インターネットトラフィックの動向

長 健二朗 福田 健介 株式会社 IIJ イノベーションインスティテュート 国立情報学研究所

1 インターネットの国内トラフィック量

ここでは、国内 ISP6 社、学会の研究者ならびに総務省の協力によって、2004 年より継続的に行われている、国内インターネットトラフィックの集計値をもとに、トラフィック量の現状について概説する。トラフィック量を把握することは、今後を予想する上で、また技術やインフラへの投資を考える上で欠かせない。 なかでも、トラフィックの増加率は長期的な計画を立てる際に重要である。

日本では2001年頃からブロードバンドが普及し始め、2013年6月時点で約3900万加入となっている。2005年ごろからはDSLから光ファイバーへの移行が進み、総契約数の約62%が光ファイバーとなっており、また、1Gbpsを越える接続サービスの普及が始まるなど、世界的にみても最速のブロードバンド環境となっている。

2000 年代初頭までは、大手 IX の合計トラフィック量が、概ね国内インターネットトラフィック量に相当していた。しかしながら、後述するように、IX のトラフィック量だけでは、国内インターネットの傾向を知るのが難しくなってきているため、ISP 側での集計によるトラフィック調査を行っている。

2 協力 ISP によるトラフィック量調査

トラフィックデータの集計は、総務省データ通信課を事務局に、学界の研究者と国内 ISP6 社が協力して行っている。データを提供頂いている協力 ISP は、IIJ、ケイ・オプティコム、KDDI、NTT コミュニケーションズ、ソフトバンク BB、ソフトバンクテレコムの 6 社である。

調査の目的は、国内バックボーンにおけるトラフィック量の基礎データを開示する事によって、事実にもとづいた健全なインターネットの発展に寄与する事である。企業機密であるトラフィック情報は個別の事業者では開示が難しい。そのためデータの入手が難しく、推測あるいは一部の偏ったデータをもとに議論や判断がなされかねない。そこで、産官学の連携によって、トラフィック情報の秘匿性を維持しつつ、協力 ISP 全社の合計値としてトラフィック量を公開している。集計結果は、総務省の報道資料として、国際会議などでも発表されている。

3 収集データ

測定対象は、ISP 境界を越えるトラフィックである。一般に、ISP 境界は、顧客を接続するカスタマー境界と、他の ISP と接続する外部境界に分けられる。協力 ISP と協議の結果、各社の実運用と整合するよう図 1 に示す共通分類を定義している。各 ISP が独自に集計したトラフィックを、個別 ISP のシェアなどが分からないように合算して結果を開示してる。

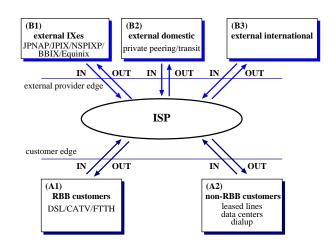


図 1: 定義した ISP 境界における 5 つのトラフィック分類

- (A1) ブロードバンドカスタマートラフィック ADSL/CATV/FTTH などのブロードバンドサービスの 顧客。ここには、ブロードバンド回線利用の中小企業も含まれる。
- (A2) ブロードバンド以外のカスタマートラフィック 専用線、データセンター、ダイヤルアップ利用者 などのブロードバンド回線以外の顧客。なお、ここには、専用線接続の下流プロバイダも含まれて いるので、その下にブロードバンドカスタマーが存在する場合もある。¹
- (B1) 主要 IX 外部トラフィック 国内主要 IX、つまり、JPIX、JPNAP、NSPIXP、BBIX、Equinix で 交換される外部トラフィック。これは ISP 側での調査結果を主要 IX 側での計測値と比較するため。
- (B2) その他国内外部トラフィック 主要 IX 以外で交換される国内外部トラフィック。主に、プライベートピアリング、トランジット、ローカル IX で交換される国内外部トラフィック。
- **(B3)** その他国際外部トラフィック 接続点が国外にあるような国際交換トラフィック。

データの収集は、トラフィック分類毎に SNMP インターフェイスカウンタ値を 2 時間粒度で 1ヶ月分収集している。2 時間粒度のデータによって、各 ISP で大きなトラフィック変化があった場合にも特定が可能となる。前回の測定値や IX での測定結果と比較し、食い違いがある場合には、原因の究明を行なうようにしている。原因には、ネットワーク構成の変更、障害、SNMP データの抜け、インターフェイスグループ分けの不備などが挙げられる。トラフィック量に予想外の変化が見つかった場合には、当該 ISP に確認を依頼し、必要があればデータを再提出してもらう確認体制を取っている。集計を開始した 2004 年9月から 3ヶ月間は毎月データを収集したが、データの一貫性が検証されたので、その後は年に二度、5月と 11 月に計測・収集を行なうようにした。協力 ISP 各社には、調査の意義を理解していただき、データ収集に協力していただいている。

2011年5月には、主要 IX に2社を追加し、また、国内総トラフィックの推計方法を変更している。主要 IX の追加に関しては、これまでの JPIX、JPNAP、NSPIXP に加えて、BBIX と Equinix の2社を主要 IX に追加した。国内総トラフィックの推計方法の変更については、それまでは協力 ISP の主要 IX におけるトラフィックシェアをもとにブロードバンドの国内総トラフィックの推計を割り出していたが、後述するような理由で協力 ISP のブロードバンド契約数シェアをもとに割り出す方法に変更した。

¹(A2) のブロードバンド以外のカスタマートラフィックは 3 社からしかデータが得られていない。これは、ISP のネットワーク構成によっては社内リンクと外部リンクの切り分けが難しく集計が困難なためである。そのほかの項目は全 ISP からデータが提供されている。そのため、(A2) のトラフィック量を他の項目と直接比較する事はできない。

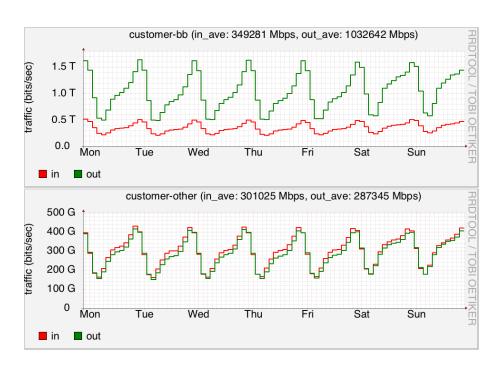


図 2: 2011年11月の週間カスタマートラフィック: ブロードバンドカスタマー (上) とブロードバンド以外のカスタマー (下)

4 集計結果

以下に示すデータは、協力 ISP6 社分のデータの合算値である。なお、IN と OUT は、ISP 側から見たトラフィックの流入と流出の方向を表す。

4.1 カスタマートラフィック

図2は2013年5月の週間カスタマートラフィックを示す。これは、全社のDSL/CATV/FTTHカスタマーの合計値で、各曜日の同時間帯を平均した値である。 休日はトラフィックパターンが異なるため、除いて集計している。 そのため表1の月間平均値とは若干異なる。

図 2(上) のブロードバンドカスタマーでは、1 日のピークは、21 時から 23 時で、夕方からトラフィックが増え、深夜を過ぎるとトラフィックは急減する、週末は昼間のトラフィックが増えるなど、家庭での利用形態を反映している。2013 年 5 月には、平均で IN 側 348Gbps、OUT 側 1028Gbps の流量がある。変動分は、ブラウザーでのクリックなど利用者の操作がトリガーとなっているトラフィックと考えられ、定常部分の多くは機械的に発生されるトラフィックが占めると推測できる。

図 2(下) のブロードバンド以外のカスタマーでは、IN と OUT がほぼ同量となっているが、時間別の変動や定常部分の割合といった家庭利用の特徴が出ている事が分かる。これは、ホームユーザ向けサービスや専用線の下流にいるホームユーザの影響だと思われる。

4.2 外部トラフィック

図3は2013年5月の週間外部トラフィックを示す。主要IXトラフィック(上)、その他国内トラフィック(中)、国際トラフィック(下)のいずれのパターンも、ホームユーザのトラフィックの影響を大きく受け

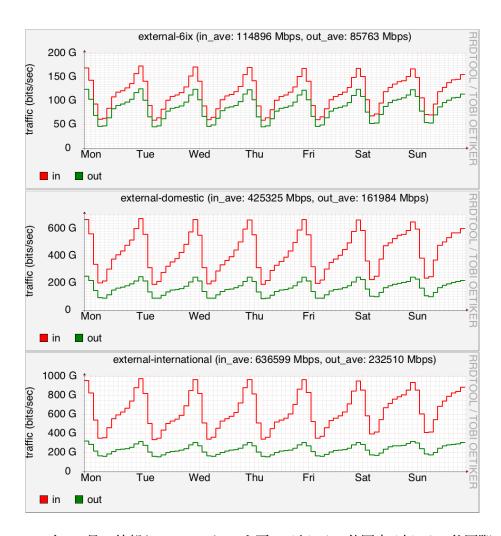
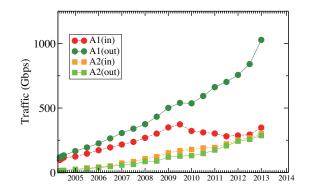


図 3: 2011 年 11 月の外部トラフィック: 主要 IX(上) その他国内 (中) その他国際 (下)

ていることがわかる。その他国内トラフィックと国際トラフィックに関しては、流出 (OUT) に較べて流入 (IN) が大きくなっている。

表 1 に 2004 年からの項目別の月間平均トラフィック合計値を示す。前述のように、2011 年 5 月から主要 IX が 5 社に変更されているため、外部トラフィック (B1-B3) にその影響が反映されているが、全体の傾向に大きな影響はないことを確認している。

4.3 トラフィックの増加傾向


図 4 にカスタマートラフィックと外部トラフィックの増加傾向を示す。2012 年 5 月と 2013 年 5 月を比較すると、ブロードバンドカスタマー (A1) に関しては、IN で年率 20%の増加、OUT で年率 36%の増加となっている。

ここ数年のトラフィックの傾向として以下の点が挙げられる。

● 2010 年初頭に集計開始以来初めてトラフィックが減少した。これは、2010 年 1 月に施行された改正著作権法、いわゆるダウンロード違法化と、それに関連した反 P2P ファイル共有キャンペーンの影響と思われる [1]。これに対して、2012 年 10 月に施行された違法ダウンロードの刑事罰化につ

表 1: 項目別月間平均トラフィック合計値推移

		(A1) ブロードバンド顧客		(A2) その他顧客		(B1) 主要 IX 外部		(B2) その他国内外部		(B3) その他国際外部	
		(6 ISPs)		(3 ISPs)		(6 ISPs)		(6 ISPs)		(6 ISPs)	
		in	out	in	out	in	out	in	out	in	out
2004 年	9月	98.1G	111.8G	14.0G	13.6G	35.9G	30.9G	48.2G	37.8G	25.3G	14.1G
	10 月	108.3G	124.9G	15.0G	14.9G	36.3G	31.8G	53.1G	41.6G	27.7G	15.4G
	11月	116.0G	133.0G	16.2G	15.6G	38.0G	33.0G	55.1G	43.3G	28.5G	16.7G
2005 年	5月	134.5G	178.3G	23.7G	23.9G	47.9G	41.6G	73.3G	58.4G	40.1G	24.1G
	11月	146.7G	194.2G	36.1G	29.7G	54.0G	48.1G	80.9G	68.1G	57.1G	39.8G
2006 年	5月	173.0G	226.2G	42.9G	38.3G	66.2G	60.1G	94.9G	77.6G	68.5G	47.8G
	11 月	194.5G	264.2G	50.7G	46.7G	68.4G	62.3G	107.6G	90.5G	94.5G	57.8G
2007年	5月	217.3G	306.0G	73.8G	57.8G	77.4G	70.8G	124.5G	108.4G	116.4G	71.2G
	11 月	237.2G	339.8G	85.4G	63.2G	93.5G	83.4G	129.0G	113.3G	133.7G	81.8G
2008年	5月	269.0G	374.7G	107.0G	85.0G	95.7G	88.3G	141.2G	119.4G	152.6G	94.4G
	11 月	302.0G	432.9G	122.4G	88.7G	107.5G	102.5G	155.6G	132.3G	176.1G	110.8G
2009 年	5月	349.5G	501.0G	154.4G	121.4G	111.7G	104.9G	185.0G	155.4G	213.1G	126.4G
	11月	373.6G	539.7G	169.4G	127.6G	114.3G	109.8G	209.5G	154.3G	248.2G	148.3G
2010	5 月分	321.9G	536.4G	178.8G	131.2G	94.1G	91.0G	194.8G	121.4G	286.9G	155.5G
	11 月分	311.1G	593.0G	190.1G	147.5G	90.1G	91.6G	198.7G	117.2G	330.1G	144.9G
2011	5月分	302.5G	662.0G	193.9G	174.4G	98.4G	90.0G	242.9G	131.5G	420.9G	160.5G
	11 月分	293.6G	744.5G	221.9G	207.5G	102.9G	89.4G	265.1G	139.1G	498.5G	169.6G
2012	5月分	287.8G	756.6G	251.5G	243.0G	118.4G	98.6G	317.4G	145.1G	528.7G	178.8G
	11 月分	294.0G	840.3G	268.3G	257.2G	103.2G	83.2G	316.6G	135.7G	571.3G	201.6G
2013	5月分	347.8G	1027.8G	300.3G	286.4G	114.5G	85.5G	423.3G	161.3G	633.9G	231.6G

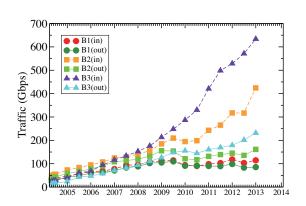


図 4: トラフィックの増加傾向: カスタマートラフィック (左) と外部トラフィック (右)

いては、施行前後に増減が見られたものの、長期的なトラフィック量への影響はほとんど見られない [2]。

- ブロードバンド (A1) に関しては、2010 年以前から IN/OUT の流量差が開いてきていたが、2010 年以降は、OUT は増加しているのに対し、IN は減少が続いていたのが 2013 年に増加に転じている。これらの原因として、以前から観測されていた P2P ファイル共有から Web サービスへの移行の流れが、2010 年以降加速してきたのが、2013 年にはいって一段落したと考えられる。
- その他国内外部トラフィック (B2) が主要 IX 外部トラフィック (B1) より大きく、その差が開いて来ている。その理由の1つは、大手 ISP 間のプライベートピアリング (IX を介さないピアリング) が広がり、その結果、主要 IX でのパブリックピアリング (IX を介したピアリング) からトラフィックが移行していることが挙げられる。さらに、従来大手 ISP 経由で接続していたコンテンツ事業者が

自らネットワークを運用し、直接 ISP と接続するようになってきたことも挙げられる [3]。これらの結果、全トラフィックに対する IX におけるトラフィックの割合が減少していて、IX トラフィックだけでは全体の傾向を把握することが難しくなってきている。また、ここ数年、国際トラフィック (B3) とその他国内トラフィック (B2) の流入の伸び率が高くなっていて、これも国内外のコンテンツ事業者や CDN 事業者が提供する人気コンテンツのトラフィック量が増えているためだと考えられる。

5 国内総トラフィックの推計

ここでは、協力 ISP から得られた数字をもとに、国内総トラフィックを推計する試みを行う。2010 年までは、IX におけるトラフィック量に対する協力 ISP のシェアをもとに総トラフィックを推計していた。具体的には、協力 ISP の B1 OUT と IX 側で測定した総流入量との比率から、IX トラフィック量における協力 ISP のシェアを求め、他のトラフィック項目においても協力 ISP のシェアが同じだと仮定して、各項目の値をこのシェアの値で割ることで、国内総トラフィック量を推計する。しかし、2008 年まで 42%程度で安定していた IX トラフィックシェアは、2009 年から減少に転じた。これは前述のように、国内全体で IX 経由のパブリックピアリングから、IX を経由しないプライベートピアリングやトランジットへの移行が進んでいることや、従来は大手 ISP のトランジットに依存していたコンテンツ事業者が、自身でネットワーク運用をして ISP とピアリングをするようになってきた影響だと思われる。その結果、IX トラフィックシェアが、ブロードバンドトラフィックシェアを反映しなくなってきて、総量を過剰に推計してしまう問題が出てきた。

そこで、A1の総量に関しては、2011年から協力 ISP6社のブロードバンド契約数のシェアを使って A1の総量を推計する方法に変更した。過去のデータについても契約数シェアをもとにした値に修正を行なった。A2に関しては、ブロードバンド契約数とは関係しないため、従来どおりの IX トラフィックシェアをベースにした値を用いている。A2 は、先述のように ISP3 社からしか提供されていないため、この 3社の IX におけるトラフィックシェアから A2 の総トラフィック量を計算している。

推計したカスタマートラフィック (A1 および A2) の国内総量の数値データを表 2 に、そのグラフを図 5 に示す。A2 の総量の推計値に関しては、2011 年から IX が 2 社増えた影響で協力 ISP3 社の IX トラフィックシェアが減少し、結果として推計総量が増えていると思われる。参考までに、左図の (Mobile) は、3G や LTE などの移動通信のトラフィック量を示している。2013 年 6 月の移動通信の平均ダウンロード量は 420Gbps となっていて、固定ブロードバンドの 18%以上のボリュームとなっている。

6 まとめ

ブロードバンドトラフィック量は着実に増加してきている。契約数はあまり増えていないので、契約あたりのトラフィックが増えていて、ビデオコンテンツなどによってコンテンツのボリュームが増加していることが伺える。ISP間のトラフィックでは、大手 ISP間で交換されるトラフィックの割合が減少してきており、国内外のコンテンツ事業者や CDN 事業者の存在感が増している。また、2010年から減少傾向にあったブロードバンドアップロード量も 2013年には増加に転じていて、P2Pファイル共有からウェブサービスへの移行が一段落したのではないかと考えられる。²

²すべての資料の出所 総務省「我が国のインターネットにおけるトラヒックの集計・試算」

		a rap	A 4 W E W = [H		0.100		
		6 ISP	A1 総量推計値		3 ISP	A2 総量	
		契約数シェア	in	out	IX トラフィックシェア	in	out
2004	9月	51.8%	189G	216G	14.9%	94G	91G
	10 月	51.8%	209G	239G	15.2%	99G	98G
	11月	51.7%	224G	257G	14.0%	116G	111G
2005	5月	51.9%	259G	344G	14.9%	159G	160G
	11月	49.7%	295G	391G	15.9%	227G	187G
2006	5月	49.3%	351G	459G	16.7%	257G	229G
	11月	48.9%	398G	540G	16.1%	315G	290G
2007	5月	48.6%	447G	630G	17.5%	422G	330G
	11月	48.0%	494G	708G	16.6%	515G	381G
2008	5月	46.9%	573G	799G	17.9%	598G	475G
	11月	46.1%	655G	939G	18.7%	655G	474G
2009	5月	45.5%	768G	1100G	17.4%	887G	698G
	11月	44.7%	836G	1210G	17.6%	963G	725G
2010	5月	43.4%	742G	1240G	16.9%	1060G	776G
	11月	43.5%	715G	1360G	17.0%	1120G	868G
2011	5月	43.7%	692G	1520G	13.8%	1410G	1260G
	11月	43.9%	668G	1700G	12.8%	1730G	1620G
2012	5月	43.7%	659G	1730G	12.4%	2030G	1960G
	11月	44.1%	667G	1910G	11.2%	2400G	2300G
2013	5月	45.2%	769G	2270G	9.56%	3140G	3000G
		1			1		1

表 2: カスタマートラフィック国内総量の推計値

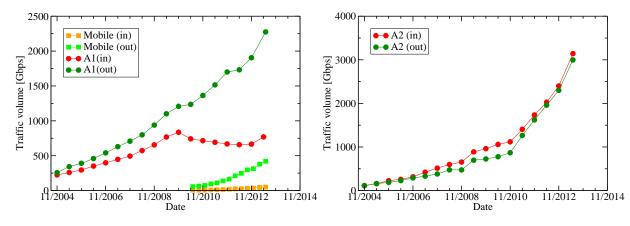


図 5: A1(左) および A2(右) の総量推計値の推移

参考文献

- [1] 長 健二朗. ブロードバンドトラフィックレポート: P2P ファイル共有から Web サービスへシフト傾向にあるトラフィック. Internet Infrastructure Review. vol.8. pp25-30. August 2010.
- [2] 長 健二朗. ブロードバンドトラフィックレポート: 違法ダウンロード刑事罰化の影響は限定的. Internet Infrastructure Review. vol.20. pp32-37. August 2013.
- [3] Craig Labovitz, Scott Iekel-Johnson, Danny McPherson, Jon Oberheide, and Farnam Jahanian. Internet Inter-Domain Traffic. ACM SIGCOMM2010, New Delhi, India. August, 2010.