I 0

Joooooodo 1P O

W I D E

20
ODo0o0ooboooo 1IPO

010 0oogd

TACADOOODOOOOOOOoOPCOOOOO
oooooopooooooooooooooooon
oooooopooooooooooooooooon
oooooopooooooooooooooooon
oooooopooooooooooooooooo
oooooopooooooooooooooooon
oooooooooooooooooon

00000120000 600000000000
0000000000000 000 Process Automa-
tionOdFactory Automation(0Building Automationd
oIpO0000000O0O0OO0O0COOOOOOCOO
oooooopooooooooooooooooon

0000000ooo0o0000o0ooooo0o0o
oooooopooooooooooooooooon
oooooopooooooooooooooooon
oooooopooooooooooOoooooon
oooooooooooooooooooooooo
oooooopooooooooooooooooon
ooooo

O00000TACAOOOOOOOOOOOOOO
0o000oooooooooooooooo 2000
20060 7O0OOOOOOOOOOOOOOOOOO
0o0O0oooooooobIicoMo2005000000
gooooooopbooooo 300 20060 10
0ooo0oO0oO0o0oo0oooooo0 SAINT2006 000
ooooooooo

020 000000000 mwrooObODOOOOOo
gbooboobooboboobooooboo
oboo

210000

0000000000000000000000
00000000000000000000000
000000000000000000000000
00000000000000000000000
00000000000000000000000
000000000000000000000000
00000000000000000000000
00000000000000000000000
00000000000000000000000
00000000000000000000000
00000000000000000000000
000000000000000000000000
LonWorks[116]'0BACnet[11]?°0 00000000
00000000000000000
0000000000000000000000
00000000000000000000000
000000000000000000000000
00000000000000000000000
00000000000000000000000
000000000000000000000000
00000000000000000000000
0000 Internet Protocold IPOO OO OOOOO
O000IPOO00O0O000000OO0O00OO0
00000000000000000000000
0000000000000000IPO0O0O0OO0
OO0PO0000O000000000000000
00000000000000000000000
00000000000000000000000
0000000IPO0O0OD0OO0ODO0OO0O0O0OO0
00000000000000000000000
000000000000000000000000

1 LonWorks is a registered trademark of Echelon Corporation.

2 BACnet is a registered trademark of ASHRAE.

P ROJETCT

Og=OO00000000 Owde

t

reepor

P R OJETZCT 2 0 0 5 a nnu a

E

D

e] 20 O0OO0ODODOOOOOIPO

oooooooooooooooboooooooo
oooooooooooooooboooooooo
olpO0000000000O0COO0OOOOGOO
oooooobooocoooooooboobooooooo
oooooobooocoooooooboobooooooo
oobooooooooobooboooIpvebOOOODO
oooooooocoooooooboboooo

gooooooooooooIpoOoOooOoOon
ooooooooooooooobobooooooo
gobooooo Ipob0bo0obOobOOobDODbDODO
gooooobooooo IpooboboobooboboOon
goboboobooooboobobbooboo
goboboobooooboobobbooboo
goboboobooooboobobbooboo
gbobooooooobobobooooo IpoOd
goboboobooooboobobbooboo
goboboobooooboobobbooboo
goooboooon

gobIpOO0O00O0ODOOOOOO0OOOODDODO
goboboooobooooboobobooboo
goooooooooIboboooobooboooboooo
gobobooobooooboobobbooboo
gobobooobooooboobobbooboo
goobooooobowbooooooooboobooog
goboboobooooboobobbooboo
goboboobooooboobobbooboo
goboboobooooboobobbooboo
gooboooboooboboooloooooooboooo
goooboob9bOoOoboooboobobooboo

gobooboooboobooboooooboon
gbobooboobobobooo IpvedbonoO
goboboobooooboobobbooboo
gboobobboooobooobobooobobo
00000 0000OKerberos[161]°0 0 O OProperty
Server 00000000 0ODOODODOODOOOOO
gobobooobooooboobobooboo
goooooobg

220000

2210000
gbooobooooobooboobooobooboobo

gbooobooboobooobooobooobooooo

gbooobooboobooobooobooobooooo

oooooooooooooooobooooooo
oooooooooooooooobooooooo
oooooooooooooooobooooooo
oooooooooooooooobooooooo
ocob0o0ooooooboooooooOoboooooooo
oooooooooooooooobooooooo
coooooobooobOoooooooooIpOO
ooooooooooooooooobooooooo
ooooooooooooooooobooooooo
oboooooboobooboboobooboooo
oboooooboobooboboobooboooo
oboooooboobooboboobooboooo
oboooooboobooboboobooboooo
oboooooboobooboboobooboooo
ooooooooboo
gbobooboobooooboooboooooon
IpO0O0CO0O0OO0OOOOOOOOO0
1.0000oo
gboobooooooobooboooboooooon
gboobooooooobooboooboooooon
gboobooooooobooboooboooooon
gooooooobobooooooooooooo
gboobooooooobooboooboooooon
gboobooooooobooboooboooooon
gboobooooooobooboooboooooon
gboood
2.000000
gboobooooooobooboooboooooon
gboobooooooobooboooboooooon
gboobooooooobooboooboooooon
gboobooooooobooboooboooooon
gboobooooooobooboooboooooon
.00000000000C0O0O0000O0O00Ob
gboobooooooobooboooboooooon
gooooooooooooooooooooo
gboobooooooobooboooboooooon
gbooogoo
4.00000000000000
gboobooooooobooboooboooooon
gboobooooooobooboooboooooon
gboobooooooobooboooboooooon
gbooboooooooobooooooooon
gbooboooooooobooooooooon

3 Kerberos is a trademark of the Massachusetts Institute of Technology.

gooooooocooooooooboooooo
ooooo
5.00000000000000O0
gooooooocooooooooboooooo
gooooooocooooooooboooooo
gooooooocooooooooboooooo
gooooooocooooooooboooooo
gooooooocooooooooboooooo
gooooooocooooooooboooooo
oooo
oooooooooooooooooboooooo
gooooooooooooooboooooooon
gooooooooooooooboooooooon
oooooo

222 00000000DO0O0d
0o0o0D00oO0o0oboO0o0o 2100000000
000 Kerberos OOOODODODOO0OOOOOOO
Kerberos OO OO0 OO0O0O0OOOOO0OOOODOO
goooooooooooooobooooooono
Kerberos 000000 realm 00000000
0000000 Oprincipadl OOOOO0OOOOOO
poooood
goooooboboboooooooboboboood
reeim 0000000000000 O0O00O0OOCO0O
00o0ooo0ooooooooon0 realmO0O0O 20
O0realm 000000000 OCOOOCOOOOOO
goooooobobobbooooooboooboood
000000000000 realmOO00OO0O0OOO

W I D E P ROJETCT

O0ooOoooooo0ooooooooooog
O00000ooo0o0o00oooooooooooo
O0ooOoooooo0ooooooooooog
ooo
000oO0o0o0o0oO0o0ooOoooOoooooo
02000000000000000000000
O0ooO0ooooo0ooooooooooog
O0ooO0ooooo0ooooooooooog
O0ooO0ooooo0ooooooooooog
gooobooobobooboobobooobon
gooobooobobooboobobooobon
gooobooobobooboobobooobon
gooobooobobooboobobooobon
gooobooobobooboobobooobon
gooooooboobgo
g0000oboO0o0oDobOOoOobOoODODevice IDO
DIbOOOOOOODOOOOoOODIDOOOCODO
EUI-64[118] 000000000000 DODOO DID
0000000000000 Device KeyODkOO O O
0000000000000 00000 IPsec[157]
gooooooooddIPsecOdO0DOOOOOO
Kerberos 0000000 OODOODODO Kerberized
Internet Negotiation of Keysd KINK[275] 000
gooobooobobooboobobooobon
000 KerberosO realm 000000000000
Key Distribution Centerd KDCOOOOOOODO
0000o0ooDoooooooo Kbeco KDbC-BO
OOOKDC-BOOOOOOODODOO DIDO DkO
gooobooobobooboobobooobon

KDC- BW B 7 1 1 XD Realm
Property

*EEJ@;JEG)?’ HD
_Fhru b

«
DHCPvé‘:,: x /{% S NEME

e e SeLver (PS

KINK/IPsec T
Rendezvous

I _ - Server (RS)
3 End Node {Sensor, Switch,. (¢)
% “KINK/IPsecT — > Property

A, «—{RES DL ﬁ@. R Se

(KDC, RS}, ‘ /

Realm% ..)"‘
\ AR D t&)fD PS M&EiR
Fhoyk P =

021 00000O0O0OO0O0OO0OOOOOOCO00 2

000 Kerberos0OOOOOOOO0O0O0O0O0O0O0OO

00000 realm 00O 0O Property ServerO PSO 0000000000000 OODOOO0OOOD
realm OO0 PSOOOOO00OOO0OO0ODOOO0DOOOODOOOO PSO Rendezvous Server [0 0 0O

oooooo

Og=OO00000000 Owde

t

reepor

P R OJETZCT 2 0 0 5 a nnu a

E

D

e] 20 O0OO0ODODOOOOOIPO

goooooo KbcO Kbc-ooOooo

Property Server0 PSOOOOOOOOCOOOO
ooooOopSOOOOOOOOOOCOOOOOO
000000o0ooooOoooooooooooo
Oo0oOoOoOoO PSOOOCODOOO KerberosO OO
O00O0ooooKbc-o000000000dIPsec
000 KINKOOOOODOOOoOOooO

gooooopOoOopoooopOoOoOoOoOooo PsS
000000o0ooooOoooooooooooo
00 Rendezvous Serverl] RSOOOOOOO0O0O0O
OO0 RSOOOD0ODODDO DNS[188]OD 00000
god

0000000000 OoooKDC-B, KDC-OO0O
ORSO0O0DO0OODODODOOO0OO0OOODHCPYE[54]00
000000000 0DHCPv6 OO, Kerberos O
goooooboboboboooooobooboood
000oooo0oooooooooooooono KDbC
00000 realm 00000000 OOOOO

223 00000
o0 220000000000000D00O00O00O0O
gooooono
D10 DHCPv6 O O0OOKB10O KDC-BOKO1 O
KDC-OORS1 0 RSOOOODOOOKerberos 00O
000000 realm 00 BOOTREALM.LOCALO
000000000000 realm 00 EXAMPLE.
coMOOOOODOOOO N1O DIDO DID1ODO
00o0o0o0oo Dkl1OoOOON1IO PSO PS100
0000ON1OO0OD0O00O0O nl.example.com OO0
00000Onl.example.com O PSO PS20000
god
O00KerberosO O KDCOOOOOOOOOOO
0000000000000 42000000000
1.000000000000000 principal O
goo
goooooobooooooboobooood
000 principal 000 O00O0O0OO0OOOOOO0O
principal 000000000 ODO0O DIDO 16
oo0ooooo4bpit00ooOoOOo0oOoO0ooooon
0000DID10 0123:4567:89ab:cdef 0 00 O
0000ON10O principal 00 0.1.2.3.4.5.6.7.8.9.
a.b.cdef0000
2. KDC-BO OO
N1OOO DHCpv6ODOOOOOOODODOO

10

N1 D1 KB1 RS1 PSI KO1 PS2
DHCP request

KDC=KI,
realm=BOOTREALM.LOCAL,
RS=RSI

KDCBNF R/ TGTHES
(rev(DID1)@BOOTREALM.LOCAL, Dk1)
»l

SRV? _propertyserver_._tcp.e.d.c.b.a.9.8.7.6.
5.4.3.2.1.0.bootrealm.local

SRV = psl.example.com
IPsec Key Exchange by KINK
HEIR EHFROEK (DID)
&EZ EHEROBH
(DID, nl.example.com, Fk1) HEROLE
. (Fk1)
TGTDEE (nl.example.com@EXAMPLE.COM, Fk1)

HEROEK
(DIDI, nl)

SRV? _propertyserver_._tcp.nl.example.com
»!

|

SRV = ps2.example.com |

IPsec Key Exchange by KINK
nl.example.com & U TDEXEIERDEG

022 000000000 N1OOO DHCPv6
00000 KbC-BOOOOOODIDO
OO00ORSOOOO pPSOOOODOODO
OO0 pPSOOOO0COOOOCDOOOOO
Kerberos O realm 0000000000
realm 00 0000000000000
000000 KINK/IPseeOOQO QOGO

gooboDoOoooDbO0OORealmOOOOODOO
O0KDCODOOOMmMRSOODOOOINTPODO
gooooobbooobooobooooobnt
O000Orealm 0000 EXAMPLE.COMOODO
KDCOOO KOIOBOOTREALM.LOCAL O
00 KDCOOO KB1OODODOOOOOOoOO
RSOOO0O0OO0OORSIOOOONIOMIOO
000000 KDCOODODOOTicket Granting
TicketD TGTOOODODODODODODODOOOOOO
OJ00000OKDC-BOO DklOOOOOOOO
TGTOOOOOOOO KbCO KDC-BOO
ooogoboooon

3.pSO0ODO
N1ODOdoo RSOOOODOOOOOOODOOO
propertyserver._tcp.rev(principal).
REALMO SRV O O0OOO0OOOOOOODOO
0 O rev(principal) O principal O O 0 O label
0000000000000REALMOOOO
DHCPv6 OO O realm OO0 O0O0OOOO
ooog

_propertyserver___tcp.e.d.c.b.a.9.8.

7.6.5.4.3.2.1.0.bootrealm.local

gogoOoSsRvOOOOORS1OOOOODOO
OJO0o0oOoOoON1O PSODODOOPSIOOOOOO
ooo

4.PSO0 KINKOOOOOOODO
N1O PS10000 KINKOOOOO IPsecd
gooooboooogooooon

5.p10000CCOOO0000O0O0OODOOO
oo
N1O IPsec0000OOOPSIO DIDIOOO
00000dooooooooooo Kbe-oO
gbobooooboobooooboooon
00000000000 0000000 realm
EXAMPLE.COMOOOO principal 0 0000
PS100DIDIOODOOOOOOOOO n1 @
JjooooooooooooKkbe-ooooo
DID1O0On1000D00000DOOOOODODOO
gooooKbC-OOODooooooooo
0000 FklOODODOODODDODODOODODOOOO
gopoooooooooopsioooOoogno
PS10000000NIOOODOO

6.00000000000ODO
NiOoOoOooooooob n10OOOOODOO
O FklOO0000000000O000O0 realm
000 EXAMPLE.COMOOODOOOO

7.0000000000ooO pPSO0O0O
ooooooooooD psO0OOOOOoOO
0o0ooooopsO0OO0OOoOoOOoOoooPsS
000 pS20000N10 PS20000000
0000000000 realmO000000OOO
KINKOOODOO IPsec000000OOODO0O
goo

. PSOO0DOOOOOOOO
N10O IPsecO000000OPS200 nl.example.
comJUOOO0OO0O0O0OOOODOOO

2300
23100000

000000000000 PSOO0O0OO0OOOO
gboobooooboooboooooooboo
oooooooooooopSOb0OOOOOOOO
oooooooooOooooOo pSOoOOOOOO
gooooooooOoOo pSOOOOODOOOOO
gbooboooboooooboooooon

W I D E

gooooooobooooboOoodEdUl-e400O0
oooooooobooooooooooboboo 200
ooooooooooooooooooooooo
ooooooooooooooooooooooo
ooooooooooooooooooooooo
oboboooobooooOooOoooooooooobooon
oooooooOoO0OO0OO0O00000 pPSOOOOO
O000oo0O00ooO0 KbcoooooooprpsO
oooooooooooooooobooooooo
ooooooooo

232000000

Joooooob KINKOOOOO IPsecO OO
oooooopSOOO00OOO0O0OO0OOOOCOOO
000000 ON/OFFOO0DO0OD0ODODODO
OO IPsecOOO0O00O0O0O0DOOOOOOOODO
00o0o0oooooooooooooKbcOoOoOo
00000 DbHCPv6 OO OOOOOOOOOOO
DHCPv6OOOOOOODOOOOODDOOODOOO
OO0 KDbCOOOOOOOOOoooooooooo
KDCOOOOOOOooooooKbcooooo
gboooboobooooboobooboooog
O00o0oo0ooooobHCPv6OOOOOOOOO
oooooooooooo Kbcoooooooo
goooboooooo

PSOOODOO0OO0RSOOOOOOOOOO
gbobooboobooobooboobooboooog
0000000 PSOOOOO KINK/IPsec O OO
oo0ooKbCOOOoOoOOoooooOopsSOooOoO
doooooooooooooobooooboobd
goobooboooooooobooboooooboooooo
O000000000RSODO0ODOO KINK/IPsec
gooobooobo

RSOOOOO DHCPv6OODOOOOOOOOO
00000 DbHCPv6 OO OOOOOOOOOOO
KDCOOORSOOOOOOOOODOOOOOOO
O00o0ooO0oooKbCO pPSOOOOOOOOO
gboooboobooobooboobooboooog
00000000ooo0ooo bHCPv6 OO OO
ooooooo0o0oooooooo Kbcoooo
ooooooooOoOo TGTrooooooooon
oooooooooooo Kbcoooooooo
gboooobooobooooobooboobooooog
gboooobooobooooobooboobooooog

11

P ROJETCT

Og=OO00000000 Owde

t

reepor

P R OJETZCT 2 0 0 5 a nnu a

E

D

e] 20 O0OO0ODODOOOOOIPO

oooooooooo
gbooooOobooobbooo KINKOOOOoOo
IPsecO0000O0000O0OOOOOCOOODOCOO
oboboooboOlIPsecOOOO0ODOOOO0OOOOOO
oooooobooocooooooobobooooooo
oooooobooocooooooobobooooooo
oooooobooocooooooobobooooooo
oooooobooocooooooobobooooooo
ooooooooooo
goooooooooobooooooooooooon
oooooobooooooooooboooooooo
oobo0ooooooooooooobbooOoooo
oooooooooOoooOoOoOooOOO0OO0 KDC-B
oooooooooooooooo

233 00000000000O00000D0OOO
KbCcOOoOooooooooooooooooo
KINKOOOOOooooooooooooooo
gboooboobobooobooboooobooooo
000000o00oooooooooKbecOoOoo
gobooboooboobooo
gboobooooooboobooobooboobo
OO0 KDbCOOOOOOOOOoOooooooooo
ooKbCcOOoOoOooooooooooooooo
ooooookKbCcoOooooooooooooo
ooooooo0 KbcOoOooooooooooo
gboooboobobooobooobooobooooo
OKDbCOOOOOOOOOOOooooooooo
gboooboobobooobooboooobooooo
gboooboobobooobooboooobooooo
gboooboobobooobooboooobooooo
gboooboobobooobooboooobooooo
gboooboobobooobooboooobooooo
gbboobooboooboo
gbooobooooooobooboooobouobo
00000000 20000000000 KbcOo
000000o00oooKbCcOooooooooo
gobooboooooobooooooooooooobooo
KDCOOODOODOODOODODOOOO k6000000
OO0 KDbCOOOOOoOoOooooooooo KDC
gboooboobobooobooboooobooooo
gboboobooobooobo
gbooooooooobooboooobooDbo
gboooboooboobooobooobooobooooo

12

0000000000000000000 Kerberos
0000000000 realmO00000000OO0OO
0000U00o0ooooooooooooooooo
Kerberos 0 inter-realms 000000000

gooopSOOOOOOOOOOCOOOOODO
0000000000000 00oooooooo
OO00ooOoOoOoOo pSOOOOORSOOODODOO
oopSOOO0OOOOOOOCOOCCOOODODOODO
RSOOOOOOOOOOO DNSOOOOOOOO
o0ooooooooooooooooooon RS
gogoooooood

234 000000000000O000
0000000 KerberosOOOODOOOOOO
O00OIPsecO0D00OD0OODOODODOOODODO
000000 Internet Key Exchangell IKE[[104]
O0D0D0O0OKerberosOOOO KINKOOOOOO
gboobgoooboobooboboobobbon
gboobgoooboobooboboobobbon
gboobgoooboobooboboobobbon

235 000000000000000
gbobooboobooooboobooboooooon
obooooobooboobooboobooboooog
obooooobooboobooboobooboooog
obooooobooboobooboobooboooog
obooooobooboobooboobooboooog
oooooooooboboooooooooouoDbID
00ooooooooooopSOOO0OOOOOO
goooboboooobobooooboooooboooo
ooooOoooooo bibooOoOooooooon
uobooooobooboobooboobooboooo
uobooooobooobooooo

240000
goooooooobooooobooboobooooboon
oooooooooIpveOOODOOMOOOOODO
vboooooooooobooooooooooooo
0000000000000000000 Kerberos
OIPsec000000O0O0OO0OODOOOOOO
oooo0O0O00o0oO0ooooocoobDOoO00 Property
ServerO PSOOOPSOOOOOOOOOOODODO
oobooooobooobooboooboooboooo
OO000000000b00000 Kerberos OO

gooooooooooooooboooooooo
gooooooooooooooboooooooo
goooooooooooOooOoDOoD KINKODODOO
gooooooooooooboooboooooooo
gooooooooooooboooboooooooo
gooooooooooooboooboooooooo
gooooooooooooboooboooooooo
gooooooooooooboooboooooooo
goooobooo

oo0oooOoooOoopSOO0O0O0O0O0OOOOO
gooooooooooooooboooooooon
gooooooooooooooboooooooon
gooooooooooooooboooooooon
ooo

0O 30 A Prototype of a Secure Autonomous Boot-
strap Mechanism for Control Networks*

Abstract

There are many kinds of control networks,
which have been used in various non-IP network
areas, such as BA (Building Automation), FA
(Factory Automation) and PA (Process Automa-
tion). They are introducing IP and face the issues
of security and configuration complexity. The
authors have proposed a model which intends
to solve the issues while satisfying restrictions,
i.e. small embedded devices, isolated networks
and private naming system/name space, which
are required when introducing new functional-
ity into existing control networks. Secure boot-
strap sequence and device-to-device communica-
tion using the chain of trust are the points of the
model. This paper shows the practicability of the
model through implementing the model experi-

mentally.

BACnet is a registered trademark of ASHRAE.

© 00 N O U

W I D E

3.1 Introduction

Control networks are different from IP (Internet
Protocol) with regard to their history, purposes
and technology. There are numerous standards
of the control networks, e.g. FOUNDATION
fieldbus®[82], PROFIBUS®[221], MODBUS"[190],
BACnet®[15] and LonWorks?[59], which have
been used in various non-IP network areas, such as
BA (Building Automation), FA (Factory Automa-
tion) and PA (Process Automation). Multiple
standards coexist within a single system usually
because the system’s requirements are diverse.
Many standards are introducing IP as a transport
technology, e.g. FOUNDATION fieldbus HSE,
PROFInet, MODBUS/IP and BACnet/IP.

The following are the issues that the control net-
works are facing.

e Security

Security of the control networks has not been
considered sufficiently. For example, current
specifications of FOUNDATION fieldbus and
MODBUS do not mention security. BACnet
has the capability of network security, how-
ever, but it is insufficient[107, 312]. Improve-
ment is on-going[229]. Security of Lon-
Works supports only server authentication
using challenge-response before starting a ses-
sion. The security of LonWorks is weaker
than BACnet because mutual authentication
and packet based security, i.e. authentica-
tion, integrity and confidentiality, are not pro-
vided.
They must be as concerned with secu-
rity as IP networks are because secu-
rity incidents have occurred on them, and
there are concerns for safety of social

infrastructure[25, 94, 219].

This research is supported/funded by the Ministry of Internal Affairs and Communications of Japan.
FOUNDATION fieldbus is a registered trademark of the Fieldbus Foundation.

PROFIBUS is a registered trademark of PROFIBUS International.

Modbus is a registered trademark of Modicon, Inc.

LonWorks is a registered trademark of Echelon Corporation.

13

P ROJETCT

Og=OO00000000 Owde

t

reepor

P R OJETZCT 2 0 0 5 a nnu a

E

D

e] 20 O0OO0ODODOOOOOIPO

e Configuration complexity

Devices are manually configured in the fields
whereas their user interfaces are not so power-
ful, like PCs. However, the number of devices
are increasing because precision is required
in measuring and controlling. For example,
a BA system of a large building complex in
Japan has 170,000 control points with 16,500
devices'®. This will present not only the
cost of engineering but also the possibility of
human errors in the future if a labor-saving
mechanism is not introduced.

The following are restrictions that should be
accepted when introducing new functionality into
the control networks.

e Small embedded devices

The small embedded devices commonly used
in the control networks have limited computa-
tional performance because of their restricted
requirements of cost, physical size and power
consumption. Some devices will have more
powerful CPUs in the future. At the same
time, low-power CPUs will survive because
choice of CPU depends upon not only cost
performance but also power consumption
which has an impact against battery opera-
tion or bus width which has an impact on
circuit size.

Isolated network environments

The control networks do not always require
connectivities to the Internet even though
introducing IP. It is the user’s choice whether
to connect to the Internet. Therefore, func-
tionalities introduced into them have to work

well under an isolated network environment.

Private naming system and private name
space

Information of the control networks, not only
the traffic but also device’s name, has to be
confidential, because the information can help
to indicate corporate activities, e.g. the capa-
bility of plants. Therefore, the naming system
should be closed to the public if operators

desire. It is also important not to force
device’s identity to be global unique if most
of the devices should not be accessed by out-
side. For the above two reasons, DNS is not
an appropriate naming system for them.

We have proposed a model[123], which intends
to solves the above issues while satisfying the
above restrictions when introducing IP into the
control networks. It is important for them
to inherit existing property when introducing
new functionality because they have large prop-
erty, e.g. specification, operational knowledge and
applications. This is the reason the model is
a framework whose functions are addressed to
ether below the application layer or the middle-
ware instead of inventing new control network pro-
tocols. In this paper, we show the practicability
of the model by implementing it experimentally.
This paper shows an overview of the model in Sec-
tion 3.2, details of the model in Section 3.3, the
prototype system in Section 3.4, considerations
through prototyping in Section 3.5 and related

work in Section 3.6.

3.2 Proposed Model
3.2.1 Network Security

The authors have already studied a security
mechanism[208] which can satisfy the restrictions
described in Section 3.1. We will use this mech-
anism in our proposed model. The following are
the features of the security mechanism.

e Communication is protected by IPsec[157]
which provides IP packets with confidential-
ity, integrity and authentication with the
other end. IPsec is useful because its enforce-
ment is independent from applications and
sharable among them. IPsec is applicable to
small embedded devices due to not using pub-
lic key cryptography.

e [t is important for IPsec to share a secret,
which is called IPsec SA (Security Associa-
tion), between both ends. Key exchange pro-

tocols will be important in facilitating the

10 http://www.echelon.com/about/press/2003/echelon_mori.htm

14

sharing of a secret if running IPsec on small
embedded devices because these devices do
not have a powerful user interface like a PC,
which makes manual keying difficult. The se-
curity mechanism uses not IKE (the Internet
Key Exchange)[104] but KINK (Kerberized
Internet Negotiation of Keys)[244] for the key
exchange protocol. IKE is the most popular
key exchange protocol for IPsec. However,
it is not suited to small embedded devices
because the Diffie-Hellman key exchange is
mandatory. KINK can work well on small
embedded devices because KINK is based
upon Kerberos'*[161], where public key cryp-
tography is not mandated.

e In the security mechanism, a node’s identity is
in the manner of Kerberos, i.e. a principal-id,
which is a combination of a realm name and

a principal name.

3.2.2 Auto-configuration using a Directory
Service

To simplify the configuration process, the model
provides the device’s application layer with an
auto-configuration mechanism. The basic ideas
of the auto-configuration are 1) to minimize pre-
installed information in a device, 2) to acquire
most information from servers located in net-
works. IP address configurations are beyond the
scope of the model because it can be done by
DHCP (Dynamic Host Configuration Protocol) in
IPv4 or RFC2462 in IPv6, with which the model
can be combined. The auto-configuration requires
not only name/address resolution like DNS but
also general data handling, e.g. searching, getting
and updating data. We introduce our own direc-
tory service named PS (Property Server)[162].
The following are the features of PS.

e It is not a prerequisite condition for PS to
connect to the Internet because PS does not
require global tree structures like DNS.

e PS maintains a device’s attributes as meta-

data of the device’s identity. A typical

W I D E

example is that an IP address IProo is
an attribute value of an attribute type
ATT Ripaddress, and the attribute, i.e. the
type and the value, belongs to a device’s iden-

tity FOO as metadata.

PS supports two types of transactions,
ie. PUT and GET. PUT sets/updates
attributes in PS. GET acquires attributes
from PS. Any request of transaction has
search conditions which designate attributes
to be affected. For example, identity/IP
address resolution is done by GET transac-
tion, where search conditions is the value of

ATTRipaqdress belonging to the name FOO,

which returns IP address(es) I Proo.

PS’s protocol uses XML for the future exten-

sion.

In the proposed model, every node belonging
to a system has to use the security mechanism
described in Section 3.2.1. Illegal access to PS
by outside can be prohibited with [Psec secu-
rity policy simply. An access control list can
be introduced into PS if accurate restrictions

are required.

3.2.3 Bootstrap Sequence using the Chain
of Trust

When considering secure auto-configuration,

devices have to discover a trusted PS, then
exchange data with PS under secure communica-
tion channels. The following bootstrap sequence,
which we call the Chain of Trust, satisfy the above
requirements.

1. Devices can trust Kerberos server KDC (Key
Distribution Center). It is a prerequisite con-
dition of Kerberos.

2. Devices should trust PS which trusted KDC
shows.

3. Devices register their own information, e.g.
a principal-id and IP address(es), to trusted
PS. The information will be used for discov-
ering peers (see Section 3.2.4).

4. Devices should trust data which trusted PS

11 Kerberos is a trademark of the Massachusetts Institute of Technology (MIT).

15

P ROJETCT

Og=OO00000000 Owde

t

reepor

P R OJETZCT 2 0 0 5 a nnu a

E

D

e] 20 O0OO0ODODOOOOOIPO

_Chain of trust.
Device X DHCP server NTP server KDC’ PSserver DeviceY
Advertising ipfo. of KDC &NTP Fig 2
— 9:
g Adjusting | the clock
Q -
© Fig.3
% | | Authenticatijg KDC w/ [TGT
8 &
© Di ing |PS
iscovering }
ig.4
. Registering ¢wn info. and getting boot info.
g -
: } [Fs)
S Discovering | Device Y
(0]
?
L .)
1 Device-to-dgvice comm.
() < >
Q

Fig. 3.1. Messages of the proposed model

provides. Then devices can complete the
sequence. The communication is protected
by IPsec.

Therefore, the minimum information with
which a device has to be pre-installed is
a principal-id and a key shared with KDC, i.e.
a secret key of Kerberos. Other information can

be acquired from PS.

3.2.4 Device-to-Device Communication

In the control networks, communication is occu-
pied by control messages and notification mes-
sages between devices, e.g. controllers, sensors and
actuators. Therefore, devices have to discover
trusted peers, then to exchange messages with
them under secure channels. The Chain of Trust
can be applied in that case.

1. Devices search their peers using PS because
they have already known trusted PS. (see
Section 3.2.3).

2. Devices should trust peers which trusted PS
provides. The communication is protected by

IPsec.

3.3 Details of the Model

Figure 3.1 shows the bootstrap sequence and
the device-to-device communication using the

chain of trust. Details of each function is shown

16

Device X DHCP server
DHCP_REQ

DHCP_REP
- KDC's realm name & IP address

Discovered KDC - PS service's principal-id

- NTP server's IP address

Fig. 3.2. KDC Discovery

Device X NTP server KDC
NTP_REQ

adi Tthe ook NTP_REP
jjusted the cloc KRB_AS_REQ

KRB_AS_REP

Authenticated KDC -TGT(X)

Fig. 3.3. Authenticating KDC

in Figure 3.2 through Figure 3.6.

1. KDC Discovery (KDCD)
DHCP server(s) advertise KDC related infor-
mation, e.g. KDC’s IP address(es) and realm
name(s) where KDC offers authentication ser-
vices and NTP related information, e.g. NTP
server’s IP address(es), (see Figure 3.2).

2. Authenticating KDC
Device X needs to authenticate KDC adver-
tised by DHCP server (see Figure 3.3). First,
X adjusts its clock with NTP server because
Kerberos requires that every device synchro-
nizes its clock to prevent replay attacks. Sec-
ond, X authenticates KDC, which X learned
with DHCP, through verifying a given TGT
(Ticket Granting Ticket).

W I D E

Device X KDC
KRB_TGS _REQ for PSD
- TGT(X)
KRB_TGS REP
[PSD ready - TICKET(PSD) Protected by
PSD_REQ KRB_PRIV

- X's principal-id Ee
PSD_REP
Discovered PS - PS’s principal-id & IP address

Fig. 3.4. PS Discovery

Device X KDC PS server
KRB_TGS _REQ forKINKw/ PS
- TGT(X
KRB_TGS REP
@K,eady - TICKET (KINKw/ PS)
KINK_CREATE
- IPsec SA & TICKET (KINK w/ PS)
KINK_REPLY
EPsec ready [-IPsecSA Protected
PS_PUT: my IP address by IPsec
- My info (X's principal-id & IP address) 9==
)
PS_ACK
Egistered X's IP info . Protected
PS_GET: my booting data? by IPsec
- My info (X's principal-id)
PS_ACK
Booted up - X's booting data

Fig. 3.5. Booting up

3. PS Discovery (PSD)
Device X acquires PS’s information from
KDC (see Figure 3.4). X shows its principal-
id to KDC. Then KDC returns PS’s informa-
tion, i.e. PS’s principal-id and IP address(es).
X has to acquire a service ticket for PSD,
e.g. TICKET(PSD), prior to the above pro-
cedures. KRB_PRIV messages, which need
a service ticket, are used for protecting PSD
because IPsec/KINK can not be used at this
moment.
4. Booting up

Device X registers its own information to
PS which is used for device discovery, and
acquires its boot data from PS. Then,
the bootstrap sequence are completed (see
Figure 3.5).

First, X acquires a service ticket for KINK
with PS, e.g. TICKET(KINK w/ PS), from
KDC. Second, IPsec is established between
X and PS after exchanging KINK mes-
sages. Third, X registers its own information,

e.g. a principal-id and TP address(es), which

Device X PS server KDC DeviceY

PS_GET: Y's IP address from name?
- My info (X's principal-id)
- Y's principal-id

PS_ACK
@overed Y Y

Y
Vs IP address Protected by IPsec

KRB_TGS_REQ forKINKw/ Y

- TGT(X)
KRB_TGS_REP
KINK ready - TICKET (KINKW/ Y)
KINK_CREATE
- IPsec SA & TICKET (KINKw/ Y)
KINK_REPLY
- IP: SA
IPsec ready sec Protected by IPsec
App
App \J

Fig. 3.6. Device-to-device communication

other devices or servers can use for discover-
ing. Fourth, X acquires its boot data. Then
X completes the bootstrap sequence.
5. Device-to-device communication

Device X can discover device Y using
PS, i.e. device discovery, then starts the
device-to-device communication with Y (see
Figure 3.6).

First, X discovers Y through PS. A typ-
ical example is that X resolves Y’s IP
address from Y’s identity like DNS. IPsec
between X and PS has already been estab-
lished at the bootstrap sequence. Sec-
ond, X acquires a service ticket for KINK
with Y, e.g. TICKET(KINK w/Y), from
KDC. Third, IPsec is established between X
and Y after exchanging KINK messages.
Then the devices can exchange application

messages which are protected by IPsec.

3.4 Prototype System

‘We implemented the model to examine its prac-
ticability, i.e. object code size and performance,
experimentally. Table 3.1 shows the specifications
of an experimentally prototyped device, whose
CPU is H8/3029 (Renesas Technology Corp.),
which has cryptographic hardware in a Xilinx’s
FPGA. Renesas’s H8 family is a popular low-end
CPU in Japan'2. Table 3.2 shows the specifica-

tions of servers which were used for the system.

12 http://www.assoc.tron.org/jpn/research/data/survey2003J.pdf

17

P ROJETCT

Og=OO00000000 Owde

t

reepor

P R OJETZCT 2 0 0 5 a nnu a

E

D

e] 20 O0OO0ODODOOOOOIPO

Table 3.1. The spec. of the device

H/W H8/3029@20 MHz, Crypto H/W@20 MHz

(3DES, MD5)

0Os, IP uC/OS-1I w/ Original IP stack

IPsec ESP (3DES-CBC, HMAC-MD5)

Kerberos MIT-1.2.4 based (etype: des-cbc-mdb)

KINK draft-ietf-kink-kink-06 based

Table 3.2. The spec. of servers

DHCP CPU: pentium-111@1.2 GHz,
MEM: 128 MB, OS: freebsd4.10R

NTP, KDC CPU: pentium-111Q750 Mhz,
MEM: 896 MB, OS: linux2.6.8,
Kerberos: Heimdal-0.6.2, KINK: racoon2

PS CPU: celeron@1.7 GHz, MEM: 1 GB,

OS: linux2.6.8.1

3.4.1 Object Code Size

Table 3.3 shows the code size of the device. The
total size will be 20 K bytes greater if the cryp-
tography, i.e. 3DES and MD5, is implemented by

software instead of hardware.

Table 3.3. Object code size of the device
(K bytes)

Module Size ‘ Module Size

0S 50 | Kerberos 166
IP (v4/v6) 126 | KINK 50
IPsec 8 | Crypto 2
App 16
| total 419

3.4.2 Performance of the Bootstrap Sequence

Table 3.4 shows processing time of each function
on the device, whose conditions are with and with-
out cryptographic hardware. The values without
parentheses mean net processing times, and the
values in parentheses mean waiting times from
sending a request til receiving a reply. KINK;
and KINKpr mean the processing of KINK ini-
tiator and responder. PSpyr,ipsec means PS’s
PUT transaction of a client side which is for reg-
istering device’s IP address and includes the over-

head of IPsec ESP. PS¢ EeT, 1psec means PS’s GET

18

transaction of a client side which is for getting
device’s boot data (512bytes) and includes the
overhead of IPsec ESP. The waiting times of
KINK/, i.e. the values in parentheses, are var-
ied because they depend upon the performance
of a peer. The waiting time 112 msec occurs
where a device initiates KINK with PS. The wait-
ing time 213 msec occurs where a device initi-
ates KINK with another device which has cryp-
tographic hardware. The waiting time 421 msec
occurs where a device initiates KINK with another
device which does not have cryptographic hard-
ware.

Those values exclude the processing time of
IP address configurations, i.e. DHCP in IPv4 or
RFC2462 in IPv6, and L2 address resolution,
i.e. ARP (Address Resolution Protocol) in IPv4
or ND (Neighbor Discovery) in IPv6.

The bootstrap sequence described in Sec-
tion 3.2.3 require the following functions: KDC,
NTP, TGT, two TGSs, PSDxre_priv, KINKy,
PSpur, ipsec and PSger, ipsec (see Figure 3.2
through Figure 3.5). Figure 3.7 shows the pro-
cessing time of the sequence. The values without
parentheses mean net processing times and The

values in parentheses mean waiting times.

W I D E P ROJETCT

Table 3.4. Processing time of each function on the device (msec)

crypto H/'W w/ w/o
KDCD 349 (0.5) 349 (0.5)
NTP 27 (0.5) 27 (0.5)
TGT 74 (23) 106 (23)
TGS 195 (24) 204 (24)
PSDkrB_PRIV 239 (2) 373 (2)
KINK; 263 (112 or 213) 465 (112 or 421)
KINK 213 (0) 421 (0)
PSpur, 1psec 40 (13) 164 (13)
PSGET, ipsec 51 (17) 362 (17)

Device X DHCP server NTP server KDC PS server
Advertising info. of KDC & NTP
—

Adjusting the [clock
—_—

Authenticating KDC w/ TGT

Discovering RS @Protected by KRB PRIV
)

Registering oyn info. and getting boot info. | g§)Protected by IPsec
1.}

1403+(216) msec (w/ crypto HW)
2404+(216) msec (wlo crypto H/W)

Fig. 3.7. Performance of the Bootstrap

Sequence

3.4.3 Performance of the Device-to-Device
Communication

As described in Section 3.2.4, the device-
to-device communication has the overhead (see
Figure 3.6). If the device is an initiator of the com-
munication, the overhead is PSger, rpsec, TGS
and KINK;. If the device is a responder of the
communication, it is only KINKz. Once IPsec is
established between devices, the performance of
IPsec is one of major factors.

Figure 3.8 shows the overhead and IPsec’s

throughput. The values without parentheses
2
£%
£ £ Device X PS server KDC Device Y ..
2 o |(initiator) (responder) | & -
'§§ H PS_GET ° ; H
= o
5 2 H PS_ACK @Pro(ected by IPsec 22 ‘é
EiE KRB_TGS_REQ £ % 5
—_— o
B29 KRB_TGS_REP 33
29s £9¢
ctg KINK_CREATE £33
[3 EE
3% 3 KINK_REPLY S r
o
é LES App A Protected by IPsec £ P
o\

IPsec ESP outbound throughput:
208k bytes/sec (w/ crypto H/W), 3.33k bytes/sec (w/o crypto H/W)

Fig. 3.8. Performance of Device-to-device com-

munication

mean net processing times and the values in
parentheses mean waiting times. The throughput
of IPsec ESP inbound is omitted because both

performances are nearly the same.

3.5 Considerations
3.5.1 Object Code Size
The size 400 K bytes (see Table 3.3) is not small

enough for small embedded devices. For example,
there is not enough room for application programs
if using internal 512 KB FLASH ROM of H8/2029
only. IP stack and Kerberos occupies 30% and
40% of the entire code. Hardwired functions can
improve the size. One of the popular examples is
iReady’s Ethernet MAX, which is the hardwired
IP stack. It is a further study item to shrink the

object code size.

3.5.2 Performance of the Bootstrap Sequence

The sequence takes 1619 msec or 2620 msec
with or without cryptographic hardware (see
Figure 3.7). It will usually take one or sev-
eral days to start the entire system if the sys-
tem is a large one because of starting subsys-
tem by subsystem for making sure. If assuming
to start a system described in Section 3.1 with
device-by-device manner, i.e. seventeen thousand
devices, within 24 hours, every device will have
to start within 5 seconds. The actual margin is
longer than the above time because of starting
a system in a subsystem-by subsystem manner

instead of device-by-device usually. Therefore, the

19

Og=OO00000000 Owde

t

reepor

P R OJETZCT 2 0 0 5 a nnu a

E

D

e] 20 O0OO0ODODOOOOOIPO

performances of the sequence can be acceptable.

We may have to consider for burst accesses to
servers if the system has a large number of devices.
For the device side, randomly delayed bootstrap
can be a solution. However, the necessity and the
validity are future study items. For server side,
redundancy can be a solution, i.e. the redundan-
cies of KDCs and PSs. It is not difficult to make
KDC redundant[156]. But it is a further study
item for PS.

3.5.3 Performance of Device-to-Device
Communication

The overhead of the initiator takes 747 msec or
1566 msec with or without cryptographic hard-
ware (see Figure 3.8). The overhead happens
when both the device starts and the lifetime
of Kerberos’s tickets or IPsec SAs is expired.
The former case can be acceptable with the rea-
sons in Section 3.5.2. The latter case should
be considered because the response time of BA
or PA system should usually be on the hundred
micro-second order. However, the overhead can
be acceptable if the lifetimes are long enough,
e.g. days, weeks or months, and are tuned opera-
tionally. The overhead of the responder can also
be acceptable because it is shorter than the ini-
tiator’s one.

As an example of IPsec’s throughput, the pro-
cessing time for 1024 bytes payload takes 5 msec
or 307 msec with or without cryptographic hard-
ware (see Figure 3.8). Considering the response
time, i.e. the hundred micro-second order, the for-
mer case is fast enough, but the latter is not. The
performance can be improved with AES instead
of 3DES if the device cannot introduce crypto-

graphic hardware.

3.6 Related Work
UPnP'® (Universal Plug and Play)[286] is also

a framework of device’s auto-configuration. UPnP
covers not only devices in home networks but

also ones in buildings, e.g. HVAC (Heating,

Ventilating and Air-Conditioning), temperature
sensors or lighting.

UPnP uses SOAP (Simple Object Access Pro-
tocol), HT'TP and TCP for control messages and
GENA (General Event Notification Architecture),
HTTP and TCP for notification messages whereas
existing control networks usually use UDP for
those purposes. It means that they will have to
be changed if introducing UPnP. Therefore, the
goal of UPnP is different from our proposed model
because one of our goals is to minimize the impact
on them when introducing an auto-configuration
mechanism.

Public key cryptography is mandated for UPnP.
So UPnP’s applicability to devices is also different

from our proposed model.

3.7 Conclusion

Through implementing the model experimen-
tally, this paper shows the practicability of our
proposed model which is intended to solve the
issues, i.e. security and configuration complexity,
while satisfying the restrictions, i.e. small embed-
ded devices, isolated networks, private name
space/naming system and inheriting the property.
Secure bootstrap sequence and device-to-device
communication using the chain of trust are the
points of the model.

The object code size of the prototyped device
is not small enough for small embedded devices.
It is a further study item to shrink the
size. The device’s performance of the bootstrap
sequence and device-to-device communication can
be acceptable if the lifetimes of Kerberos’s
ticket and IPsec SAs are turned operationally,
and if cryptography is implemented reasonably,
i.e. cryptographic hardware or faster algorithm
than 3DES in software. It is a further study item

to make servers redundant.

13 UPnP is a trademark of the UPnP Implementers Corporation.

20

040 00O

TACAOOODOODOOOOODOODOOODOOOO
00000000000 BootstrapO OO OOOO
O0oo0o0oooooOoooooooooooodg
00000 KerberosOO OO IPSECOOOODODO
00 KINKOOOOIETF KINKOOODOOOOO
goobogoooobooon

0000000000 Kerberized Internet Negoti-
ation of KeysO KINKO—draft-ietf-kink-kink-
1.txt0 000000000000 0000000
Last Call 0 0 O 0O 0O Proposed Standard 0 0 0 O
00000opooOooORFCOOOODOOOOOOOO

D

E

P ROJETCT

21

Og=OO00000000 Owde

