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0 40 An Image Processing Approach to Traffic

Anomaly Detection

Abstract

This paper discusses the possibility of apply-
ing an image-processing technique to detecting
anomalies in Internet traffic, which is different
from traditional techniques of detecting anoma-
lies. We first demonstrate that anomalous packet
behavior in darknet traces often has a character-
istic multi-scale structure in time and space (e.g.,
in addresses or ports). These observed structures
consist of abnormal and non random uses of par-
ticular traffic features. From the observations,
we propose a new type of algorithm for detecting
anomalies based on a technique of pattern recog-
nition. The key idea underlying our algorithm
is that anomalous activities appear as “lines” on
temporal-spatial planes, which are easily identi-
fied by an edge-detection algorithm. Also, the
application of a clustering technique to the lines

obtained helps in classifying and labeling the

W I D E

numerous anomalies detected. The proposed algo-
rithm was used to blindly analyze packet traf-
fic traces collected from a trans-Pacific transit
link. Furthermore, we compared the anoma-
lies detected by our algorithm with those found
by a statistical-based algorithm. Consequently,
the comparison revealed that the two algorithms
found mainly the same anomalies but some were

of various different characteristic types.

4.1 Introduction

The Internet has become one of the most
important social infrastructures in our daily lives.
However, many issues have simultaneously been
pointed out from the view-point of network secu-
rity. Improper uses of networks due to failures,
misconfigurations and malicious attacks consume
excessive bandwidth and deteriorate their per-
formance. Thus these anomalies penalize legiti-
mate applications from using optimal resources.
Detecting anomalies quickly and accurately in
network traffic is a hot topic in the current field of
research (e.g., [17, 38, 51, 94, 95, 101, 140, 198]).
It is essential to characterize network anomalies
to be able to identify them. However, because
anomalies in Internet traffic are widely diversi-
fied, it is difficult to generally characterize them
all, and high volume makes them harder to iden-
tify. Several volume-based methods have been
proposed of finding anomalies by analysing time
series generated from network traffic (e.g. [17,
96]). However, as these methods give no infor-
mation on the specificities of anomalies, the char-
acteristics of anomalies are consequently identi-
fied by investigating dump files or flow records,
and this can be a baffling problem. Recent work
has considered information on network traffic to
accurately identify anomalous traffic. For exam-
ple, Lakhina et al.[101] emphasized the significant
role played by traffic features (e.g. addresses or
port numbers) in detecting anomalies, and they
detected anomalies by analyzing the distribution
of traffic features in network flows.

In this paper we also point out abnormal
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distribution of traffic features and go further by
identifying non-random distributions. We pro-
pose a new approach to identifying anomalies in
network traffic in which the traffic is mapped on
snapshots and anomalies are identified by a tech-
nique of pattern recognition. The snapshots are
based on several traffic features to detect most
kinds of anomalies and they are computed on dif-
ferent (spatial/temporal) scales. The technique
of pattern recognition that is implemented allows
unsupervised learning and no anomaly database is
required. A further advantage of pattern recogni-
tion is its ability to capture ambiguous and short-
lived anomalies. Also, a clustering algorithm
helps to label and classify the multitude of anoma-
lies found. The approach we propose is evaluated
by comparing it with a method of detection based
on a non-Gaussian multi-timescale model[38].
The derived results demonstrate that numerous
kinds of anomalies can be identified with the pro-
posed approach; moreover, it can detect several
short-lived and low-intensity anomalies that the

statistical-based method cannot identify.

4.2 Related work

Network traffic anomalies have been studied
for many years, and several supervised and
unsupervised-learning approaches have been sug-
gested. Supervised-learning methods have mainly
been represented by intrusion detection systems
(IDSs) based on anomaly signatures. However,
due to the constant appearance of new anoma-
lies, unsupervised-learning approaches have also
been focused on. They were first based on volume
variance, identifying both short or long-lasting
anomalies through local or global variances in
the number of bytes. Nevertheless some sophis-
ticated low-rate attacks[100] cannot be identified
by merely analyzing the volume of traffic. For
example a port-scan attack does not necessarily
consume much bandwidth when it tries to access
an abnormally large number of ports on a single
host. In addition to volume, recent work has also

considered traffic features for a closer analysis of
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traffic; consequently, the anomalies that have been

found have been more diversified.

4.2.1 Signature-based approaches

Currently, IDSs ([141, 150]) are the most widely
tools used to notify operators about security
issues. These applications analyze all transmit-
ted packets and search for sequences of bytes
known to be malicious. The key feature of IDSs is
their signature database that can be referenced
to identify well-known anomalies. In addition,
pattern-matching techniques allow fast process-
ing to identify malicious code from the payload.
However, because IDSs are based on a signature
engine, novel anomalies cannot be identified and
new signatures haves to be developed for every
new attack. Signatures also cannot be designed
for sophisticated attacks, such as self-modifying
worms, and they cannot cover the multitude of
possible attacks created by malicious users. IDSs
can help to protect systems from attacks they have
previously experienced but they are inefficient in

immediately preventing new attacks.

4.2.2 Statistical-based approaches

The wavelet tool[1] allows a single signal to be
decomposed in several signals representing differ-
ent frequencies. High frequencies indicate spon-
taneous behavior by traffic while low frequencies
exhibit global behavior by traffic. Methods of
detection involve finding global and local vari-
ances in wavelet coefficients to detect respective
short and long-term anomalies. Wavelet methods
were first used on throughput signals highlight-
ing anomalies particularly greedy for bandwidth.
However, several kinds of anomalies cannot be
detected if only the number of bytes is taken into
consideration. To find more diversified anoma-
lies, Kim and Reddy[96] proposed a data struc-
ture to generate more complex signal as a func-
tion of packet information. As the analyzed sig-
nal represents changes in few traffic features, more
kinds of anomalies can be identified. Unfortu-

nately, analysis is still based on a single signal



describing the whole flow of traffic; consequently,
low-intensity anomalies have yet an insignificant
impact on identifying anomalies in the entire traf-
fic flow.

Network traffic represents a complex multidi-
mensional object in which wavelet provides an
interesting way of breaking down time space.
Despite this, another mechanism also has to be
used to dissect the address space to obtain a finer
grained view of traffic.

Other methods based on statistical analysis
have been proposed to solve the problem of detect-
ing anomalies in network traffic. ~Unlike tra-
ditional wavelet methods, these methods have
considered traffic features to highlight anoma-
lies. Recent statistical-based methods have
created several random aggregated traffics (or
sketches)[38, 103] to dissect the whole flow. After
this, the global behavior of the traffic is extracted
from these sketches, and discriminating crite-
ria based on statistical analysis highlights data
with abnormal characteristics. A key feature of
statistical-based methods is their accurate charac-
terization of the behavior of global traffic to detect
most anomalies. Different techniques have been
proposed. For example, Lakhina et al.[101] took
advantage of primary component analysis (PCA)
while Dewaele et al.’s approach[38] was based on
non-Gaussian procedures, where both methods
computed their analyse of IP addresses and port
numbers. These methods made use of a thresh-
old on the minimum number of packets involv-
ing anomalies to avoid false positives. Indeed,
statistics computed from “small” flows are not
sufficiently representative and may provide unex-
pected results. Kim et al. proposed[94] a different
approach, i.e., a Bayesian statistics based DDoS
algorithm for detection, which calculated the like-
lihood of non-legitimate packets for each arrived
packet. This approach was promising, but had
a disadvantage in needing answer data for the
learning process.

Consequently, although statistical-based anal-

ysis allows us to identify a large variety of

W I D E

anomalies, those involving small traffic flows or
those that are defined statistically close to global
traffic behavior cannot be identified with these

methods.

4.2.3 Image processing-based approaches

Some image processing-based methods for
detecting network anomalies have recently been
studied. For example Kim and Reddy[95] intro-
duced a way of summarizing packets information
in a picture (or frame); thereby, many frames
could be computed from network traffic consti-
tuting a movie. A scene-change algorithm was
applied to it to highlight significant changes in
network traffic. The main contributions of this
approach were its short latency to detect anoma-
lies and the use of image-processing techniques to
detect network anomalies. However, as this tech-
nique still counted packets and used threshold to
determine significant changes in network traffic,
several anomalies could not be detected with this
kind of counter.

We propose a new approach to detecting
anomalies based on pattern recognition, where
anomalous traffic flows are detected through
behavior-based signatures, similar to the graph-
ical signatures introduced by Farraposo et al.[51]

for classifying anomalies.

4.3 Temporal and spatial behavior of anoma-

lous traffic

Here, we focus on the temporal and spatial
behavior of anomalies appearing in two types of
network traffic. The first is traffic data called
“darknet”, which only consists of nonproduc-
tive traffic. The second is backbone traffic data

extracted from a trans-Pacific link.

4.3.1 Darknet data

Figure 4.1 displays example scatter plots gen-
erated from a darknet trace taken from a /18
sub-network for a period of 24 hours in October
2006. As described by Pang et al.[140], a darknet

(or background radiation) means nonproductive
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Fig. 4.1. Scatter plot of darknet traffic: desti-
nation address (top) and source port

(bottom)

traffic sent to unused address space. Darknet
data helps us to understand anomalous traffic and
observe graphical signatures. In the upper panel
of Fig. 4.1 the time is represented by the horizon-
tal axis and the vertical axis stands for destination
addresses. The vertical axis represents the source
port number in the lower panel. Each pixel cor-
responds to packets, and the color indicates the
intensity of arrival of the packets. In the upper
panel, vertical “lines” represent exploit attacks or
any processes using network scans (e.g. (e)). The
horizontal “lines” indicate hosts or sub networks
under heavy attack. They could be the targets
of any flood attacks or misconfigurations (e.g. (d)
and (f)).

In the lower panel, we can observe other kinds
of anomalous activities, and we obtained more
information about those found in the upper scat-
ter plot. Here, the vertical or oblique “lines”
mean any procedures using an increasing num-
ber of port sources. This is the case with most

operating systems when a process opens as many

1 http://mawi.wide.ad.jp/mawi/

300

connections as possible. In this panel, the hor-
izontal “lines” indicate constant and heavy traf-
fics from a single port, emphasizing flooding, mis-
configuration, or heavy-hitters. We can observe
two sets of consecutive vertical “lines” (see (a)
and (b) in Fig. 4.1) appearing at the same time as
a sudden heavy noise in the upper panel. These
two behaviors can be understood as a process try-
ing to access a maximum number of computers in
a sub-network within a short duration. This is
typically an exploit or worm behavior. Checking
the header information, note that all these pack-
ets are directed to port 445. Windows has vul-
nerabilities in protocols using this port. Several
worms have spread exploiting these vulnerabili-
ties. The vertical “line” (e) behaves in the same
way, but within a shorter time. Indeed, the packet
information for (e) informs us about an exploit on
ssh. Also, we analyzed the slanted curves (see (c)
an (d) in Fig. 4.1) and detected attacks aimed at
services sensitive to attacks. These attacks do not
appear linear because of the variance in time pro-
cessing or network delays (due to another activ-
ity (d) has some peaks in its source port numbers).
The ports concerned are 80 for (c) and 161 for (d).
These services have well known anomalies driving
in a DoS or buffer overflow. The targets in (d) are
aimed at a small sub-network (see (d) in the upper
panel), whereas (c) is aimed at a single target that

can be easily identified by zooming in on (f).

4.3.2 Trans-Pacific traffic data

The previous figure indicated the shapes of the
anomalies. However, as the input files we used
only provided darknet traffic, these files did not
contain any legitimate traffic. Now, let us present
another example with anomalies in a large and
complex traffic flow. We analyzed a traffic trace
from the Measurement and Analysis on the Wide
Internet (MAWTI) archive[29], which is a set of
traffic traces that has been collected by the WIDE
Project since 1999'. This archive provides large-

scale traces taken from trans-Pacific links. The



08:00 08:30 09:00 09:30 10:00

65536
"

Source port
{
!
!
|
1
|

Zoom in time axis

o

~(b)

65536

Source port

(a)

2

9:45 10:00 10:15

(b)

65536

=

()=

Destination port

Ny

09:45 10:00 10:15

Fig. 4.2. Trans-Pacific traffic data in multiple
time scales (2007/01/09)

traffic traces are in pcap form without payload
data, and with both addresses anonymized. Also,
the time duration of all traces is fifteen minutes.
Figure 4.2 shows graphical representations gen-
erated from ten consecutive files of the MAWI
database. The total size of these ten files is about
7.6 GB, for a time length of 2.5 hours and more
than 22 million packets. In the top panel, the ver-
tical axis stands for the source port. We easily see
that the traffic is much heavier than in the pre-
vious example. However, we can still distinguish
several dark “lines” from the whole traffic flow.
Next, we zoomed in on the right (during 9:45—
10:15) of the figure in detail. The middle panel
was also drawn regarding the source port to obtain

a finer grained time scale. The header information

W I D E

helps us to understand the plotted pixels. The
two oblique “lines” crossing the figure (see (a)
in Fig. 4.2) represent a SYN flood. This is
an attack from a single host on several targets.
The attacker floods targets on port 443 (usually
used for HTTP over SSL). This method is well
known and results in buffer overflow in the Pri-
vate Communications Transport (PCT) protocol
implementation in the Microsoft SSL library. The
other slanted “lines” are the same kinds of attacks
against other services and from different hosts. In
particular (b) stands for a DDoS attack against
a few HTTP servers. The horizontal dark “lines”
are anomalies consuming bandwidth such as that
in DoS attacks, misconfiguration or heavy-hitters
from peer-to-peer networks.

The bottom panel in Fig. 4.2 shows the same
traffic as in the middle panel, but regarding the
destination port. We can observe similar “lines”
to those found in the middle panel (b), and they
stand for the server reactions to the DDoS attack
previously observed. Also, note two kinds of
“lines” repeated several times (see (c¢) and (d)).
Both of these were DoS attacks on ACK packets

from two distinct hosts against different targets.

4.4 Proposed algorithm

Let us briefly review six goals and main issues in
detecting anomalies in network traffic: (1) First,
it is necessary to design an unsupervised-learning
method (i.e. where anomalies are not known
a priori). We could thereby avoid having to
use signature-anomaly databases or other meth-
ods based on well-known anomalies, like most
of the current IDSs are based on. The pro-
posed method would have to be able to dis-
cover new and unknown anomalies through their
unusual behaviors. (2) In a backbone network,
a huge amount of data is constantly transmit-
ted, meaning that all the data could be merely
handled by summarizing the information. How-
ever, suspicious data only represent a small part

of the whole traffic flow, and the characteristics of

anomalies should not be lost when information on
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traffic is summarized. Significant data for char-
acterizing anomalies would have to be empha-
sized to enable us to proceed with accurate anal-
ysis. (3) Analyzing network traffic is a complex
task due to the number of dimensions implied
in network communications (e.g. addresses, ports,
TCP flags, ICMP types/codes). Although many
abstractions have to be done to handle such multi-
dimensional objects, network traffic anomalies
must still remain conspicuously identifiable. Fur-
thermore, some network-traffic dimensions stand
for large spaces where no elements can be han-
dled individually. For example, the source and
destination address space consists of 232 hosts in
IPv4; therefore, a method of detection in real-
time cannot thoroughly take each host into con-
sideration individually. (4) Once an anomaly
is detected in network traffic, data involved in
the event also have to be retrieved to accurately
characterize the anomaly (its origin, target, and
period of time). (5) Further, anomalies in net-
work traffic are particularly diversified; among
other phenomena their duration and number of
targets are extremely varied. For example, DoS
attacks are characterized by a flash flood to a sin-
gle host whereas an exploit attack tries to con-
nect to a large range of hosts for an undetermined
period of time. It is generally difficult to char-
acterize anomalies in network traffic and similar-
ities among anomalies have to be well defined.
(6) Finally, methods involving low computational
costs are required and anomalies have to be iden-

tified early before they spread.

4.4.1 Main idea

We propose a new approach to detecting
anomalies in network traffic using a technique
of pattern recognition in images similar to the
ones presented in Section 4.3. To provide an
unsupervised-learning method, we have to con-
sider a generic pattern allowing all kinds of
anomalies to be detected in analyzed snapshots.
Although the anomalous traffics discussed in

Section 4.3 are represented by different shapes,
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Fig. 4.3. Same anomaly at different scales

appropriate scales allow all anomalies to be shown
as (solid or dotted) “lines”. For example, Fig. 4.3
represents an anomaly on different scales. The
time scale is small in the left panel. The anomaly
is not entirely displayed, and only the local behav-
ior of the anomaly is provided. However a large
time scale allows us to draw the “line” of the
right panel where the whole anomaly is repre-
sented, and the global behavior of the anomaly
is presented. In both cases these “lines” repre-
sent an abnormal distribution of traffic features
where dispersed distributions are depicted as ver-
tical “lines” and concentrated distributions are
represented by horizontal “lines”. For example,
a network scan is represented as a vertical line
in an image where the vertical axis stands for
the destination address and the horizontal axis
represents the time. Due to the wide variety of
anomalies, we have no knowledge of the num-
ber or nature of traffic features abnormally dis-
tributed in these anomalies. In this paper, we dis-
cuss our analysis of only two dimensional images
highlighting one traffic feature; consequently, an
anomaly may appear in different images but
always as a “line”. Combining more dimensions
into an image results in detecting anomalies with
higher computational complexity and, paradoxi-
cally, more graphical representations have to be

considered (to detect all classes of anomalies). For



example, we can identify anomalies regarding four
traffic features; in 3-dimensional representations
(two traffic features and the time) there is six
possible ways of plotting network traffic, whereas
with 2-dimensional representations (a traffic fea-
ture and the time) there are only four possibilities.

The main idea underlying the new method is to
find, lines representing unusual and excessive use
of a traffic feature from different snapshots. Thus,
the proposed technique focuses on the nature of
the traffic (traffic features) instead of the volume
(number of bytes). This paper has taken into con-
sideration four traffic features (source/destination
addresses and ports) to detect anomalies; how-
ever, the method can easily be applied to other
traffic features. The detected lines correspond to
an important or a negligible number of packets.
Consequently, our method takes advantage of this
asset and permits us to detect anomalies involving
a small amount of data and/or a small number of
packets. Since our method of detection is based on
unusual traffic behaviors and it does not require
an anomaly database, it is able to detect new and
unknown anomalies.

The new method consists of six steps: (1) Ini-
tially adjust a sliding window to the beginning of
the data. (2) Compute multi-scale snapshots for
each traffic feature to be considered. (3) Identify
lines in the snapshots. (4) Retrieve data on net-
work traffic involved in the lines found and sum-
marize these in an “event”. (5) “Events” from the
same source or aimed at the same destination are
grouped together to form “anomalies”. (6) Shift
the sliding window and repeat steps 2 to 5. A clus-
tering technique classifies anomalies found follow-
ing their distribution of traffic features to provide

understandable output.

4.4.2 Computation of multi-scale snapshots
4.4.2.1 Spatial direction

We focused on four traffic features for detecting
anomalies; thus, four graphical representations
were used to compute the snapshots. To reduce

noise in network traffic surrounding the anomalies

W I D E

and to facilitate their identification in the ana-
lyzed images, we split the entire network traf-
fic into smaller sub-traffics. Indeed, if the whole
network traffic could be analyzed at once, then
anomalies appearing simultaneously would over-
lap one another and generate confusing images.
‘We propose two general ways of dividing the entire
traffic. On the one hand, the whole traffic is clas-
sified in NV sub-traffics corresponding to data sent
from N disjointed blocks of source addresses. On
the other hand, the traffic is arranged in N sub-
traffics standing for data received by N sepa-
rated blocks of destination addresses. Therefore,
2 %« N sub-traffics are formed, and a snapshot is
computed after this for each sub-traffic and each
graphical representation (considered for detecting
anomalies). Here, we have considered four graph-
ical representations (from four traffic features),
consequently 2 x N x 4 snapshots are processed
for detecting anomalies in network traffic. This
process helps us to generate images emphasizing
different kinds of anomalies and avoids noise in
network traffic. For example, Fig. 4.4 summarizes
the process for generating images from network-
traffic data from five communications between
three blocks of addresses (N = 3). In this exam-
ple, a network scan on the entire network can be
outlined in the left lower set of images (labelled 3,
4, and 5); also, a DDoS attack from hosts over
the whole network can be highlighted in the right
upper set of images (labelled 1, 2, and 3).

4.4.2.2 Time direction

Like most methods of detection, the proposed
approach browses network-traffic data by using
a sliding window. A common issue is to define an
optimal window size to detect a sufficient number
of anomalies within a short time. With traditional
methods of detection, a small window is preferred
to rapidly detect anomalies; however, only short-
term anomalies can be identified. The advantage
of our method is that we use a small window
to quickly detect short and long-term anomalies.

Indeed, our method only detects lines, and we
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Fig. 4.4. Image generation

do not need to display the whole segment repre-
senting the anomaly; a sub-segment is sufficient
to identify it. For example, Fig. 4.3 shows an
anomaly on different temporal and spatial scales.
In the left panel, the time scale is very short;
therefore, the anomaly is not completely displayed
but can still be identified. We thus took advantage
of a short time scale to detect short and long-term

anomalies as quickly as possible.

4.4.3 Detection: Hough transform

The basic tool we employed to find lines in snap-
shots was the Hough transform[44, 70]. Its two
main advantages are: (1) It is able to detect solid
lines as well as lines with missing parts (e.g. dot-
ted lines). This asset is important for our purpose
since anomalies do not always constantly gener-
ate traffic. (2) Furthermore, it is robust against
noise, and images generated from traces contain
noise due to legitimate traffic.

Let us review some details of this well-known
technique used in pattern recognition. The Hough
transform consists of a voting procedure with an
equation characterizing a shape. For each plot-
ted point, a vote is done for all possible shapes
passing through this point. All votes are recorded
in a parameter space called an accumulator (or
Hough space). Finally, shapes are found by iden-
tifying non-local maximum values from the Hough
space where the coordinates are the parameters
values for identified shapes. In the particular case

of lines, we use polar coordinates to define a line:
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p=ux-cosf +y-sinf. For each plotted point
(z1,y1), votes are done for all  and p solving the
following equation: p(0) = z1 - cosf + y1 - sinf.
These votes stand for all lines passing through
(z1,y1). Once all votes are done for all points
plotted in the image, lines are found by identi-
fying maximum values in the accumulator, where
the coordinates are values of parameters (p and )
for the line equation.

For example, in Fig. 4.5 the left graph plots
three points in the line; the use of the Hough
transform in this graph provides the line pass-
ing through these three points. The right graph
in Fig. 4.5 plots the Hough space standing for
the votes of all points; each curve represents all
votes made for a single point. The intersection of
the three scatter plots gives parameters values (p0
and 60) defining the line binding the three given
points.

In our approach, we took advantage of the
Hough transform to find lines (representing
anomalous traffic) in images generated from net-
work traffic. The maximum values were extracted
from the Hough space using a relative threshold
regarding the average value of the accumulator.
Figure 4.6 shows an example of an image com-
puted from darknet traffic and the corresponding
Hough space. The top panel is the original image
from network traffic; note the seven lines indi-
cate the use of an increasing number of source
ports during a short period of time, and there

are some activities in the lower port. The middle
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Fig. 4.5. Hough transform with three points

Fig. 4.6. Original darknet traffic (top), Corre-
sponding Hough space (middle), and
Detected lines (bottom)

panel is the Hough space resulting from the top
image; there are numerous curves and they mainly
cross at eight points. The point most highlighted
(intersection of curves) represents traffic in the
lower ports whereas around this point the seven
other points stand for the seven lines identified in
the original images. The coordinates of the high-
lighted intersections determine the lines and the
lower panel shows the original image with the lines

identified through the Hough transform.

4.4.4 Identification

Packet-header information corresponding to
lines extracted with the Hough transform should
be used to identify origins, targets, and types of
detected anomalies. Once a line is found, packet-
header information is retrieved from all plotted
points along the identified line. Such packet infor-
mation is summarized into a set of statistics called
an event, constituting a report on a specific identi-
fied line. Indeed, an event provides detailed infor-
mation on a particular set of packets extracted
from the whole traffic flow regarding its abnormal
behavior.

Since several lines can be drawn from a single
anomaly, several events can stand for the same
anomaly. Fvents with the same destination or
source address are grouped together to output
a single notification per anomaly. For exam-
ple, assuming that the seven distinct lines from
Fig. 4.6 (top panel) are from the same source, only
one event will consequently result from these lines
being detected. Once events are merged and rep-
resent more than one line, we call this an anomaly.
No events standing for a single line are considered
as anomalies to avoid false positives. Anomalies
are reported with corresponding events informa-
tion; consequently, an operator can understand

the anomaly identified and act according to this.
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Seven kinds of reported information are:

e The number of lines found for this anomaly.

e The number of packets recovered for this
anomaly.

e The graphical representation used to identify
the lines.

e The source and destination addresses (IP)
with corresponding percentages and time-
stamps of the first and last packets retrieved
for each host.

e The source and destination ports (TCP or
UDP) with corresponding percentages.

e The percentages of use for all protocols.

e The entropy for each traffic feature considered

in the clustering method (see 4.4.5).

4.4.5 Classification

Many kinds of anomalies in network traffic can
be identified with the method of detection we pro-
pose. To sort the anomalies found and to clar-
ify the output of the algorithm, we classified all
anomalies into several labelled clusters. We imple-
mented a simple method of clustering based on
the distribution of traffic features of each anomaly
that was identified. We evaluated the distribution
of traffic features with the sample entropy intro-

duced by Lakhina et al.[101]. This metric basi-

cally informed us if the distribution of traffic fea-
tures was concentrated or dispersed within a given
traffic flow. Many kinds of anomalies have differ-
ent distributions of traffic features, and their types
can be determined by the distribution of features.
For example, a port scan, executed by a single
host, is characterized by a concentrated distribu-
tion of address sources and a dispersed distribu-
tion of port destinations.

To classify identified anomalies, we took into
account the four traffic features considered for
detecting anomalies; therefore anomalies were
ordered in clusters following a four-dimensional
vector. Each coordinate of the vector was equal
to 0 or 1 depending on whether the sample entropy
was lower than the average or not. Thus, we
obtained 2* different vectors, each of them rep-
resenting a particular cluster. Consequently, each
anomaly was classified regarding its vector (i.e.
its distribution of traffic features) in one of the
2* clusters representing a certain kind of anomaly.
Table 4.1 provides a number for each cluster and
labels for corresponding anomalies. Some clus-
ters are not labelled meaning unknown anomalies.
Note that the cluster numbered 15 is intended for
anomalies identified with all dispersed traffic fea-

tures. However, these kinds of anomalies make

Table 4.1. Cluster of anomalies

Anomaly label Addr Src |Addr Dest| Port Src | Port Dest | Cluster Number

Heavy traffic, Peer to peer traffic 0 0 0 0 0
Port scan on few host 0 0 0 1
Flood, DoS attack 0 0 1 0 2
Port scan on several host 0 0 1 1 3
Network scan, Exploit, Worm 0 1 0 0 4
Reply to a DDoS attack,

Reply to a DoS attack from spoofed host 0 1 0 1 5
Network scan, Exploit, Worm 0 1 1 0 6
‘Worm 0 1 1 1 7
DoS attack from spoofed host 1 0 0 0 8
1 0 0 1 9
Flash crowd, DDoS attack 1 0 1 0 10
1 0 1 1 11
1 1 0 0 12
1 1 0 1 13
Worm spreading 1 1 1 0 14
Anomalies mixed, false positive 1 1 1 1 15
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no sense and we deduced that this cluster cor-
responds to a false positive or several anomalies

overlapping.

4.5 Evaluation

We run our algorithm on trans-Pacific traf-
fic traces in a preliminary evaluation, and com-
pared the results with a statistical-based algo-
rithm([38]. Comparing the results from the two
methods revealed that the new method is able to
efficiently identify short and long-term anomalous
traffics representing many classes of anomalies.
The Hough transform allows to detect exploits,
worms, and (port and address) scans through hor-
izontal or slanted lines, while DoS attacks are
represented by horizontal lines in the analyzed
images. Further, the proposed approach has the
ability to detect volume-based methods through
their excessive use of traffic features. It also per-
mits anomalies to be detected involving a small
amount of data, which cannot be detected with
other methods (due to their thresholds on the
minimum number of packets to be analyzed). Fur-
thermore, the detection delay® with our approach
is shorter and allows us to rapidly warn opera-
tors. Although, our approach is able to detect
anomalies in real-time, the computation time is
significantly longer for the current implementa-
tion of our method than that for the statistical-
based algorithm. However, the small number of
images to process the Hough transform reduces
the execution time and memory use by the appli-
cation. The number of anomalies detected also
increases with a larger number of images (and

a small address block).

4.5.1 Methodology

The two methods were tested on a trans-Pacific
trace from the MAWTI project where many anoma-
lies have been reported using the method pre-
sented by Dewaele et al.[38]. Note that the traf-
fic data were captured in August 2004, after the

Sasser worm had become widespread. A great

W I D E

deal of network activity has been reported con-
cerning this worm.

Although several parameters have to be speci-
fied for both methods, optimal parameters have
not yet been fully evaluated for either of these
two methods. To evaluate our method we tuned
both approaches to approximately find the same
number of anomalies. However, for few attacks,
we figured out that the method based on statis-
tical analysis reported, two anomalies though our
method reported only one. Since anomalies are
reported differently by both methods, we com-
pared the results by checking whether anomalies
found by one method had also been detected by
the other (after ensuring that they were not false

positives), and vice-versa.

4.5.2 Results

The method proposed by Dewaele et al.[38] was
executed with values of 1 for the alpha param-
eter and 1000 for the threshold. The method
detected 630 anomalies. The method we proposed
was run with a window size of 3s and the relative
threshold (for the Hough transform) was set to
100%. For a 15 minutes trace, the execution time
for detection was about 10 minutes on a standard
desktop PC (Core2Duo 2.6 GHz, 2Gb of RAM).
Our method identified 625 anomalies. The identi-
fied anomalies were also classified into clusters as
shown in the histogram Fig. 4.7. Note that clus-
ter number 6 contains a large number of anomalies
due to the Sasser worm. Furthermore, we deduced
that cluster 15 presented confused anomalies, viz.,
each occurrence in this cluster stood for a mixture

of several anomalies.

4.5.3 Comparison

We first checked if the anomalies reported
by our algorithm had also been reported by
the statistical-based method. The method
based on pattern recognition identified 297 (over
625) anomalies that were not identified by the

statistical-based one. The two methods are

2 That is the period of time between the outbreak of anomalies and their identification.
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Fig. 4.7. Anomalies identified both methods, sorted by cluster numbers.

compared in the histogram in Fig. 4.7; most dif-
ferences appears in clusters 0 and 6. We inspected
all anomalies not reported by either methods and
noticed that about 100 anomalies were identified
in cluster 6 as true positive anomalies related
to the Sasser activity. This revealed that the
image processing-based approach detected twice
the anomalous traffic for this class of anomaly
than the statistical-based one. Several of these
anomalies could not be detected with the method
proposed by Dewaele et al.[38] due to the small
number of packets involved. However, anomalies
classified into cluster 0 and not identified by the
statistical-based approach were mostly heavy traf-
fic between two hosts using HTTP, HTTPS, or
peer-to-peer protocols. More in-depth investiga-
tions have to be done to estimate if they are false
positive anomalies.

The method proposed by Dewaele et al.[3§]
reported 630 anomalies classified in six groups
regarding several heuristics (Fig. 4.8), where
165 identified anomalies were not detected by

the pattern-recognition method proposed in this
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paper. Of these 165 anomalies 24 were labelled
as OK meaning they were certainly not harmful
(i.e., mostly http traffic). Also, 54 were classified
as UNKNOWN and we deduced that they were
heavy traffic using HTTP or peer-to-peer proto-
cols; yet, more investigations are needed to deter-
mine if they were false positive anomalies or not.
However we noticed that 149 of the 165 anomalies
identified as ATTACK were also detected with the
method proposed in this paper.

The method proposed by Dewaele et al.[38]
used a time bin of 1min; thus, in the worst
case an anomaly would be reported 1 min after
it occurred. However, the pattern-recognition
method proposed in this paper is able to report
anomalies after the window slides, meaning every
3s in this evaluation. Consequently, the detec-
tion delay with our method is shorter than
that of the method based on statistical analysis.
The new method can help operators to become
rapidly aware of when anomalies appear in net-

work traffic.
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Fig. 4.8. Anomalies identified by both methods, sorted by type of traffic.

4.6 Conclusion and future work

We first highlighted the need for identifying

anomalies in this paper, and understanding net-
work traffic behavior on all temporal and spatial
scales. We demonstrated that anomalous traf-
fic has characteristic shapes in time and space.
A darknet trace exhibited several spatial-temporal
patterns for different anomalies in a snapshot, and
a trace taken from a trans-Pacific backbone had
anomalies, in heavy traffic, that were still high-
lighted. These structures represented particular
distributions of traffic features, and should be
a good medium for detecting anomalies in net-
work traffic.

The main contribution of this paper was to pro-
pose a new approach to detecting traffic anomalies
based on pattern recognition. We took advan-
tage of graphical representations to break down
the dimensions of network traffic. Indeed, image
analysis provided us with powerful tools to reduce
the complexity of network traffic and extract rele-

vant data. Thus, we mapped network traffic data

to snapshots rather than traditional time series,
and we identified unusual distributions in the
traffic features through simple patterns (lines).
This technique was implemented and its efficiency
was demonstrated by comparing it with a recent
method based on statistical analysis. A variety of
network traffic anomalies were detected by using
our new method and we applied a clustering tech-
nique to classify them. Furthermore, pattern-
recognition presents interesting advantages in its
short detection delays, and its capabilities in iden-
tifying anomalies involving a small number of
packets. Consequently, our evaluation revealed
that the kinds of anomalies detected with the
pattern recognition-based method are slightly dif-
ferent than the ones found with the statistical-
based approach. However, a limitation in detect-
ing anomalies was observed, and was not specific
to our approach. Since the image-based technique
proposed in this paper does not take payload into
consideration and has no port/host specific infor-
mation, it detects all heavy traffic as anomalous;

therefore, dense http, ftp, or p2p traffics were
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reported.

One important future project is to add the capa-
bility of processing raw packets directly taken
from a network interface. Also, the current tool
only takes packets into account, but it would be
better to emphasizes connections to represent the
concept of flows. In addition, other graphical rep-
resentations have to be studied to detect network
anomalies. Further, more evaluations have to be
done; thus a closer inspection of obtained results

can lead to better tuning of the technique.
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