic page
on a domain is a disruption to the overall visual coherence of
the original site. By designing an intelligent perception system
responsible for extracting and comparing these divergent render-
ings, we were able to spot phishing pages with an accuracy of
87% to 92%.

I. INTRODUCTION

In our modern age, more and more professional, commer-
cial, and banking exchanges happen online every day. This de-
materialization of communication opens the gates to criminal
behaviours such as phishing, which is the action of imperson-
ating a legitimate website, in order to deceive the user and
incite him to reveal personal details such as login credentials
or credit card information. The phishing activity represents
quite a lucrative business for cybercriminals. Indeed, it has
generated close to 8.5 billion dollars of losses in the US for
the year 2014, according to the Internet Crime Complaint
Center (IC3) of the Federal Bureau of Investigation (FBI) [1].

Regarding this threat, various measures have been taken such
as the development of technical solutions and the securing
of websites by leveraging the Secure Sockets Layer (SSL)
protocol whose main goal is the authentication of the server,
as well as the privacy and integrity of the communication.
In other words, this protocol is supposed to guarantee that
the user is really exchanging information with the website he
intended to join, and that no external party can have knowledge
of this data or alter it. A communication over SSL is mainly
characterized by the certificate of the server, the version of the
protocol and the cipher-suite chosen to encrypt the data.
Website owners have been encouraged to switch from HTTP
to HTTPS, and users have been taught to trust the contacted
party upon recognizing HTTPS usage. As a matter of fact, a
survey performed by Survata Consumer Research on behalf of
the CA Security Council [2] revealed interesting findings. Out
of 670 US consumers interrogated, 53% acknowledged that
the presence of a padlock in the address bar was synonym
of more trust, and 42% that the presence of a green bar
meant greater safety. But despite that awareness concerning
the security indicators, little is actually understood as to how
the process is secured. The users’ trust is often granted upon
recognizing visible indicators, without a thorough check of the
presented certificate.
Recent statistics highlight the slow shift from cybercriminals
towards HTTPS [3], in order to exploit that gullibility. The
shift is made even easier by the use of cloud services providing
forms or web hosting services. The danger it represents is that
the HTTPS features no longer guarantee the legitimacy of a
particular website or content, especially for cloud services.As
any content (legitimate or malicious) hosted on their domain

would borrow their certificate, this configuration is exploited
by phishersin order to benefit from a valid (possibly an
Extended Validation [4]) certificate for a reasonable fee (the
hosting fee) without the hassle of going through certificate
issuance procedures. The original purpose of our research
was to determine to what extent parameters pertaining to the
use of the HTTPS protocol are exploitable in the detection
of fraudulent websites. Then, gaining advantage from these
results, develop a system to protect users from phishing.
While we analysed both legitimate and phishing websites
from the assumption that phishing websites are more likely to
present suspicious SSL/TLS features, compared to legitimate
ones, we concluded that those heuristics were not discriminant
enough, due to the close profiles of phishing and legitimate
sites. We then surveyed phishing websites abusing the users’
excessive trust in SSL/TLS and we specifically considered
the case of phishing websites hosted on hacked domains. To
counter such websites, we designed a detection method based
on their visual identity. Using this method, we were able to
obtain an accuracy of 87% to 92% in the detection of this type
of websites.
The rest of this paper is organized as follows: in Sect. II,
we describe our evaluation of HTTPS phishing heuristics as
well as the results obtained and the insight we gained from
analysing HTTPS phishing websites. In Sect. III, we describe
the method we implemented to detect HTTPS phishing web-
sites hosted on hacked domains. Several related works on
HTTP phishing detection methods are reviewed in Sect. IV and
limitations associated with our detection method are discussed
in Sect. V, before concluding in Sect. VI.

II. MOTIVATION

As illustrated by the statistics introduced in the introduction,
the presence of the SSL/TLS protocol represents a guarantee
of security for a large amount of users. Various research
works have considered the evaluation of the effective level
of trust to grant to that technology. For example, Brubaker
et al. [5] introduced a methodology to perform a large-
scale evaluation of certificate validation logic in SSL/TLS
libraries by leveraging random alterations made to real-world
certificates.These crafted certificates allowed to evaluate rarely
tested specifications, hence uncovering various security vul-
nerabilities in SSL/TLS and web browsers implementations.
Levillain et al. [6] retrieved SSL/TLS data relative to HTTPS
servers reachable between July 2010 and July 2011. An
evaluation of the quality of SSL/TLS answers revealed some
compliances issues with the standards, as well as the inaptitude
of some servers to support some ciphersuites or latest protocols
versions. In [7], Pukkawanna et al. assumed that a weak
protocol version or algorithm is source of concerns, due to
security flaws. A communication based on these parameters
is thus deemed more insecure than one initiated with stronger
protocol versions or encryption algorithms. Hence, an evalua-
tion of the cipher-suites and protocol versions based on known
vulnerabilities allowed to classify the servers as being secure,
risky or insecure. That score, combined with the one obtained

by an evaluation of the certificate provided the total score of
the server, and allowed to classify approximately half of the
servers as presenting security concerns.
The results of these studies are evidence that the notion
of trusted servers should be considered with caution by the
users, since it depends greatly on the care given to the
implementation details of the platform and the scope of
vulnerabilities discovered at the time. The works described
previously considered the SSL/TLS ecosystem from a global
standpoint. No distinction was made between servers hosting
legitimate websites and servers hosting phishing ones. As a
consequence, the behaviours of these two classes of sites could
not be inferred from the results obtained. It could however
prove to be a useful information for the detection of deceitful
websites, since, as we discussed in the introduction, attackers
are shifting towards HTTPS. We thus oriented ourselves
towards the particular issue of HTTPS phishing with the aim
to uncover discriminating SSL/TLS characteristics between
phishing and legitimate pages and examined whether or not
SSL/TLS features generate exploitable results in the detection
of web-fraud.

A. Reminder: SSL/TLS operation

The following steps are performed during a SSL/TLS hand-
shake:

• First, the security parameters to be used for the secure
channel between the Client and the Server are ne-
gotiated via a Client Hello and a Server Hello
message: the Server chooses among the supported
parameters sent by the Client (cipher-suites, protocol
versions, compression methods) those deemed acceptable

• Then, the Server sends its certificate to the Client for
validation, using a Server Certificate message

• After this step, a Client Key Exchange is sent from
the Client to the Server, containing the pre-master
key generated by the Client. That key is used to
generate the symmetric key allowing to encrypt the data

• The CipherSpec Exchange and Finished mes-
sages are finally sent by both parties to notify that the
next messages will be encrypted.

From the point of view of the Client, the information ob-
tained, and thus the features on which we base our assessment
are the cipher-suites proposed by the Server, the versions of
the SSL and TLS protocols in use, as well as the compression
methods, and the Server certificate information.

B. A taxonomy of HTTPS phishing websites

In order to validate the discriminating effect of SSL/TLS
handshake information to the detection of HTTPS phishing
pages, we surveyed the usage of SSL/TLS features in several
datasets of HTTPS webpages as described in Sect. ??. To
that end, our team began by building a taxonomy of HTTPS
phishing webpages based on their hosting method as hinted
by Pajares [3]. Two categories emerged: websites hosted on
their own domains and websites taking advantage of third-
parties (cloud services, hacked domains, shared SSL domains),

HTTPS Phishing Sites

Parasitic

HTTPS Phishing Sites

Own Domain

Cloud Services Shared SSL Domain Hacked Domain

Online Form

Online Chat

Online File Storage

Redirector

Fig. 1. Taxonomy of HTTPS phishing sites.

in order to give access to their contents.These two categories
were further refined as illustrated in Fig. 1. Phishing websites
hosted on their own domain have been identified using the
following indicators:

• The reported phishing URL is a domain with no subfolder
• The domain name looks clearly incriminating (similarity

with legitimate ones, presence of security-related key-
words, well-crafted sub-domains)

• No other uses for the domain were found in search
engines or archive.org

In that case, the SSL/TLS certificate presented is provided by
the attacker, incurring further financial cost.

Parasitic sites are described as being hosted on a domain
that does not belong to the phisher: a shared SSL domain,
a cloud services platform or a hacked domain. That domain
is most of the time shared with other legitimate users: all of
them will present the certificate of the owner of the platform.
Such method is usually less costly to the attackers, except for
the one that requires pre-emptive compromise of an existing
domain (hacked domain).

C. Analysis

Our original assumption was that malicious websites are less
likely to present properly-filled certificates. But, for parasitic
HTTPS phishing webpages, the information presented is not
manipulated by malicious parties and is directly provided by
the administrators of the hosting platform. Thus, it cannot
be directly used to gain knowledge regarding the status of
a webpage hosted on these services, even when qualified as
insecure by the analysis module presented below.

In order to analyze the relation between the above-
mentioned categories of HTTPS phishing webpages and their
usage of SSL/TLS mechanisms, we collected several certifi-
cates and SSL/TLS information (protocol versions, cipher-

suites) from known legitimate websites and known malicious
websites. The provenance of the collected information helped
us classify them among the different categories defined in our
taxonomy. Finally, we leveraged the assessment of SSL/TLS
servers previously performed by Pukkawanna et al. [7] as it is
concerned with the security of such servers.

1) Datasets: We collected the following datasets:
• 1,213 legitimate certificates retrieved by connecting to

Alexa Top 3,000 websites [8]: Legit_cert
• 1,170 phishing certificates retrieved by connecting to

websites identified in Phishtank database [9]: Phish_cert
• SSL/TLS protocol and cipher-suite information of 103

online phishing websites: Phish_SSL
• SSL/TLS protocol and cipher-suite information of 102

online legitimate websites randomly selected among
Alexa Top 3000 websites: Legit_SSL

The last two datasets have been obtained using the backward
compatible Firefox configuration to contact the servers [10].

2) Classification: When connecting to a website, we
extracted informations in the meta tag and searched for
keywords indicating the use of a cloud service, such as :
"online", "form", "shared", "storage", "cloud", ... On the other
hand, we matched the Common Name (CN) in the retrieved
certificate against a known list of shared certificates CNs, and
identified the use of wildcard certificates. These steps allowed
us to single out websites presenting shared certificates, the
others being considered as presenting their own certificates.

3) Security assessment: Pukkawanna et al. [7] introduced
two scores to assess a server according to the following
criteria:

• the first group of criteria, relative to the information
contained in the certificate, i.e., the presence of suspicious
entries in the fields (see Table I).

• the second group, relative to the handshake information
of an SSL/TLS server, specifically the protocol and
cipher-suite chosen by the server. These parameters were
classified as being secure, risky or insecure, according to
known flaws and vulnerabilities.

According to these criteria, was identified as malicious
a certificate with suspicious values (“SomeCity”, “SomeS-
tate”,...) or that lacked one of the following fields:

• Common Name, CN
• Organizational Unit, OU
• Organization, O
• Country, C
• State, S
However, a prior analysis of Legit_cert dataset showed

that even secure certificates do not always include these 5
fields at once. 90% of the dataset is constituted of certificates
presenting a subset of 2 or 3 of the previous fields. While
Common Name is always provided, along with Organization
or Organizational Unit, Country and State fields are most of

TABLE I
SUSPICIOUS VALUES IN THE CERTIFICATE. [7]

C (Country) O (Organization) OU (Organizational
Unit)

S (State/province) CN (Common Name)

XY, NON-STRING-
VALUE, single/double
quotation

SomeState,
Someprovince,
SomeOrganization,
MyCompany, self-
signed, 127.0.0.1, any
compromised CA or
cheap reseller CA

single/double quotation,
Single dot, SomeState,
Someprovince,
SomeOrganizationUnit,
Division, section, self-
signed, 127.0.0.1, any
compromised CA or
cheap reseller CA

SomeState, Some-
province, SomeState,
Select one, Default,
default

localhost.localdomain,
127.0.0.1

the time left blank. We adapted the script in order to include
these use cases, identifying as insecure a certificate presenting
suspicious values or less than two of the aforementioned
fields. The results of this reviewed implementation are
presented in Tab. II.

Besides, we only slightly modified the script provided in [7]
in order to include the new cipher-suites we encountered
during the collection of Legit_SSL and Phish_SSL. We
relied on known flaws and vulnerabilities associated with a
particular protocol version or cipher-suite to rate the servers.
The results obtained after the analysis of Phish_cert and
Legit_cert, and on Phish_SSL and Legit_SSL are presented
in Tab. III and Table IV, respectively.

D. Results

From the results in Tab. III obtained via an analysis
of Phish_cert, only 1.90% of phishing websites have been
identified as being insecure after evaluating their certificates.
Among these insecure certificates, 72.72% are own certificates.
In order to be more accurate with the profile of legitimate
websites we loosened the rules allowing us to label the
certificates, however this fact is an impediment to our ability to
detect insecure certificates too. Indeed, phishing and legitimate
websites tend to share similar characteristics (presenting only
the CN, OU and O fields) and hackers make an effort to present
trustworthy values.

As shown in Tab. III and Tab. IV, more insecure servers
can be encountered among the legitimate ones than among
those that host phishing websites; however this last population
presents more risky servers. Further investigations showed
us that no insecure certificates have been presented by
insecure or risky servers. Overall, only approximately 16%
of servers (risky + insecure) hosting phishing websites have
been identified as risky or insecure, the majority of them
being servers presenting their own certificates. On the other
hand, 9% of servers hosting legitimate websites have been
identified as risky or insecure.

E. Discussion

In [7], servers from the whole IPv4 address space were
considered in order to design a way to determine their level

of security. However, the maliciousness of the service provided
via SSL/TLS was not examined, as that information was not
available in the original dataset.
In this work, we filled this gap by labelling the servers: we
narrowed the scope to servers hosting legitimate and phishing
websites reachable over HTTPS and computed for each of
them the level of security of the certificate and of the protocol
version and cipher-suite chosen. From this experimentation
realised on the SSL/TLS handshake parameters presented by
the servers, we conclude that heuristics specifically yielded by
HTTPS cannot efficiently discriminate the legitimate websites
from the phishing ones. The parameters examined show very
little relevance in the detection, due to the close profiles of
phishing and legitimate sites. As a consequence, the use of
these heuristics will be more likely to generate a large number
of false negative results.
On the other hand, by applying the taxonomy described earlier
to our phishing dataset, we have also been able to identify the
parasitic ones as being the most challenging and likely to evade
current detection tools. They are on one hand, websites hosted
on cloud services or forms generated by online platforms,
and on the other hand, hacked websites used to host phishing
web pages. Indeed, in the case of cloud services and online
generated forms, the URLs are pre-formatted by the owners of
the platforms and can appear suspicious, since they are longer
than usual ones: they often contain long hexadecimal strings
in order to identify the resource and its owner. Heuristics such
as the history , popularity and creation date of the website are
less likely to be relevant because they will yield seemingly
trustworthy values. Besides, a reliable certificate is also going
to be presented. Among our SSL heuristics, that last parameter
is the one that is directly accessible and more likely to be the
object of an assessment by a fraction of users, as we discussed
in our introduction. However, by running our experiment, we
have been able to realise that, the certificate might not only
be evaluated as being safe (as per our analysis method), but
it might also be source of confusion to identify the origin
of a particular content presented. Indeed, by analysing the
certificate, users might identify a content as originating from
the legitimate owner of the platform and fall prey to fraud
pages presented.
How is it possible to detect the malicious content in that case?
In the following sections, we will focus on the particular issue

TABLE II
REPARTITION OF HTTPS PHISHING CERTIFICATES ACCORDING TO THEIR TYPES (TOTAL OF 1,170 CERTIFICATES).

Secure certificates % Insecure certificates %
98.1 1.9

Own certificates % Shared certificates % Own certificates % Shared certificates %
63.88 36.11 72.72 27.28

TABLE III
REPARTITION OF SERVERS HOSTING HTTPS PHISHING WEBSITES BASED ON THE CHOSEN PROTOCOL AND CIPHER-SUITE (TOTAL OF 103 SERVERS).

Secure servers % Risky servers % Insecure servers %
83.5 % 12.62 % 3.88 %

Own certificates % Shared certificates % Own certificates % Shared certificates % Own certificates % Shared certificates %
51.16 48.84 76.92 23.08 100 0

TABLE IV
REPARTITION OF SERVERS HOSTING LEGITIMATE WEBSITES BASED ON THE CHOSEN PROTOCOL AND CIPHER-SUITE (TOTAL OF 102 SERVERS).

Secure servers % Risky servers % Insecure servers %
91.17 0 8.83

of hacked domains hosting phishing pages.

III. DETECTION OF HACKED DOMAINS HOSTING PHISHING
PAGES

A. Assumptions

The main advice given to a user in order to identify a
phishing page is to never trust the look and feel of the
content he is presented, but rather rely on different indicators.
However, what if that perception could actually be engineered
in a different way to help the detection in the case of hacked
domains?
Starting from the assumption that every website has its own
visual identity allowing a user to distinguish it from another
one, the fact of introducing a page impersonating a different
website is more likely to disrupt that uniqueness. We were
actually able to observe this characteristic among hacked
domains present in the Phishtank database. If a user took
the time to explore the website, instead of directly trusting
the form presented on the page he landed, he could realize
that incoherence. This way, by analysing the look and feel
he receives not only from the first page presented, but from
the global domain, he might be able to correctly identify a
deceptive content.
Since it is not realistically possible to expect users to execute
that analysis themselves, we aimed to introduce a system
based on intelligent perception to automatically perform that
behaviour. Thereby, being able to extract and compare the
visual identity of the global website and the currently browsed
URL gives a way to deem a website as being hacked, if too
dissimilar results are obtained.
This approach distinguishes itself from the research performed
by Zhang et al. [11], as well as Fu et al. [12] which both
used visual analysis. We propose to compare a page to others
hosted within the same website in order to get their level of

similarity, and this way spot anomalies that could allow us to
detect phishing pages mimicking an unknown target.

B. Perceptual Image Hashing

Hashing algorithms are used to convert files into a fixed-
length string, representing the fingerprint associated with a
particular input file. They refer in general to cryptographic
hash algorithms, that allow to associate two files with a
slight variation in the content, to hashes that are extremely
distinct. However, in our approach, it is essential to carry
the information relative to the similarity of the input files in
the hash obtained. It is performed by the use of perceptual
hashing, a different category of hashing algorithms applied on
pictures. Perceptual hashing allows to maintain the correlation
that exists between the inputted files by generating similar
hashes for similar pictures. It is then possible to assess that
level of similarity by the use of a comparison algorithm such as
the Hamming distance on the generated hashes. In our system,
we opted for the use of dHash [13], a perceptual hashing
algorithm that realizes the following steps:

• reduction of the size of the picture
• conversion of the image to a gray scale picture
• computation of the difference between two adjacent pix-

els
• assignment of the bits based on whether the left pixel is

brighter than the right one
Its output is then a hexadecimal string representing the hash
of the image.

C. Proposed System - AJNA: Anti-phishing JS-based visual
analysis

1) Overview: The system introduced in this paper considers
the following scenario, described on Fig.2: The request sent

Machine Learning

Dataset

Coefficients associated
to each features

User Browser

Plugin

1. HTTP(S) Request

(url)

Server-Side Application
(Node JS Server)

2. User's url sent to server
for analysis

Internet

3. Fetch information for analysis :
- current browsed page
- 2 randomly selected pages (via
links on the current browsed page

Visual analysis
and

Features Extraction

- suspicious_path F1
- password asked F2
- title in domain F3
- difference in Hamming Distance F4

Features Analysis

Result : phish / safe

Granted/Blocked
upon result

4.

5.

6.

7.

8.

9.

Fig. 2. Overview of the System.

by the user in order to access a website is intercepted by a
plugin installed in the user’s browser. That plugin retrieves
the user’s url and sends it to a Node JS server, on which runs
our proposed application. That application issues a serie of
requests in order to acquire the information needed for the
analysis, that is the page currently browsed by the user, as
well as two randomly selected pages on the same domain.
These objects are then processed by the application in order
to extract the features, and compute a result concerning the
status of the page to be accessed, result that is sent back to
the plugin, that decides wether or not to grant the navigation to
the website, based on the received output. A machine learning
phase is performed prior to the application analysis, in order
to obtain the coefficients needed to compute the output. That
output is also added to the machine learning dataset, allowing
to enrich it over time.

2) Workflow: Server-side application: As presented, a Fire-
fox plugin has been implemented. Its purpose is to send the
currently browsed URL to an application running on a NodeJS
server, responsible for running the visual analysis during the
loading of the page.
Upon reception of the URL, the server-side application re-
trieves all the links present on the home page of that domain

NodeJS
Server Side Application

Perceptual hashing via dHash

Hamming distance

Snapshot via dHash

url1 url2 current
url

hash1, hash2,hash_currentURL

Href between hash1 and hash2
Htest between hash2 and hash_currentURL

Fig. 4. Visual Analysis details.

and randomly selects two of them: URL1 and URL2.
These URLs, along with the currently browsed one are then
passed to a headless browser (Phantom JS) that takes a
snapshot of the three rendered pages. The window is calibrated
to get only the top of the pages, where the menu bar is more
likely to be localized; the text content of paragraphs and links
is hidden before rendering.
For each of the snapshots, a hash is obtained by the use of
dHash, the perceptual hashing algorithm we introduced in the
previous section.
The computed hashes are compared using the Hamming
distance in order to get their level of similarity:

• the Hamming distance between the hash of URL1 and
the one of URL2 gives a reference on how dissimilar we
can expect two pages on the same website to be : Href

• the Hamming distance between the hash of URL2 and
the hash of the currently browsed URL gives us the
divergence between a page of the website and the page
we want to assess: Htest

The heuristic exploited is the difference between these two
hamming distances: (Htest − Href). The graph on Fig. 3
shows the dispersion of this heuristic, according to the status
of the website: phishing or legitimate. Fig. 4 illustrates an
implementation of our mechanism.
In our configuration, we converted the image in a 16-bytes
hash. An experimentation with lower and higher hash lengths
(8, 24, 32) confirmed that value to be a right compromise, by
containing enough information while limiting the dispersion.

Additional heuristics used: Along with the parameter

0 20 40 60 160

-100

-50

0

50

100

150

200

Representation of the heuristic H2 - H1

Difference of hamming distance H2 – H1

Phishing sites

Legitimate sites

Fig. 3. Representation of the heuristic (Htest −Href).

TABLE V
CLASSES OF WORDS IN PHISHING URLS

Brands (b) Type of doc (tod) Secure process (sp) Display (dis) Positive words (pos)
google, usaa, paypal, drive,
live, youtube, onedrive, tor,
dropbox, bank, yahoo, apple,
itunes, amazon, twitter

form, forms, survey, mail,
share, file, online, images
cloud, plugins, download,
shared, files, documents,
sharing, document

login, send ,secure, pay, up-
date, sid, account, key, ver-
ification, sign, security, user
, analysis, session, unsub-
scribe, accounts, confirm,
client, sec support, submit,
subscribe, protection, pass-
word, connect, confirmation,
log, updates, billing, pay-
ment, verify, safe, upgrade,
verifies

view, web, home, host,
watch, content, index, web,
hosting

important, welcome, insur-
ance,promo, awesome, ser-
vice, daily, tip, fresh, strong,
good, review, hint, best, ben-
efit, free,health, interesting,
now

(Htest − Href), we introduced legacy features used in
previous researches, but also new ones discovered during the
analysis of our phishing dataset.

The first legacy features used is the presence of forms
asking for password or credit card information on the
browsed page (feature F1). We automatically identify a page
without forms as being safe, and make sure to check not only
the HTML source code, but the JavaScript source code as well.

The second legacy feature is a suspicious URL (feature
F2). We based our categorization on the presence of an IP
address, a suspicious port or character, the number of dots in
the domain name, a suspicious redirect or path, as already
used in past works. However, we also performed a survey of
phishing URLs active between August 2014 and June 2015
that allowed us to obtain five classes of keywords recurrent
in this population. The classes are reported on Table IV. On
Fig. 5, we can have a better understanding of the distribution
of these classes across the retrieved URLs. The different
categories have been abbreviated as folows:

• Brand, b
• Type of doc, tod
• Secure process, sp
• Display, dis
• Positive words, pos

b sp tod dis pos
0

10

20

30

40

50

60
2015
2014

Classes of words

P
e
rc

e
n
ta

g
e
 (

%
)

Fig. 5. Repartition of keywords in the phishing URLs.

We further examined the URLs in order to grasp how the
five classes of words we identified are combined to each
other, as illustrated on Fig. 6. We can notice that even if
the proportions vary more or less over time, hackers will
generally tend to use one or more of these categories in order
to better deceive the users. Indeed, we can observe that only
slightly under 14% of the URLs examined in both 2014 and
2015 do not have words contained in one of our classes.
These classes we extracted will be one of the criterion to
label a URL as being suspicious.
Besides, based on our observations, we also add the presence
of a different domain in the path of the URL as a suspicion

0

2

4

6

8

10

12

14

16

18

20
2015

2014

tod
_p

os

tod
_p

os
_b

pos
_b

tod
_p

os
_d

is_
b

tod
_p

os
_d

is_
sp

tod
_p

os
_sp

pos
_sp

_b

tod
_p

os
_d

is

pos
_d

is_
sp

_b

pos
_d

is_
b

tod
_p

os
_sp

_b
pos

_sp pos

pos
_d

is_
sp

_b

pos
_d

is_
sp

pos
_d

is

tod
_d

is

tod
_p

os
_sp

tod
_sp

_b
tod

_b

tod
_d

is_
b

sp
_b

tod
_d

is_
sp tod

dis_
sp

_b dis

tod
_sp

dis_
sp

tod
_d

is_
sp

_b b sp
dis_

b
non

e

Combination of the different classes of words

Pe
rc

e
n
ta

g
e
 (

%
)

Fig. 6. Relationship between keywords in the phishing URLs.

criterion.

A novel feature derived from our analysis is the presence of a
portion of the title tag content in the domain name (feature
F3); that parameter is rather empirical. Indeed, we analysed
the html source code of legitimate websites, and particularly
the content of the title tag (<title></title>), also rendered on
the top of the browser. We observed that legitimate websites
tend to put their business name in the title tag, alongside
various information such as the general purpose of the page
or the title of an article presented, generally for Search
Engine Optimization (SEO) purposes; besides, the domain
name of the legitimate sites is also a reminder of the name
of the brand. Consequently, it is possible to find a matching
string between the title and the domain name of a legitimate
website. On the other hand, phishing sites that often mimic
this characteristic to better trick the users, and indicate the
name of the targeted brand at this position(title tag), don’t
exhibit a domain name related to the impersonated brand.
Hence, if a common string is not found between the domain
name and the title, we are more likely to be on a phishing site.

These 3 features are subsequently fed to our classifier, along
with our fourth feature F4 introduced earlier: (Htest−Href).

D. Machine Learning Phase

We collected the previous heuristics on a set of 140 web-
sites:

• 70 websites gathered via Phishtank database, they repre-
sent hacked domains hosting phishing pages

• 70 websites being legitimate pages belonging to the Alexa
Top 3000

A fluctuating acquisition time has been observed for each
website: from 1 to 10 seconds for 70% of the sample, and

up to 20 seconds for the rest. Further investigation allowed
to pinpoint the rendering of the web page by the headless
browser as being the bottleneck of the system. Indeed, the
more extensive the text content is, the more processing time is
needed, as it is necessary to discard that content to avoid the
inclusion of more divergence in the snapshots. We explored
ways to alleviate this shortcoming in Section V.

In order to understand the impact of each feature in
the detection, we separated them into three sets:

• the first set, containing F1 and F2, the selected features
used in previous works

• in the second set, we introduced our first heuristic F3 in
addition to F1 and F2

• in the third set, we used the four heuristics F1, F2, F3
and F4

Facing a classification problem, we fed our dataset to the
Support Vector Machine (SVM) algorithm, a simple machine
learning classifier. SVM allows to find a decision boundary
which separates the space in two regions. The hyperplan found
is as far from all the samples as possible.
Our goal here was to train the classifier to discriminate
between hacked domains and legitimate websites.
The 10-Fold cross validation method was used in order to
evaluate the performance of the classifier: the dataset was
randomly splitted into 10 sets, each one containing a training
set of 126 websites and a testing set of 14 websites.
We ran this 10-Fold cross validation on each of the 3 sets
of features previously introduced, and plotted the Receiver
Operating Characteristic (ROC) curve for each of the exper-
iments. The average of the metrics for each experiment can
be observed on Table V. From the results in Table V, we can
notice the evolution of the metrics, according to the chosen set.
The more features we have in the set, better are the results.

TABLE VI
AVERAGE OF THE METRICS OBSERVED DURING 10-FOLD VALIDATION, ACROSS THE 3 SET OF FEATURES.

TPR TNR FNR_score FPR Precision Recall Error F1_score
Set 1 0.47 0.46 0.53 0.54 0.51 0.47 0.54 0.49

Set 2 0.54 0.58 0.46 0.42 0.71 0.54 0.44 0.62

Set 3 0.89 0.90 0.11 0.10 0.90 0.89 0.11 0.90

Mean ROC (area = 0.21)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 P

o
si

ti
v
e
 R

a
te

Receiver operating characteristic (ROC)

Mean ROC (area = 0.40)
Mean ROC (area = 0.91)

Fig. 7. Representation of the Mean ROC curve for the three sets of features.

F3 and F4, the parameters introduced in this study, allow to
have a more accurate classification. Indeed, the best metrics
are obtained for the third set, which combine F1, F2, F3 and
F4, where the phishing detection accuracy reaches 90%. That
is also observable on Fig. 7: we start from a mean Area Under
the Curve (AUC) of 0.21 with the first set of features, to reach
a mean AUC of 0.4 with the second set. The best perfomances
are obtained with the third set of features where the mean AUC
is equal to 0.91. We also used the Random Forest Regressor
in order to rank each feature according to its impact in the
detection. F4 ranked first, followed by F1, F3 and F2.
From this experiment, we can conclude that the new heuristics
we introduced allow to discriminate between legitimate sites
and hacked domains without having to depend on a database
of known targets.
These results seem promising, even if they should be further
confirmed with a larger set of examples. We believe the
unconventional form of the ROC curves obtained for the set
1 and set 2 can be explained by a number of test samples too
low. Indeed, the KFold, being performed on 10% of the dataset
(14 samples), some experiment’s rounds have a detection rate
of 1, while others have a detection rate of 0: that configuration
directly affect the average recall and precision represented on
Fig.7.

IV. RELATED WORK

A. Phishing detection methods

The techniques used to combat phishing can be organized
in two classes: non technical and technical methods. While
the former have the user as principal actor of the detection
process and seek to train him, the latter perform an automatic
analysis without requiring the user’s intervention.

1) Non technical methods: They are generally designed
with the education of the user in mind; since he is ultimately
responsible for revealing or not his credentials on a malicious
website.
Non technical methods can take the form of games or
educative materials where extensive details are given about
how to recognize phishing websites and adopt safe behaviors.
An example of educational material is the Phishing Education
Landing Page from the Anti Phishing Working Group
(APWG) [14]. This initiative is a collaboration between
the APWG and corporations that have been targeted by a
phishing campaign. The known malicious URL is redirected
to a safe page where the user is presented with clues allowing
him to recognize malicious websites.
Arachchilage et al. [15] and Hale et al. [16] oriented
themselves towards the game approach. They place the user
in a fictitious environment where he faces use cases designed
to be close to real life ones and has to identify whether a
web page is legitimate or not, based on various features;
in that process, the aim is to instil the habit to check these
parameters before trusting any website.
Non-technical methods generally have the advantage to
impact instantly the user by training him and giving him
clues on how to assess the legitimacy of a website. Subsequent
evaluations show an improvement of the detection rate of
phishing websites by the users right after the training.
However, on the downside, the teachings tend to fade away
if not regularly repeated.

2) Technical methods: They often take the appearance of
browser-side anti-phishing methods.
Blacklists approaches leverage services or databases that
register known-phishing URLs. For example, browsers such

as Firefox and Google Chrome offer Google Safe Browsing as
a built-in tool [17]. This technology uses blacklists compiled
by Google while crawling the web, in order to warn the users
when they access phishing websites. The Opera browser on
the other hand uses a blacklist compiled with the ones of
Phishtank, Netcraft, as well as TRUSTe [18]. In addition
to blacklists databases, Netcraft Toolbar, a browser plugin,
also provides protection against not yet registered phishing
websites by computing a risk rating. That score is based upon
the history of phishing sites in the same domain, a suspicious
URL or port number, the hosting history of the ISP, the
country, or the top-level domain history, regarding phishing
websites. They also consider the site popularity among other
Netcraft users [19]. On the other hand, whitelists approaches
can also be combined to blacklists ones. By referencing a
subset of trusted websites that will evade filtering, they allow
to reduce the potential number of false positives.
Previous works have been done by Zhang et al. [11], but also
by Fu et al. [12], exploiting the visual aspect of a website.
Both used the visual similarity, computed via perceptual
hashing or the earth movers distance algorithm, to make the
distinction between phishing and legitimate websites. They
used a set of known phishing templates as reference for the
comparison. However, these methods could not detect new
impersonated brands as they relied on the use of a database of
known targets. Still using visual analysis, Corbetta et al. [20]
interested themselves to the detection of fraudulent websites
by the identification of counterfeited or misappropriated
certification seals displayed on a page. Comparing images
displaying potential seals to known seals via the use of
perceptual hashing, they have been able to spot misused
stamps, and hence deceitful sites.
The advantage of the blacklist approach is that chances are
very high that the website registered is indeed a phishing
one. However the main issue is its inability to recognize
not yet blacklisted sites, thus leaving the user vulnerable
to them. Besides, whitelists also represents a double-edge
sword. Indeed, a domain compromised or hosting a malicious
content (in the case of cloud platforms) after its addition to
the list, will escape the detection and still remain trustworthy
to the users.

On the other hand, heuristic-based methods present a
more dynamic approach as they are able to spot phishing
websites that are not yet registered in a blacklist. Several
heuristics have been developed based on the URL, the
content, the ranking or the DNS features in order to make the
distinction between phishing websites and legitimate ones.
Ultimately these heuristics can be combined with machine
learning algorithms in order to address the polymorphism and
versatility of phishing websites.
In [21], Aburrous and Khelifi classified the features into 6
groups: URL and domain identity, security and encryption,
JavaScript source code, page style and contents web address
bar, and social human factor. These features are then used to

extract classification rules by leveraging fuzzy logic and data
mining associative classification.
Huh and Kim [22] used the reputation of a website as
heuristic. That heuristic is obtained via the use of popular
search engines. A comparison between machine learning
algorithms is subsequently made in order to determine the
one with the best performances.

V. DISCUSSION

In this work, we have presented the dangers inherent to an
excessive trust into the SSL/TLS indicators, i.e., unsuspecting
users blindly trusting a webpage when it advertises its use
of an SSL/TLS certificate. Security indicators, such as the
padlock icon, have been criticized in the past to be difficult to
interpret by users as they often lack the knowledge of security
indicators [23], and are now more confusing to them since
they are also misused by attackers to convey a false sense
of security [24]. Mobile users are even more oblivious of
their presence when dealing with the reduced screens of their
smartphones [25]. Indeed, there is no objection to the increased
security brought by using SSL/TLS in HTTP communications,
and research works specifically aiming to educate users into
recognizing security icons [26] should be encouraged. But
even security-savvy users may fall victims to phishing traps if
they do not use their discernment when dealing with seemingly
secure websites. It was already demonstrated by Pukkawanna
et al. [7] that even websites presenting an SSL/TLS certificate
could not guarantee the security of their transactions with the
end-user.

We then distanced ourselves from these heuristics to propose
a detection method able to deal with more evasive phishing
pages in that they thrive upon legitimate domains. While
we have demonstrated promising results, we have detected
limitations with the actual implementation, i.e., the processing
time incurred by the visual analysis has turned out to be
the major bottleneck. Indeed, for every URL, three pages
are fetched and processed to get the status of the website.
This first implementation was more of a proof of concept
and not oriented towards optimization. But we believe that
this delay can be somehow reduced: taking advantage of
the asynchronous capability of NodeJS, processing can be
parallelized and distributed across a pool of headless browsers.
The browsed URL could also first be compared with a database
of known targets and if no match is found, the program could
step into the processing of the snapshots to be sure that it is
not facing an unknown target. On another hand, speeding up
the processing time might allow to consider more than one
Hamming distance as ground truth and find a better balance
to get the visual identity of the website.
Besides, some websites present ads that vary according to
the browsed page, or menus whose color adapts according
to the addressed topic. These facts cause the generation of
dissimilar hashes and thus a suspicious Hamming distance for
two pages coming from the same origin. By introducing a
list of resources that should not be fetched by the headless

browser, it could be possible to prevent the rendering of ads.
As for color-themed menus, i.e., webpage menu bars that
changed themes according to the page topic, instead of picking
two URLs randomly on the landing page, it might be more
relevant to classify the URLs in order to select those that
appear to be referring to the same topic. This categorization
can be achieved by grouping the URLs according to the first
element of the path. Indeed, news sites like the one of the
BBC, tend to organize articles pertaining to the same topic on
different folders: news, sport, culture..., folders whose name
will appear as the first element of the path.

Additionally, the visual perception method we have used
is only effective in the case of hacked domains, where
phishers would host a phishing page of a given brand on a
domain they happened to have compromised, of which brand
is different from the impersonated one. As no SSL/TLS
heuristics are used, this method can be extended to HTTP
phishing websites. It can be used in a more global phishing
detection/mitigation system where it would specifically tackle
phishing pages hosted on hacked domains. As mentioned in
Section II-B, we have also identified other types of phishing
pages that proved to be impervious to detection, such as pages
hosted on cloud services or forms services platforms. A more
straightforward approach would analyse the contents form the
page in order to identify keywords related to form fields or
submission, as well as sensitive information. Indeed, our work
limited itself to the parameters presented by the phishing
webpage and its URL, but more contextual information could
actually be gathered from extending the detection workflow
to blacklists and/or email clients from which most phishing
emails originate.

The machine learning could benefit from a larger set of
samples in order to validate the results. On the other hand,
concerning the feature F1 (suspicious path), it would be more
relevant to introduce a variable parameter, instead of a binary
one. Indeed, in the current implementation, as soon as a
suspicious rule is fulfilled, we automatically consider the path
as suspicious. A better approach would be to rank the rules
and score accordingly.

VI. CONCLUSION

In the survey presented in Section II, we evaluated the
relevance of some of the heuristics proposed by Pukkawanna
et al. [7] in detecting HTTPS phishing and came to the
conclusion that solely based on these heuristics, we would
not be able to discriminate phishing webpages from legitimate
ones, ruling their direct integration into a detection system.
Suspicious patterns in fields such as DN, OU and O would
result unsuccessful at singling out phishing websites. Our
additional survey over keywords has proven complementary
to previous survey works on URL-based impersonation [27]
where strings as manipulated to look like the target ones by
means of suppressing a letter, using numbers in place of letters,
etc. Combining the approaches would improve detection based
on certificate information. By studying certificate information,

cipher-suites and protocol versions chosen by both legitimate
and phishing websites, we came to the conclusion that those
heuristics were difficult to use to detect malicious pages.
However, among the group of HTTPS websites challenging
current detection methods (parasitic ones), we further ana-
lyzed hacked websites and designed a detection method. A
comparison of the visual identity of the website with the one
of the browsed URL, if too dissimilar, allowed to identify
compromised domains with a precision reaching 90%, without
relying on an existing database.

ACKNOWLEDGMENT

This research has been supported by the Strategic Interna-
tional Collaborative R&D Promotion Project of the Ministry
of Internal Affairs and Communication, Japan, and by the
European Union Seventh Framework Programme (FP7/2007-
2013) under grant agreement No. 608533 (NECOMA). The
opinions expressed in this paper are those of the authors
and do not necessarily reflect the views of the Ministry
of Internal Affairs and Communications, Japan, or of the
European Commission.
The authors would like to thank Pawit Pornkitprasan as well
as Sirikarn Pukkawanna for providing their research on the
taxonomy of HTTPS phishing websites. Our gratitude also
goes to Olivier Levillain for his insightful comments.

REFERENCES

[1] FBI, “IC3 Annual Report,” https://www.fbi.gov/news/news_blog/2014-
ic3-annual-report, 2014, [consulted 2015/09/13, Online].

[2] CA Security Council, “2015 consumer trust survey - casc sur-
vey report,” https://casecurity.org/wp-content/uploads/2015/04/CASC-
Consumer-Survey-Report-2015.pdf, [consulted 2015/09/13, Online].

[3] P. Pajares, “Phishing Safety: Is HTTPS Enough?”
http://blog.trendmicro.com/trendlabs-security-intelligence/phishing-
safety-is-https-enough/, [consulted 2015/09/13, Online].

[4] Global Sign, “What is an Extended Validation Certificate?”
https://www.globalsign.com/en/ssl-information-center/what-is-an-
extended-validation-certificate/, [consulted on 2015/10/30, Online].

[5] C. Brubaker, S. Jana, B. Ray, S. Khurshid, and V. Shmatikov, “Using
Frankencerts for Automated Adversarial Testing of Certificate Validation
in SSL/TLS Implementations,” 2014.

[6] O. Levillain, A. Ebalard, B. Morin, and H. Debar, “One Year of SSL
Internet Measurement,” in Proceedings of the 28th Annual Computer
Security Applications Conference (ACSAC 2012), 2012.

[7] S. Pukkawanna, Y. Kadobayashi, G. Blanc, J. Garcia-Alfaro, and H. De-
bar, “Classification of SSL Servers based on their SSL Handshake
for Automated Security Assessment,” in Proceedings of the 3rd In-
ternational Workshop on Building Analysis Datasets and Gathering
Experience Returns for Security (BADGERS), 2014.

[8] http://aws.amazon.com/alexatopsites/, [consulted 2015/09/13, Online].
[9] http://phishtank.com/, [consulted 2015/09/13, Online].

[10] https://wiki.mozilla.org/Security/Server_Side_TLS, [consulted
2015/09/13, Online].

[11] W. Zhang, G. Zhou, and X. Tian, “Detecting Phishing Web Pages Based
on Image Perceptual Hashing Technology,” International Journal of
Advancements in Computing Technology 4.2, 2012.

[12] A. Y. Fu, W. Liu, and X. Deng, “Detecting phishing web pages with
visual similarity assessment based on earth mover’s distance (EMD),”
Dependable and Secure Computing, IEEE Transactions on 3.4, pp. 301–
311, 2006.

[13] N. Krawetz, “Kind of like that,”
http://www.hackerfactor.com/blog/?/archives/529-Kind-of-Like-
That.html, [consulted 2015/09/13, Online].

[14] Anti Phishing Working Group, http://phish-
education.apwg.org/r/en/index.htm, [consulted 2015/09/13, Online].

[15] N. A. G. Arachchilage, S. Love, and M. Scott, “Designing a Mobile
Game to Teach Conceptual Knowledge of Avoiding Phishing Attacks,”
International Journal for e-Learning Security 2.2, pp. 127–132, 2012.

[16] M. L. Hale, R. F. Gamble, and G. Philip, “CyberPhishing: A Game-based
Platform for Phishing Awareness Testing,” in System Sciences (HICSS),
2015 48th Hawaii International Conference on. IEEE, 2015.

[17] Google, “Safe Browsing API,” https://developers.google.com/safe-
browsing/developers_guide_v3, [consulted 2015/09/13, Online].

[18] Opera, “Opera Fraud Protection,” http://www.opera.com/help/
tutorials/security/fraud/950/, [consulted 2015/09/13, Online].

[19] Netcraft, http://toolbar.netcraft.com/help/faq/, [consulted 2015/09/13,
Online].

[20] J. Corbetta, L. Invernizzi, C. Kruegel, and G. Vigna, “Eyes of a
Human, Eyes of a Program: Leveraging Different Views of the Web
for Analysis and Detection,” in 17th International Symposium, RAID
2014, Gothenburg, Sweden, 2014.

[21] M. Aburrous and A. Khelifi, “Phishing Detection Plug-In Toolbar
Using Intelligent Fuzzy-Classification Mining Techniques,” in The In-
ternational Conference on Soft Computing and Software Engineering
(SCSE’13), San Francisco State University, San Francisco, California,
USA, 2013.

[22] J. H. Huh and H. Kim, “Phishing detection with popular search engines:
Simple and effective,” in Foundations and Practice of Security, S. B.
Heidelberg, Ed., 2012, pp. 194–207.

[23] R. Dhamija, J. Tygar, and M. Hearst, “Why Phishing Works,” in
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems. ACM, 2006, pp. 581–590.

[24] A. Adelsbach, S. Gajek, and J. Schwenk, “Visual Spoofing of SSL
Protected Web Sites and Effective Countermeasures,” in ISPEC, vol.
3439. Springer, 2005, pp. 204–216.

[25] C. Amrutkar, P. Traynor, and P. C. van Oorschot, “Measuring SSL
Indicators on Mobile Browsers: Extended Life, or End of the Road?”
in Proceedings of the 15th International Conference on Information
Security. Springer-Verlag, 2012, pp. 86–103.

[26] D. Miyamoto, T. Iimura, G. Blanc, H. Tazaki, and Y. Kadobayashi, “Eye-
Bit: Eye-Tracking Approach for Enforcing Phishing Prevention Habits,”
in Proceedings of the 3rd International Workshop on Building Analysis
Datasets and Gathering Experience Returns for Security (BADGERS),
2014.

[27] P. Agten, W. Joosen, F. Piessens, and N. Nikiforakis, “Seven months’
worth of mistakes: A longitudinal study of typosquatting abuse,” in
Proceedings of the 22nd Network and Distributed System Security
Symposium (NDSS 2015), 2015.

