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Abstract—Network measurement provides a useful insight into
the dynamics of a network. Though network measurement is
widely deployed and the results have significant implications in
accounting, operations, security and quality of service manage-
ment, the quality and nature of the statistics obtained have not
been closely scrutinized. In this paper, we take a closer look
at the measurement practices widely deployed and discuss the
inaccuracies inherent in the measurement. We show that the
inaccuracy essentially has its origins in the timestamp attribute
of a measured value. Timestamp is a necessary attribute but its
definition is imprecise. We discuss the issue of inconsistency that
arises due to this imprecision.

I. INTRODUCTION

Network measurement is an essential part of network mon-
itoring and management. Traffic, status and various other
parameters are routinely monitored and measured. The mea-
surements constitute a snapshot of some aspect of the network.
This snapshot provides the basis for management and control.

In this paper, we examine the accuracy and consistency
issues in network measurement in real world situations, i.e.,
in large distributed network environments illustrated in Figure
1. End users’ networks are connected to a provider’s access
router via customer premises equipment (CPEs) (e.g., routers,
switches, modems, set-top boxes, etc). For network manage-
ment purposes, a manager is located on a network management
station in the provider network, and agents are deployed on
the CPEs.
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Fig. 1. Assumed environment

A manager sends a request for some information to an agent
using some management protocol, such as the Internet standard

Simple Network Management Protocol (SNMP) [1]. The agent
samples the related components and sends back its response.

In the request-response mode of management, there are
latencies in the manager, intermediate networks, and the agent.
Latencies in the manager and the agent include the delay
for processing the contents of request and response packets.
Latency in intermediate networks includes transmission and
propagation delays. In this work we focus on the cases where
the latencies and its variation are significant. First we examine
the inaccuracy in traffic measurement and then take a closer
look at the issue of inconsistency of measured information.

The remainder of the paper is organized as follows. Related
works are surveyed in Sec. II. The issue of inaccuracy in traffic
measurement is explained in Sec.III. In Sec. IV, we examine
the issue of consistency of the measured information. Section
V discusses the new challenges, traffic measurement in mobile
and cloud environments, followed by conclusions in Sec. VI.

II. RELATED WORK

Offline measurements use various information, such as
traffic traces and management logs. An arbitrary level of
detail, precision and accuracy may be achieved in offline
measurements, by analyzing the stored information. In [2], the
packet-wise statistics of IPTV traffic, such as packet size dis-
tribution and the frequency of retransmission and reordering,
are computed and analyzed offline. As another example, deep
packet inspection, a technology for analyzing packet payloads
in real-time, has been used for the purpose of detecting and
restricting the communication of P2P applications [3]. In these
cases the main source of inaccuracy will be the failure in
capturing, processing, and storing of information. For example,
packets dropped by the traffic trace collector will cause a
corresponding inaccuracy in traffic measurement.

Per-flow traffic measurement is an important way for getting
accurate user-wise or application-wise statistics. It is useful for
identifying elephant flows (flows that include a huge number
of packets) and for usage-based billing. However, a problem
with per-flow measurement is its lack of scalability [4]. Cisco
NetFlow [5] uses a packet sampling technique for improving
the scalability, but it introduces a significant measurement
error [6]. The current trend is to implement measurement
functions in high-speed but expensive SRAM [6].

Use of the Internet Protocol Detail Records (IPDR) [7]
mechanism has been spreading in recent years, especially in



the area of cable internet. IPDR defines a data format and a
protocol for exporting network measurement and management
information [8]. Due to its flexibility, efficiency and scalability,
IPDR is a promising technology for future network manage-
ment and measurement.

The use of explicit time-tags is proposed in [9]. It requires
that a managed object has a value and an explicit timestamp
which indicates the time at which the value was observed. This
technique is applied to high resolution traffic measurement
[10] and network management in a mobile environment [11].
These solutions require additional instrumentation in network
management agents and do not apply to most of the deployed
CPEs which have limited storage and processing power. In
this paper, we limit our scope to the typical situation where
an agent, in response to a request, samples the corresponding
managed objects and sends the results to the manager.

III. INACCURACY IN NETWORK TRAFFIC MEASUREMENT

Two of the primary aspects of traffic measurement, namely,
volume measurement and peak measurement, have significant
implications in accounting, operations, security and quality of
service management. For accounting management, the opera-
tor is required to have user-wise network bandwidth utilization
figures as accurately as possible. Billing will be based on these
figures. In cases where the tariff is not linear but a step function
of the traffic volume, the inaccuracy, if any, gets amplified in
the billed amount. In the operations and/or security manage-
ment context, if some user is consuming an unfair share of the
network bandwidth, the network administrator would want to
be notified of it and would want to be able to identify the user.
Moreover, for sophisticated quality of service management, an
operator needs to know the accurate bandwidth usage in the
service level agreement (SLA) context, and would want to
detect and track SLA violations as quickly as possible [12].

In this section, we discuss the inaccuracy issues in traffic
measurement that stem from the measurement procedure.

A. Basic procedure for network traffic measurement

An agent on a CPE maintains counters of the various facets
of network traffic such as number of packets and/or number
of octets, errors etc. These counters are cumulative in general.

A manager samples the counters periodically, computes the
delta of the two samples and thereby computes the bandwidth
utilization for the interval between two consecutive samples.
Figure 2 illustrates how the bandwidth utilization is computed.
vt denotes the value of the cumulative traffic counter at the
agent at time t. From two samples vti−1 and vti , the bandwidth
utilization (Bwi) between ti−1 and ti is calculated as

Bwi =
∆vi
∆ti

=
vti − vti−1

ti − ti−1
. (1)

In periodic polling, ∆ti ≈ ∆t, is the polling interval.
In the ideal case, vti is the value of the counter at time ti,

the timestamp of vti . We will term this the data timestamp.
However, in the absence of explicit time-tags, a manager

cannot know the exact value of ti and uses some t̂i as an
approximation of ti.
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Fig. 2. Basic concept for calculating bandwidth utilization

Furthermore, depending on agent implementations, the
counter value, v̂ti , returned by the agent is only an approxi-
mation of the traffic counter value vti at time ti.

Effectively, the bandwidth utilization is computed based on
v̂ti and t̂i as shown in Eq. 2.

B̂wi =
∆̂vi

∆̂ti
=

v̂ti − v̂ti−1

t̂i − t̂i−1

(2)

The rest of this section discusses several factors contributing
to errors in ∆̂vi and ∆̂ti.

B. Inaccuracy of data timestamps

Figure 3 illustrates two successive polls - ((i-1)-th and i-
th). According to this figure, vti is the value at time tAi , the
time at which the value is actually sampled. Thus, tAi is the
timestamp of vti .
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Fig. 3. Sequence diagram of a polling process

A manager, without any means of knowing the exact value
of tAi may use tSRq

i (tRRs
i ), the time when the manager sent

the request to (received the response from) the agent, as an
approximation. However, the request/response latency, (dRq

i

and dRs
i ), between the manager and the agent, and, the request

processing time at the agent (dPrc
i ) are all variables depending



on the network conditions and processing load at the agent.
Hence, even if the manager adjusts tSRq

i−1 and tSRq
i so that the

polling interval ∆̂ti = tSRq
i − tSRq

i−1 becomes constant, data
interval ∆ti = tAi − tAi−1 will vary.

We conducted an experiment in a real network. A manager
polled an agent on a Linux device D via the Internet. The
average round trip time between manager and agent was 29.7
milliseconds. D was subjected to a constant bit rate (1Mbps)
UDP stream. There was little background traffic.

We computed the bandwidth utilization using the measure-
ment results of polling at five second intervals (∆t = 5
seconds). The measurement by a manager on D itself shows
the actual bandwidth utilization is a straight line as shown in
Fig. 4.
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Fig. 4. Actual bandwidth utilization

We used the Managed Object sysUpTime [13] for estimating
tAi . sysUpTime gives the time (in hundredths of a second) since
the agent was last re-initialized. In the absence of explicit time-
tags, the sysUpTime object fetched from the agent along with
the traffic counter values is an estimate of tAi .

Figures 5 and 6 show the variations of polling interval and
estimated data interval (from sysUpTime), respectively.
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Fig. 5. Polling interval ∆̂ti
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Fig. 6. Estimated data interval ∆ti

As shown in Fig. 5, ∆̂ti is almost constant. But, Fig. 6
shows ∆ti has two spikes. These spikes are due to retrans-
mission of requests. When the manager does not receive a
response within a pre-defined time Tr, it resends the request.

In this experiment, Tr is one second. As shown in Fig. 7,
when a request Ri is retransmitted, actual data interval ∆ti
increases by Tr followed by a decrease of same magnitude. In
general retransmissions are carried out by the communications
API, and cannot be detected by the management application.
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Fig. 7. Retransmission of a request

Figures 8 and 9 show bandwidth utilization computed using
polling interval and estimated data interval, respectively. There
are two spikes in the bandwidth utilization computed using
polling interval though a steady value is expected (Fig. 4). The
spikes are caused by the difference between polling interval
and actual data interval. On the other hand, the estimated data
interval using sysUpTime gives more accurate results (Fig. 9)
which match well with the expected values shown in Fig. 4.
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Fig. 8. Computed bandwidth utilization B̂wi: polling interval ∆̂ti is used
as data interval ∆ti

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 0  500  1000  1500  2000  2500  3000  3500

B
a
n
d
w

id
th

 [
b
p
s
]

Elapsed time [sec]

Fig. 9. Computed bandwidth utilization Bwi: data interval ∆ti estimated
using sysUpTime

In the next experiment, we will show the fluctuations of
actual data interval that occur due to variations in inter-request
arrival interval at the agent.

Figures 10 and 11 illustrate variations of polling and
estimated data interval, respectively. In order to show the
difference clearly, the y-axis range between 4.9 seconds to
5.1 seconds is magnified. It is clear that the estimated data
interval has fluctuations while the polling interval is steady.
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Fig. 10. Polling interval ∆̂ti
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Fig. 11. Estimated data interval ∆ti

Figures 12 and 13 show computed bandwidth utilization
B̂wi and Bwi, based on polling interval and estimated data in-
terval, respectively. Although computed bandwidth utilization
is a straight line in both figures, we find some differences when
the y-axis range between 1.05Mbps to 1.1Mbps is magnified as
shown in Figs. 14 and 15. The computed bandwidth utilization
using polling interval in Fig. 14, shows several peaks that are
not found in Fig. 15.
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Fig. 12. Computed bandwidth utilization B̂wi: polling interval ∆̂ti is used
as data interval ∆ti
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Fig. 13. Computed bandwidth utilization Bwi: data interval ∆ti estimated
using sysUpTime

Fig. 16 depicts the intervals at which request packets are
seen at the manager. It is fairly steady. However, the inter-
arrival times of those request packets at the agent show a
significant variation in Fig. 17. This implies that variation in
estimated data interval is probably due to the varying latency
between manager and agent.

From the above results it is clear that the actual data interval

 1.05e+06

 1.06e+06

 1.07e+06

 1.08e+06

 1.09e+06

 1.1e+06

 0  500  1000  1500  2000  2500  3000  3500

B
a
n
d
w

id
th

 [
b
p
s
]

Elapsed time [sec]

Fig. 14. Computed bandwidth utilization B̂wi: polling interval ∆̂ti is used
as data interval ∆ti
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Fig. 15. Computed bandwidth utilization Bwi: data interval ∆ti estimated
using sysUpTime

varies due to several factors in the operational environment.
The effect of the variation depends on the value of ∆t. Table
I summarizes the maximum error rate in ∆̂ti, ∆ti, B̂wi and
Bwi, for various settings of ∆t. It is clear that the computed
bandwidth is less accurate when polling interval is used, and
the maximum error rate increases as ∆t decreases.

To compute bandwidth utilization accurately, the data inter-
val must be accurately estimated. For accurately estimating
each data interval it is necessary that every data value be
accompanied by a timestamp.

Experimental results show that sysUpTime is a good candi-
date for a timestamp tAi .

Although sysUpTime is a close estimation of data times-
tamp, it only gives the time since the network management
agent was last re-initialized. In the absence of some form
of time synchronization between manager and agent, it is
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Fig. 16. Request sending interval at the manager
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Fig. 17. Request arrival interval at the agent



TABLE I
MAXIMUM ERROR RATE

∆t Variations in Variations in Error rates of Error rates of
∆̂ti ∆ti B̂wi Bwi

5sec. 0.01% 1.20% 1.15% 0.31%
10sec. 0.00% 0.20% 0.26% 0.17%
30sec. 0.00% 0.03% 0.04% 0.04%
60sec. 0.00% 0.02% 0.02% 0.02%

300sec. 0.00% 0.00% 0.01% 0.00%

not possible for the manager to know the exact time on the
managers clock, at which data is actually sampled. In short,
the manager can note the exact value of tSRq

i on its own clock
in Fig. 3 but cannot know the exact value of a counter on the
agent at that time. On the other hand a manager can obtain
the exact value of the counter at some time tAi but will not
know the exact time on its own clock for that observation.

C. Non-realtimeness of the sampled value

An agent, when queried for the value of some object, fetches
the value and returns it to the manager. The act of fetching
may be a simple local memory lookup or a complex set of
chained lookups some of which may not be local. In some
implementations, to reduce the load due to such lookups, the
fetched value is cached and reused for a small cache-lifetime.
This causes an additional latency in the value of the object
as seen by the manager. In the experiments detailed in the
previous section, we have disabled the cache function on the
agent in order to focus on the measurement errors due to the
inaccuracy of data timestamps. When the cache function is
enabled the counter value sampled and returned by the agent
is not updated in real-time, but is updated in discrete time
intervals. This means that vti at tAi in Fig. 3 may be inaccurate.

Figure 18 illustrates the problem. For a constant traffic rate,
the traffic vt increases linearly, but the value returned by the
agent, v̂t, increases in steps. Let r be the constant traffic rate
and τj(j = 1, 2, 3, 4, · · · ) be the times at which the counter is
updated; v̂t can be

v̂t =

{
vτj (t = τj)

vτj−1 (τj−1 ≤ t < τj)
(3)

The update interval ∆τ is cache-lifetime which is implemen-
tation dependent.
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Fig. 18. Discrete nature of the counter information

Fig. 19 shows the value of a ifInOctets counter provided by
a net-snmp [14] agent implementation. The device which the
agent was running on was subjected to constant bit rate traffic,
the cache-lifetime ∆τ is set to 15 seconds. Implementations
using cache-lifetimes are wide spread especially in devices
where computing resources are scarce.
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Fig. 19. Discrete nature of ifInOctets counter on a net-snmp agent

In the next experiment, we compute the bandwidth utiliza-
tion using results of polling at five second intervals (∆t = 5
seconds). The target device was subjected to a constant bit rate
(10Mbps) UDP stream. There was little background traffic.

Figure 20 shows the computed bandwidth utilization ob-
tained from the net-snmp agent. The computed bandwidth
utilization is not constant. This is because ∆t is smaller than
∆τ . In this case, every third poll brings the updated value of
traffic counter because ∆τ is three times larger than ∆t.

It is clear that ∆t should be larger than ∆τ . However
∆τ is implementation dependent and is usually not explicitly
specified. There are instances where provisions are made for
specifying ∆τ . For example, IP-MIB [15] provides a managed
object ipSystemStatsRefreshRate which gives the intervals at
which the counters in the corresponding table are updated.
However, if such a managed object is not provided, network
operators have no choice but to set ∆t to a large value (e.g.,
five minutes in MRTG). But this setting impacts the granularity
of the measurement.

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 0  100  200  300  400  500  600

A
v
e

ra
g
e

 b
a

n
d
w

id
th

 U
ti
liz

a
ti
o

n
[O

c
te

ts
/s

e
c
]

Elapsed time[sec]

Fig. 20. Computed bandwidth utilization (Net-snmp) ∆t = 5 sec

We conducted the same experiment with a Cisco Catalyst
3550 where ∆τ is one second; smaller than ∆t of five seconds.



Fig. 21 shows the experimental results. We can see several
spikes in the computed bandwidth utilization.
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Fig. 21. Computed bandwidth utilization (Cisco Catalyst 3550) ∆t = 5 sec

These spikes occur due to variation in the inter-request ar-
rival interval. If the variation overlaps a cache-lifetime bound-
ary there will be an upward spike followed by a downward
spike. Fig.22 explains the reason. We assume that the request
from the manager arrives during the target period (from τj to
τj+1), and the lookup of the counter information is performed
during this period. However, in the actual case, due to the
variation of the one-way delay and the request processing time,
the measurement may be performed before τj or after τj+1.
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Fig. 22. Estimation of the error occurrence probability

In the lower half of Fig.22, P(t) gives the probability that
the data measurement is performed before τj or after τj+1

where t is the planned time of the data measurement. In this
figure, we assume that the actual data measurement time is
given by the uniform distribution from t− terr to t+ terr, for

simplicity. In this case, P (t) is given as follows.

P (t) =


− 1

2terr
t+ 1

2 (0 ≤ t ≤ terr)

0 (terr < t < ∆τ − terr)
1

2terr
t+ 1

2 (∆τ − terr ≤ t ≤ ∆τ)

(4)

If the planned measurement time t is randomly selected from
0 to ∆τ , the measurement error occurs with the probability
given by the following equation.

2terr
∆τ

· terr
4

=
terr

2

2∆τ
. (5)

When a measurement error occurs, the value sampled by
the manager becomes r ·∆τ octets smaller or larger than the
value that should truly be sampled by the manager. Then the
estimated bandwidth utilization becomes r·∆τ

∆t octets/second
smaller or larger than the actual.

In this experiment (r = 10Mbps = 1.25MBps, ∆τ =
1 second and ∆t = 5 second), the theoretical value of
measurement error is 250, 000 octets/second. This value is
approximately equal to the amounts of increase or decrease
that we can see in Fig.21.

According to the discussion in this subsection, a larger
∆t leads to smaller error in the estimation of bandwidth
utilization. However, the large value of ∆t introduces another
problem as discussed in the next subsection.

D. Counter discontinuity

The counters maintained by an agent have a finite capacity.
These are generally 32 bit or 64 bit counters. A counter wraps
when it exceeds the maximum value (CounterMaxV alue).
This causes a counter discontinuity. Counter discontinu-
ities may occur due to other reasons too e.g. system re-
initialization. Bandwidth utilization is calculated from the delta
of two samples. For accurate traffic measurement, a manager
must confirm that the counter is continuous between the two
samples. There are two approaches to handling traffic counter
discontinuities.

a. Ignore counter values between discontinuities.
b. If discontinuity is not due to reboot, assume that it is due

to a counter overflow. e.g.

if sysUpT ime (ti) ≥ sysUpT ime (ti−1)

if v̂ti ≤ v̂ti−1

v̂ti+ = CounterMaxV alue

B̂wi =
v̂ti − v̂ti−1

t̂i − t̂i−1

else

B̂wi = unknown.

Here v̂ti ≤ v̂ti−1 is taken as a sign of counter continuity.
This case leads to data loss. Since the agent is rebooted
everytime the network device is restarted, this data loss
can be controlled/caused by a user of a CPE. If the polling
interval is reasonably large the user may fool the traffic



measurement system and associated accounting system to
enjoy a free ride!

IV. INCONSISTENCY AMONG A SET OF MEASURED
INFORMATION

All the factors described in the previous section are re-
lated to the imprecise definition of the timestamp attribute
of measured values. In network management, it is important
to monitor a set of objects. These objects together provide
a snapshot image of some aspect of the managed domain.
The lack of a precise definition of the timestamp attribute
also affects the consistency of the data set that is expected
to provide the desired snapshot image.

Say, there are N information components that need to be
retrieved from an agent to generate some snapshot. In SNMP
terms this would mean that N Managed Objects (MOk, k =
1 · · ·N ) need to be retrieved. Assume that the timestamp of
MOk is tk. This is the time at which the source of MOk

was examined. This is the last time the value of MOk was
updated. For some time tsnapshot a snapshot will be consistent
if the following condition is satisfied.

t1 = t2 = · · · = tk = · · · = tN = tsnapshot (6)

tsnapshot is the timestamp of the snapshot. In other words,
if for some MOk, tk is not equal to tsnapshot, MOk may
have been updated during the interval tk ∼ tsnapshot and the
snapshot may have changed. At the manager, it is difficult
to actually retrieve and examine all tks to ensure that the
condition in Eq. 6 is met. If an explicit tsnapshot is maintained
and made available at the agent, it is not necessary to retrieve
and examine all the tks. To ensure consistency, it is sufficient
if it can be confirmed that tsnapshot has not changed during
the retrieval of the constituent MOs.

The set of constituent MOs in a snapshot may be large.
This introduces an additional source of inconsistency as the
retrieval process spans some time period Tp. If a maximum of
P MOs can be fetched in a packet, Tp ≈ (N/P )∗RTT , where
RTT is the average round trip time between the manager
and the agent. On the one hand in the absence of a snapshot
timestamp tsnapshot it is impossible to ensure the consistency
of the obtained snapshot. On the other hand, as Tp becomes
larger, the possibility that some MOk has been updated,
tsnapshot has changed and consequently the retrieved snapshot
is inconsistent, increases.

The routing table ipRouteTable in Management Information
Base for Network Management of TCP/IP-based internets [16]
is one example. By examining the routing table it may be
possible to understand the network configuration and to debug
some routing problems. Another example is where network
maps are generated [17], [18] from the OSPF Link State
Database ospfLsdbTable in the OSPFv2 MIB [19] and from
the BGP4 Received Path Attribute Table bgp4PathAttrTable
in the BGP4-MIB [20]. These tables are potentially large. It
is not unusual for each table to contain thousands of entries. A
finite time will elapse before the relevant objects are retrieved
from the agent. If a table has been modified during this time,

the observed values and corresponding snapshot is likely to
be inconsistent.

An added complication arises when the set of MOs that
need to be retrieved are on different agents. Information in
MIB tables e.g. dot1dTpFdbTable in Bridge MIB [21] is used
to detect the network devices and their point of connection: the
switch and corresponding port, in a network [22]. This effec-
tively provides an OSI Layer-2 map of the target network along
with the connected devices and has significant implications
in intranet security management and audit. The relevant MIB
tables are of finite size and there may be a large number of
switches in a network. Obtaining a consistent Layer-2 snapshot
is a challenging task. Let Rx be a row in a conceptual table
of a switch. Rx gives the list of MAC addresses seen on a
physical port x. Assume that a terminal Tm is connected to
the port x when the manager retrieves MOs for Rx. The MAC
address of Tm appears in Rx. If Tm changes its connected port
to port y after the manager has retrieved Rx and before Ry

is retrieved, the manager will find the MAC address of Tm

in Ry , too. In the map generated from the data terminal, Tm

will appear in multiple ports (ports x and y). That will be an
example of an inconsistent network map.

In order to confirm that a snapshot is consistent a tsnapshot
must be maintained and made available at the agent. An
object like a lastUpdatedTimeStamp which indicates when
a component was last updated, could serve the purpose. A
cursory survey of the existing IETF standards track MIBs
shows that more than 1200 tables are defined in the MIBs
but less than 200 have provisions to indicate the last time
the table was changed. This implies that it is not possible to
confirm the consistency of the values of objects in most MIB
tables and thus the snapshots are of limited utility.

V. DISCUSSION

Network and device mobility introduce a new dimen-
sion to network measurements. Mobile entities may have
poor/intermittent connectivity with the manager. One imme-
diate consequence of this is wide fluctuations in the latency,
which lead to added inaccuracy in the estimation of data
timestamp. Further, when the (wireless) link between manager
and agent is re-established, since the mobile node and/or
network may have been operational through the period of
disconnection, some sensitive applications may require the
manager to re-start the data retrieval from the point of (tem-
porary) disconnection. In such cases sysUpTime cannot be
used as the implicit data timestamp. An explicit time-tag is
necessary.

In cloud environments where dynamic provisioning is the
keyword, the measurement parameters themselves will change
with time. In such cases it is imperative to have appropriate
meters set up within the cloud which will react quickly enough
and provide a simple interface to the measurement manager.

VI. CONCLUSION

In this work, we have examined the issues of inaccuracy
and inconsistency in network measurement.



For accurate traffic measurement a manager must have
three information components: the sampled value, an accurate
timestamp of the value, and a flag indicating the time at which
the counter of the value experienced a discontinuity. Further,
to ensure that a snapshot is consistent, a manager must have
access to some object that will indicate the last time any of
the objects constituting the snapshot was updated.

In the SNMP context, sysUpTime may be used as an
implicit timestamp in some cases. Auxiliary objects which
indicate the last time when one of the corresponding counters
experienced a discontinuity e.g. ifCounterDiscontinuityTime
in IF-MIB[23], and when a component of a snapshot was
last updated e.g. hrSWInstalledLastUpdateTime in HOST-
RESOURCES-MIB[24], do exist. The provision of the non
repeaters parameter in the SNMP getbulk request can be put
to good use to retrieve these auxiliary objects, efficiently. Some
thought on the issue of accuracy and consistency has gone into
the design SNMP and the corresponding MIBs.

Yet a quick survey shows that several of the widely used
network traffic monitoring tools, e.g. MRTG [25], RRDTool
[26], use the error-prone polling interval instead of sysUpTime
or any other form of time-tag for calculating the data interval.
Not many SNMP MIB tables provide means for confirming
continuity of counters and consistency of tables. There is con-
siderable scope for improvement of accuracy and consistency
in present measurement practices.
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