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0 30 An implementation of a hierarchical IP

traceback architecture

Abstract

The IP traceback technique detects sources of
attack nodes and the paths traversed by anony-
mous DDoS (Distributed Denial of Service) flows
with spoofed source addresses. We propose a hier-
archical IP traceback architecture, which decom-
poses the Internet-wide traceback procedure into
inter-domain traceback and intradomain trace-
back. Our proposed method is different from
existing approaches in that our method is inde-
pendent from a single IP traceback mechanism,
and domain decomposition is based on existing
operational models of the Internet. Moreover, it
has the capability of being used for not only the
IPv4 network, but also the IPv6 network.

3.1 Introduction

Distributed Denial of Service (DDoS) attacks

are one of the threats on the Internet. In DDoS
attacks, the attack nodes are widely set up in the
Internet, and transmit a large number of packets
to the victim’s node. These packets consume net-
work resources and server resources, and obstruct
network services like World-Wide-Web in the vic-
tim’s node. In order to keep this damage to a min-
imum, the technology that identifies attack nodes
and the paths of attack packets is required to be
as fast as possible.

However, the source address of the IP packet
for DDoS attack is spoofed to a random address.
Therefore, investigating an attack node using
TRACEROUTE, which depends on a source
address, is not effective. For this reason, track-
ing the attack flow is done by hand using a fil-
tering function, a DDoS attack detection func-
tion, (which each router has), etc. The Inter-
net, as an international communications infras-

tructure, is constructed by various organizations

W I D E

Attack Flow
A

\\/

\ / Attack Node

Attack Path V : Victim Node

Fig. 3.1. IP traceback: detecting attack flows

connecting each other with various policies, such
as ISPs, companies, research institutes, universi-
ties, etc. When tracking attack flows, a lot of time
is wasted getting cooperation between organiza-
tions on attack paths. Tracking by hand is a big
barrier to the reduction of time. IP traceback
methods are proposed as solution to this issue.
IP traceback detects the attack paths as shown in
Fig. 3.1 and specifies the true origin of an attack
flow with a spoofed source address.

In this chapter, we propose a hierarchical
IP traceback architecture, which decomposes
Internet-wide traceback procedure into inter-
domain traceback and intradomain traceback.
Our proposed method is different from existing
approaches in that our method is independent
from single IP traceback mechanisms, and domain
decomposition is based on the existing operational
model of the Internet.

The rest of this chapter is organized as follows:
In section 3.2, we describe related work. Sec-
tion 3.3 outlines our proposed technique. In Sec-
tion 3.4 we describe the implementation of our
proposal. Finally, we summarize our findings and

future work in Section 3.5.

3.2 Related work

We briefly introduce three typical proposed
methods for IP traceback.

3.2.1 Link testing method

This method specifies the IP address of a router
that forwards the attack flow by the filtering func-
tion and the monitoring function in the router.
The attack path is clarified by repeating the
search from the victim’s node to the attacker

node on each router. Additional equipment and
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materials for the traceback are not required. How-
ever, this method can traceback only while the
victim’s node is under DDoS attack and the attack

flow is active on the Internet.

3.2.2 Hash-based method

Snoeren et al [265] have proposed this method.
Every router logs all transmission packets into
storage with a hash function for compression of
data. This method has a high capability for locat-
ing the attacking host. However, this method
requires 0.1% of interface bandwidth on each
interface for recoding. Large amounts of cost
and hardware infrastructure are required to store

recoding data.

3.2.3 Passive detection method

This method was proposed by Bellovin[12].
Every router sends the router’s information, that
is, IP address, MAC address, next hop router’s
IP address and so on into the passive detection
packet. The victim hosts can identify the attack
path by collecting these packets. Installation cost
is low because this method does not require the
storage area of the packet and the processing of
each packet. However, the passive detection pack-

ets increase traffic on the Internet.

3.2.4 IP traceback difficulty over the
Internet

In this section, we describe the analytical result
of the existing IP traceback methods and the rea-
son it is difficult to operate IP traceback over the
Internet. We believe two issues exist to implement
IP traceback on the Internet,
1. Organizations connected with the Internet as
Autonomous System (AS) does the management
and operation independently for each AS. There-
fore, emergency action for traceback requires the
cooperation between two or more AS over a large
amount of time.
2. We expect the attacker to analyze the
weak points of current IP traceback meth-

ods and develop anti-IP traceback attacks as
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a countermeasure.

From the two points above, we know that it
is difficult to use only one kind of IP traceback
method for the Internet. This chapter proposes
the operational architecture of an IP traceback
method that can solve these issues.

On designing the architecture, we modeled our
method after the routing architecture in the Inter-
net. The Internet is not operated with one routing
protocol to manage the network routing tables. It
is a hierarchy of EGP (Exterior Gateway Proto-
col) and IGP (Interior Gateway Protocol) accord-
ing to the scale of the network. EGP is used for
routing between ASes. In the EGP operation, the
routing information has been exchanged through
interconnections based on the agreement between
ASes. Applying the mechanism of the above-
mentioned path control to the traceback mecha-
nism was attempted. This is “Hierarchical Archi-
tecture for IP traceback” is based on the idea of

“Hierarchy” in the routing system.

3.3 Hierarchical architecture for IP

traceback

The proposed architecture is made up of a con-
struct with three components: elP traceback, iIP
traceback, and I'TM network. Each control area
of eIP and ilP traceback is the same as each con-
trol area of EGP and IGP, which are the routing
control protocols shown in Fig. 3.2. ITM net-
work is used for the association of eIP and ilP.
We describe the purpose of each component as
follows:

By definition, “Exterior IP (eIP) traceback

@ AS N,
---- EGP

ilP Traceback

™

™ [
\
ilP Traceback iIP Traceback

ASN, AS Ng

ITM : IP Traceback Manager

Fig. 3.2. Hierarchical architecture for IP trace-

back



architecture” designates each AS that the attack
flow passed. elP traceback should have the capa-
bility for finding attack paths within 30 minutes.
It has been shown that the initial attacking stage
ends within 30 minutes, according to the report of
CAIDA[CAIDA]. However, in existing research,
there is no IP traceback method known that can
specify each AS that the attack flow passed. We
propose the “IP Option Traceback” for eIP trace-
back and describe it in section 3.3.1.

“Interior IP(iIP) traceback architecture” desig-
nates the router’s IP address that the attack flow
has passed in the AS. We researched an existing
IP traceback and defined 3 parameters that are
needed to make relationships between elP and ilP.
These are the packet dumps of the attack flow, the
timestamp, and the recording node (AS/IP). In
this chapter, we only discuss how to use modified
IP traceback as ilP traceback. The technologies
of each existing IP traceback are not discussed.

The “IP traceback Manager (ITM)” that exists
on each AS exchanges information for the eIP /iIP
traceback operation. ITMs are connected with
each other and use ITM Protocol (ITMP).

The IP traceback process using this proposed
technique is described as follows:

1. Victim’s administrator requests a countermea-
sure to the attack flow to the administrator on
a connected network (AS). The administrator of
the AS does the monitoring and records the attack
flow to the victim’s node.

2. elP traceback, in cooperation with ITM net-
work, calculates the attack path of ASes that the
attack flow passed by using this record.

3. ASes in the attack path executes the counter-
measure: filtering and bandwidth shaping of the
attack flow for easing immediate damage at the
victim’s site.

4. iIP traceback is executed on each AS in which
the attack node has specified the true IP address
of the attack node.

5. The DoS attack ends because the attack node
is shut off from the network.

Each AS can select a different method of IP

W I D E

traceback because ilP traceback can be executed
independently in each AS. We can switch to
another method when vulnerability of an IP trace-

back that is in operation has been discovered.

3.3.1 IP option traceback

We propose “IP option traceback (IP-OPT)” as
elP traceback that uses the IP option header of
IPv4 and the destination option header of IPv6.
We considered the influence of Internet traffic in
the passive detection packet that used the IP
option. We make a mathematical model and ana-
lyze our “IP Option traceback.” For more details,
please refer to [217, 219, 254]. In this chapter, the
outline of IP-OPT is described.

IP-OPT has two components, TOG (Traceback
Option Generator) and Packet Monitor (PM).
TOG generates the IP traceback option packet
constructed with information to construct the
attack path by the passive detection method.
Also, TOG constructs the attack path from the
tracing packets.

PM is set up on each BGP area border router
on the AS, and has the following two functions:

Packet selection: The packet output from the
interface on the router is selected at probability P,
and the copy of the selected packet is recorded.

Cooperation with TOG: PM receives and uses
probability P from TOG and sends the selected
packet to TOG.

Next, the function of TOG is described. TOG
is constructed with the following function.

1. Generation of the IP traceback option: TOG
generates [P traceback option from the selected
packet and the parameter (AS number and HASH
information), and sends it.

2. The option management: TOG generates the
“AS message key X” and “key identification num-
ber Z”, and stores them.

3. The association of PM: TOG sends probabil-
ity P to each PM and receives selected packets
from each PM.

4. Verification of packet: TOG verifies the HMAC
certified data and constructs of the attack path.

261

P ROJETCT

OZOe

OO0O0O00OOoOOoOooOooOOooOOoOoOO ge

s




t

reepor

P R OJETZCT 2 0 0 3 a nnu a

E

D

e 1190 IPOOOOOOOOODOOOOOOOO

5. The association between ITMs: For construc-
tion of the attack path, TOG exchanges an attack
path or IP options with neighboring TOGs via the
ITM network. The TOG requests the execution of
ilP traceback at each AS including attack nodes
via the I'TM network.

The traceback information that TOG generates
from parameters is recorded in the “IP destina-
tion option header” for IPv6 and the “IP option
header” for IPv4[54, 231]. It has the following
parameters:

HMAC tag number (16bit): An HMAC algo-
rithm identifier used in HMAC (Keyed-Hash Mes-
sage Authentication Code)[162].

Key identification number (64 bit): This is the
Key identification number Z to AS message key X
that is used with HMAC.

MAC data (algorithm dependence and variable-
length): HMAC authentication data H generated
from message key X to AS number and AS.

When we construct attack paths, the victim
records the IP options O from attack flows. Each
AS’s TOG verifies the AS’s MAC data HMAC as,
which is calculated from the AS message key X,
and identification number Z, and MAC data in O.
We find out the attack path from the concentra-
tion of ASes that are verified O.

3.3.2 ITM and module API

This section describes ITM and ITMP that are
used to exchange data between ITMs. ITM net-
work is constructed with a peering connection of
ITM to neighboring ITMs as well as the peering of
EGP (Fig. 3.3). Thus, the ITM network topology
is the same as the AS network topology.

ITMP has an authentication phase and a con-
nected phase. The authentication phase authen-
ticates ITM and exchanges neighbor information
(AS number), supporting eIP /iIP traceback under
neighbor ASes, and so on. After the authen-
tication phase, comes the connected phase. In
the connected phase, each eIP/iIP traceback can
transmit data to each other.

In our implementation, elP and ilP traceback
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<@g BGP Peering
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Fig. 3.3. ITM network : interconnection
between I'TMs
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ITM API ITM API \
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IT™ iIp iIp IT™
Tracebackl Traceback2

Fig. 3.4. Structure of ITM

systems under AS are connected with ITM
through ITM API (Fig. 3.4). We define ITM API
from the analysis of the existing implementations,
PAFFTI as iIP traceback and IP-OPT as eIP trace-
back. PAFFI, developed by Yokogawa Electric is
based on Hash-based IP traceback and uses NP
(Network Processor). ITM API is the access to
information of neighboring ITM (kind of the AS
number, the connectivity, the state, and the sup-
ported IP traceback), the data transfers between
modules of neighboring I'TMs, and status reports

of each module.

3.4 Feasibility of deployment

In the achievement of this proposal, I'TM oper-
ation is required in core AS groups that CAIDA
selects from the operation result of Skitter[201].

The authors believe that the feasibility of the
ITM network is high. ISPs should do the coun-
termeasure to Denial of Service attack as soon as
possible because it results in the least amount of
damage that the guest receives.

However, ISPs now use link inspection methods
for IP traceback. The cost for this is high and the
ISP is spending a lot of money, time and human
resources, to stop attack flows. This proposal can

reduce the cost because ITM automates the coop-



eration between ASes. Moreover, each AS can
select a technique of IP traceback depending on
the operation scale and budget of ISP. Therefore,
the feasibility of the I'TM network is high because
there is the advantage that the AS operates ITM.

3.5 Conclusion and future work

We proposed a hierarchical IP traceback archi-
tecture and described the feasibility of this pro-
posal on the Internet. The IP traceback technol-
ogy is designed as one of the countermeasures to
the DDoS attack. However, IP traceback requires
the cooperation between two or more ASes over
a long period of time. The attacker can then
analyze the weak points of the countermeasure
for developing an anti-IP traceback attack. We
believe that it is difficult to use only one kind of
IP traceback method for the Internet.

This proposal was split into elP traceback and
ilP traceback according to the relation between
EGP and IGP in the routing control architecture.
elP traceback detects ASes that the attack flow
has passed. iIP traceback detects the router’s
IP address passed by the attack flow. We
described an implementation architecture for “IP
option traceback” that was proposed as elP trace-
back. We investigated existing IP traceback and
described implementation architecture of the I'TM
network which was used to make an association
between elP and ilP traceback.

We plan to brush up our implementation and
carry out experiments on StarBED[282] which has
500 physical nodes (5000 VM-simulated node) and
is a fully programmable Internet simulator. We
will then present the experimental results of this

simulation.

0 40 A Layer-2 Extension to Hash-based IP

Traceback

4.1 Introduction

Distributed Denial of Service attacks (DDoS

W I D E

attacks) are widely reported on the Internet, and
the damage caused by these attacks is becom-
ing more serious day by day. DDoS attacks
overwhelm networks and server systems with an
onslaught of data, until they cannot be used. An
attack is the result of multiple data flows from
thousands of attacker nodes distributed widely on
the Internet. To terminate a DDoS attack, all
attacker nodes must be detected and isolated.

Unfortunately, the anonymous nature of the IP
protocol makes it difficult to accurately identify
the IP address of an attacker node, if the attacker
wishes to conceal it. IP traceback is one of the
techniques used to identify the true source of an
attack by reconstructing the path of the attacking
flow.

Our research group has proposed a hierarchical
architecture of IP traceback[218], which is com-
posed of two parts: interdomain IP traceback
and intradomain IP traceback. Interdomain IP
traceback identifies an Autonomous System (AS)
from which the attacking flow has come, whereas,
intradomain IP traceback detects the attacker
node inside an AS.

Essentially, the amount of the attacking flow
traffic around an attacker node is smaller than
that around a victim node. Intradomain IP trace-
back must detect an attacker node from a small
amount of traffic generated by attacking flows.

Hash-based IP traceback|265] is able to trace
a single packet. In this technique, each router
audits all packets forwarded, and stores packet
digests instead of the packets themselves. Packet
digests are stored in digest tables, which are
bitmaps based on a space- and time-efficient data
structure known as a Bloom filter[15]. Digest
tables reduce the required storage size by several
orders of magnitude over current log-based tech-
niques[249]. To trace an attacking packet, the
attack path is reconstructed by checking digest
tables on each router. Hash-based IP traceback
is suitable for identifying an attacker on intrado-
main networks because of its ability to trace a sin-

gle packet.
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An attack path determined by hash-based IP
traceback indicates the ingress point of an attack-
ing packet. However, the ingress point is the near-
est router of the attacker node on a network, not
the attacker node itself, because of limitations of
the algorithm used to store packet digests. The
technique thus cannot identify the attacker node
itself on the subnet.

In this chapter, we propose a layer-2 extension
to hash-based IP traceback. To narrow down the
existence range of an attacker node, and eventu-
ally to detect the attacker node itself, the attack-
ing packet has to be traced on the layer-2 (L2) net-
work under the ingress point router. In our exten-
sion, leaf routers on the intradomain network store
L2 information corresponding to a packet digest.
If an attacking packet passes through an 1.2
switch, the recorded L2 information distinguishes
the ingress port of the packet on the switch. How-
ever, holding .2 information with one-to-one cor-
respondence to a packet digest requires a large
amount of storage space.

To reduce storage requirements, two different
digest tables are provided. One is an L3 digest
table which stores packet digests themselves, and
the other is an L2 digest table which records
L2 information corresponding to packet digests.
These tables permit cooperation between layer-3
(IP) traceback and layer-2 traceback, and enable
more detailed tracing of attacker nodes.

The rest of this chapter is organized as fol-
lows: In Section 4.2, we describe related work.
Section 4.3 describes our proposed extension to
hash-based IP traceback. We discuss the issues
involved in the implementation of our extension
in Section 4.4. Finally, we conclude our proposal

and mention future work in Section 4.6.

4.2 Related Work
4.2.1 Intradomain IP Traceback on a Hier-

archical Architecture
Intradomain IP traceback is a part of a hierar-
chical architecture for IP traceback [218]. The aim

of intradomain IP traceback is to detect attacker
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nodes themselves inside an AS. The intradomain
IP traceback process starts when a request from
a victim AS for tracing is received via interdomain
IP traceback.

Techniques for intradomain IP traceback should
be able to trace attacker nodes even when the size
of the attacking flow is small, because the traf-
fic of attacking flows around an attacker node is
usually smaller than the traffic of attacking flows
around the victim node. Therefore, probabilis-
tic techniques such as iTrace[13] or the mark-
ing approach[253] are not suitable for intrado-
main [P traceback because they are based on large
amounts of traffic generated by a DDoS attack.

Furthermore, an effective technique for intrado-
main [P traceback should have the ability to trace
attacker nodes even if the request comes from the
victim AS after the initial stage of a DDoS attack
has finished and the attack has become latent;
hence, the link-testing method such as Center-
Track [272], specifying the attacking flow by fil-
tering functions or monitoring functions on each
router, is not sufficient for intradomain IP trace-
back because such methods are useful only while

the attacking flows are flooding the Internet.

4.2.2 Hash-Based IP Traceback

Snoeren et al.[265] have proposed hash-based
IP traceback and Source Path Isolation Engine
(SPIE) architecture, which is an implementation
of hash-based IP traceback. SPIE uses auditing
techniques to support the traceback of individual
packets, while reducing the storage requirements
by several orders of magnitude over current log-
based techniques[249].

In SPIE architecture, a Data Generation Agent
(DGA) on each router stores packet digests, which
are 32-bit hash values, instead of packets them-
selves. An input value for hash functions to make
packet digests, here called the packet signature,
is a masked IP header plus the first 8 bytes of
payload (Fig. 4.1). A packet signature uniquely
represents an IP packet and enables the identifi-

cation of the packet across hops in the forwarding



path.

To reduce storage requirements, the DGA stores
sets of packet digests in a space-efficient data
structure known as a Bloom filter[15]. The Bloom
filter computes k distinct packet digests for each
packet, using independent uniform hash functions,
and stores the n-bit results as indices in a digest
table, a 2"-sized bit array constructed by the
Bloom filter. The bit array of a digest table is
initialized to all zeros, and bits are set to one as
packets are received. Fig. 4.2 shows a Bloom fil-
ter with k functions. A digest table is dispatched
when it is full or when a certain time interval
for refreshing hash functions (refreshing time) is
reached. The dispatched digest table is stored in
a ring buffer on the router, with a time stamp and
a set of used hash functions. To avoid hash col-
lisions, each router selects a new set of k distinct
hash functions at the refreshing time.

The traceback process starts at the 1-hop upper
router of a victim node. First, the DGA on
a SPIE-enhanced router computes the k hash

digests on the packet in question and checks the

. {Header| .
VersmnILength E’I’yp of ﬁergvzl_ce Total Length
Identification b 2‘ Fragment Offset

Source Address

Destination Address

Payload

Fig. 4.1. Packet Signature
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indicated bit positions of the appropriate digest
table. If any one of them is zero, the packet was
not forwarded by the router. However, if all the
bits are one, it is highly likely that the packet
passed through the router. When it appears that
the router forwarded the suspected packet, neigh-
bor routers’ digest tables are then tested. This
process continues until all branches of the attack
graph are checked. Fig. 4.3 shows an example
of this traceback processing. Tracing proceeds
from R; (the victim’s neighbor router) towards
the attacker node, A. Black arrows represent the
path of the attacking packet, and gray arrows
represent the reconstructed attack graph, respec-
tively. The ingress point of the attack is Rio, this
is the nearest router to the attacker A. When an
attacker node is in the SPIE-enabled network, the
ingress point of an attacking packet is a leaf router
within the network. Otherwise, a border router of
the SPIE-enabled network is the ingress point of
the attack.

The false positive rate of a digest is given by
several parameters. When a Bloom filter takes
m bits of memory, which can store n packets, the
effective false-positive rate with k digest functions

can be expressed as

(i ) e

Tables are available which provide the effective
false-positive rates for various capacities and the
number of digesting functions[79]. The size of
a Bloom filter is defined by a capacity factor ¢ (=

m/n); that is, to store n packets requires a Bloom

| Hi(P)

\ H(P)

2"bits

Hk(P)

| n bits

Fig. 4.2.

Bloom Filter
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Fig. 4.3. SPIE traceback process

filter of size m = cn. If a 2M byte (= 2%* bit)-
sized digest table is taken with a capacity factor of
five), it can store roughly 3.2M packets. Consid-
ering the trade-off between the false positive rate
and the storage requirements, Snoeren et al.[265]
have proposed using a Bloom filter with three
digesting functions (k = 3) and a capacity factor
of five (¢ =5) in practice. In this case, assum-
ing the average size of a packet is approximately
1000 bits, SPIE requires roughly 0.5% of the total
link capacity in digest table storage with a rate of

0.092 false positives.

4.2.3 Limitations of Hash-Based IP
Traceback

The ingress point detected by SPIE is either
a border router of the SPIE system or the leaf
router which has the attacker node on its subnet,
not the attacker node itself. Examining digest
tables of a leaf router never reveals which node
on a subnet is the attacker node, because a digest
table shows only whether or not the router for-
warded the packet in question.

Specifying only an ingress point leaf router is
not sufficient to stop a DDoS attack. Filtering,

based on the destination (victim’s) IP address,
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TCP ports, and so on, blocks not only attacking
packets but also packets sent from other (normal)
nodes; hence, such filtering denies other nodes’
communications or services. Leaving attacker
nodes on subnets permits later DDoS attacks. To
terminate current attacking flows from a network
without blocking other nodes’ communications,
and to prevent other DDoS attacks in the future,
attacker nodes themselves must be discovered and
physically removed from the network.

Tracing attacking packets on an L2 network,
however, is difficult. If the subnet under the
leaf router is widely spread, as in an xDSL net-
work or in a Metro-ether network, it requires
human resources and a lot of time to identify
the attacker node and remove it from the sub-
net network. Therefore, to identify the attacker
node itself, some method is required to trace the
attacker node on the subnet L2 network under the
leaf router.

Theoretically, if hash checkers like DGA are set
against all nodes on a subnet, they can identify the
true attacker node. However, from an operational
point of view, this is not a realistic approach.

In this chapter, we propose a layer-2 extension

of SPIE which narrows down the existence range



of an attacker node on a subnet L2 network, while
reducing other storage requirements for the exten-

sion.

4.3 A Layer-2 Extension to Hash-based IP
Traceback

4.3.1 Limitations of tracing based on MAC
Address

Each Network Interface Card (NIC) has a glob-

ally unique address, the Media Access Control
(MAC) address, in which the upper 24 bits com-
prise the vendor code and the lower 24 bits com-
prise an address assigned by the vendor. IEEE,
the official global authority, is responsible for
handing out blocks of MAC addresses. On Ether-
net networks, which constitute today’s local area
networks, a packet is forwarded on the basis of
MAC addresses.

The source MAC address of an incoming packet
is available for tracing the attacker node on
the subnet of a leaf router. The source MAC
address of an incoming packet is the MAC address
assigned to the device of the sender node. More-
over, a switch maintains a database of all MAC
addresses received on all of its ports, and uses
database entries to decide whether a packet frame
should be forwarded or filtered. This database is
called an L2 forwarding database (FDB).

Each FDB entry consists of the MAC address
of the device, an identifier for the port on which
it was received, and an identifier for the VLAN to
which the device belongs. The switch can learn
FDB entries; that is, the system of the switch
updates its FDB with the source MAC address
from a packet, the VLAN, and the port identifier
on which the source packet is received. Looking
up the FDB on a switch tells us the port on which
a source MAC address has been learned. Whether
or not a source MAC address is spoofed, the
FDB temporarily records the source MAC address
paired with the incoming port. By searching the
port which learned the source MAC address of
an attacking packet, and tracing switches hop-by-

hop, we can detect the location of the attacker

W I D E

node or the port to which the attacker node
directly connects.

However, large amounts of storage on the leaf
router are required to store source MAC addresses
which correspond to packet digests.

On the other hand, the FDB cannot learn more
than a certain number of MAC addresses, because
the available memory size for the FDB is lim-
ited. To prevent the FDB from becoming full,
the FDB has an “aging time”. Entries in the
FDB are removed (aged out) if, after a period of
time (the aging time), the device has not trans-
mitted. When an attacker spoofs the source MAC
address of an attacking packet, and the spoofed
MAC address has been “aged out” from the FDB,
there is no way to trace the attacker node by using
stored MAC addresses.

In our extension, instead of storing MAC
addresses themselves, we use two identifiers and
a forwarding database of the layer-2 (L2) switches
to trace the attacker node on an L2 network.
The two identifiers show the subnet on which an
attacker is located, and specify the incoming port
on a particular slot of the L2 switch that consti-

tutes the L2 network of the subnet.

4.3.2 Assumptions

Before describing the details of our extension
to hash-based IP traceback, we define several
assumptions:

e SPIE has detected an ingress point on the
intradomain network, that is, a leaf router;

e MAC addresses are used to resolve hosts on
subnets under the leaf router;

e All switches along the path from the
leaf router to the attacker node support
Bridge-MIB[52];

e The source IP address and the source MAC
address of a packet may be spoofed;

The first assumption is made because we use
SPIE to identify attacker nodes on an intrado-
main network, and because we focus on tracing
an attacker node on an L2 network after detect-

ing the leaf router by SPIE. The second and third
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assumptions reflect the fact that our extension
is based on MAC addresses and FDBs of L2
switches, and that it uses Bridge-MIB to obtain
FDBs from switches. Bridge-MIB is widely sup-
ported by today’s L2 switches. In the fourth
assumption, we anticipate the ability of an

attacker.

4.3.3 Identifiers

We use two identifiers instead of storing MAC
addresses. Using two conversion tables, we detect
the port of a switch through which the attacking
packet entered. The two identifiers are as follows:

o NI-ID (8bit): a network identifier assigned to

either the MAC address of a network interface
on a leaf router, or the VLAN ID of a virtual
interface if the leaf router uses VLAN inter-
faces.

e Port-ID (12b:t): a port identifier assigned to

a port of a switch. Each port has a different
Port-ID.

A network interface identifier (NI-ID) is
assigned to each MAC address of the network
interface card. The NI-ID specifies which sub-
net an attacking packet comes from. Currently,
a router can equip 802.1Q VLAN interfaces, which
means that multiple virtual interfaces can be
used on one physical network interface. Although
VLAN interfaces, which share one physical inter-
face, have the same MAC address, each VLAN
interface has a different VLAN ID, so that a router
distinguishes VLAN interfaces by their VLAN IDs.
If a network interface is a VLAN interface, a NI-ID
is assigned to its VLAN ID instead of the MAC
address shared with another VLAN interface.

A port identifier (Port-ID) is assigned to a port
on a particular slot of an L2 switch through which
a leaf router directly connects. A Port-ID tells us
through which port of an L2 switch an attacking
packet came in.

A combination of an NI-ID and a Port-ID dis-
tinguishes a particular port from other ports if
several network interfaces of a leaf router connect

to the same L2 switch.
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An 8-bit NI-ID, expressed in the range from 0
to 255, is sufficient to represent the network inter-
faces of a leaf router. A 12-bit Port-ID, whose
range is 0 to 4095, is sufficient to express all ports

of a current switch.

4.3.4 Conversion Tables

We use two conversion tables: the NI-ID table,
and the Port-MAC table.

A leaf router keeps an NI-ID table that is based
on the interface configuration. Each NI-ID table
entry consists of an NI-ID and the MAC address of
a network interface card assigned with the NI-ID.
If VLAN interfaces are used, then the entry in the
NI-ID table consists of an NI-ID and a VLAN ID.
Table 4.1 shows the NI-ID table of a leaf router
which uses VLAN interfaces on a physical inter-
face whose MAC address is “C”.

A Port-MAC table, constructed by the FDB
of an L2 switch that connects to the leaf router
directly, is used to obtain the Port-ID from the
source MAC address of a packet which enters the
leaf router via the L2 switch (Table 4.2). The
leaf router obtains the contents of the FDB via
Bridge-MIB[52]. Bridge-MIB is widely supported
by current switches. An entry in the Port-MAC
table is composed of a source MAC address and
a Port-ID. The source MAC address is that of the
incoming packet, and the Port-ID identifies the L2
switch’s port that has learned the source MAC

address. Recording Port-IDs instead of source

Table 4.1. NI-ID Table

NI-ID | MAC address | VLAN ID
1 A
2 B
3 C 101
4 C 102

Table 4.2. Port-MAC Table

NI-ID | Port-ID | MAC address
1 2 F
3 E
4 H
4 K
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- I
[ recording identifiers in L2DT procedure ]
receive an incoming frames
extract the source MAC address M
and the Destination MAC address My from a frame
extract the packet signature PS from an packet
refer to NI-ID table
for (number of entries on the NI-ID table){
extract an entry NE; from the NI-ID table
compare N FE;.ether_addr to My
if (NE; = Mg){
N;q = NE;.id
break the loop
}
}
refer to a Port MAC table assigned to the Nid
for (number of entries on the PortMAC table){
extract an entry PFE; from the PortMAC table
compare PFE;.ether_addr to Mg
if (PE; = Ms){
P,y = PE;.id
break the loop
}
}
make input values I by concatenating PS, N,4, and P;gq
compute hash values H(I); (1<i<k)
for (number of hash values){
search the bit indicated by H(I); on L2DT
if (the bit = 0){
set the bit to 1 (that is, store identifiers on L2DT)
} else {
hash collision occurs, increment counter of duplication
}
}
\_ _/

Fig. 4.4. Procedure to store identifiers in L2DT

MAC addresses, and specifying the incoming port
of L2 switches by recorded Port-IDs, enables us
to trace an attacking packet even when the source
MAC address has aged out from the FDB of an
L2 switch.

Port-MAC tables are generated for each NI-ID.
This indicates that an NI-ID and Port-ID pair
identifies the port in which the attacking packet
came, even if several network interfaces of a leaf
router connect to the same L2 switch. Table 4.2
shows the Port-MAC table paired with NI-ID “1”.
Two entries with the Port-ID “4” represent two
source MAC addresses (“H” and “K”) which have
been learned on the L2 switch port whose Port-1D

is “q”.

4.3.5 Algorithms of the Layer-2 Extension

For each incoming packet, extended DGA
(xDGA) on the leaf router searches identifiers
from conversion tables corresponding to an incom-
ing packet. To reduce memory requirements for
storage of detected identifiers corresponding to
the packet, xDGA uses an L2 digest table, another
Bloom filter for storing identifiers corresponding
to the packet. To use L2 digest tables, we provide
a storing algorithm and a detecting algorithm for
Bloom filters and for L2 digest tables. The for-
mer is to encode identifiers into L2 digest tables,
and the latter to decode identifiers from L2 digest
tables.
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[ extracting identifiers in L2DT procedure |

receive a suspected packet transferred from Traceback Manager

extract the pakcet signature PS from the suspected packet
check the time span through the suspected packet
on the leaf router
search appropriate time L2DTes from ring-buffer for L2DT
for (number of L2DT to test){
for (number of MAX_NIID_NUMBER){
for (number of MAX_PORTID NUMBER){
make a hash input I by concatnating P.S,
an NI-ID N;, and a Port-ID P;
for (each hash function (1 <1 < k)){
compute hash values H(I);
}
for (each hash value H(I);){
search the bit indicated by H(I); on L2DT
if (the bit = 0){
break the loop
} else if (all bits indicated by hash values are 1){
Nfina = Ni, Pfing = P;
write down Ng,q and Pfgpg in syslog
warn as finding the route of the suspected packet
show the incoming interface Ngq
and the port Pgpq
exit the procedure
}

}
if (all Port-ID has been tested){

break the loop
}

}
if (all NI-ID has been tested){

break the loop
}

}
if (all suspected L2DT has been checked ){

the suspected packet was not stored into any L2DT
log the warning message about failure of L2 traceback
exit the procedure

}
}
o J
Fig. 4.5. Procedure to check identifiers on L2DT

4.3.5.1 Algorithm for Storing Identifiers

Fig. 4.4 shows an algorithm to check identi-
fiers against each incoming packet and to store
detected identifiers in an L2 digest table.

For an incoming packet, xDGA extracts
source/destination MAC addresses from the
Ethernet frame, and pulls up the packet signature
from the packet. xDGA runs a process of stor-

ing packet signatures into L3 digest tables, while
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running a process to store identifiers in L2 digest
tables.

In the process to store identifiers, xDGA first
refers to the NI-ID table to search for an entry
whose MAC address is the same value as the
extracted destination MAC address of the packet,
and to get the NI-ID assigned to the detected
MAC address entry. Next, xDGA takes a Port-
MAC table corresponding to the NI-ID, and



checks entries which have the same MAC address
as the extracted source MAC address. If an entry
is detected, the Port-ID of the entry represents
the incoming port of the packet on an L2 switch.
If not, xDGA sets the Port-ID to the value of
NOT_FOUND_PORTID.

xDGA makes a hash input by concatenating
the packet signature and detected identifiers, and
computes hash values using hash functions for the
Bloom filter of an L2 digest table. The bit posi-
tions on the L2 digest table, which are indicated
by those hash values, are set to 1. This ensures
that the pair of identifiers is stored in the L2 digest
table corresponding to the packet.

4.3.5.2 Algorithm for Traceback Processing

The algorithm to derive two identifiers from L2
digest tables in the traceback process is shown in
Fig. 4.5.

When an xDGA leaf router receives a suspected
packet from the traceback manager STM, xDGA
first generates the packet signature from the sus-
pected packet. xDGA runs the IP traceback pro-
cess and L2 traceback process (process to detect
identifiers) in parallel. In the L2 traceback pro-
cess, xDGA pulls up L2 digest tables which have
time stamps indicating when the suspected packet
might have come through the leaf router, and
checks each L2 digest table to establish whether
it has a record of identifiers with the suspected
packet’s signature. The test of an L2 digest table
is as follows: xDGA chooses an NI-ID and Port-ID
pair, and generates a hash input to test the packet
signature of the suspected packet and the pair of
identifiers. Then, xDGA computes hash values of
each hash function, and examines each bit posi-
tion pointed by hash values on the L2 digest table.
If all the bits are 1, the ingress interface on the
leaf router and the ingress port on an L2 switch
are detected; that is, the suspected packet came
through the interface with the NI-ID and through
the L2 switch’s port with the Port-ID. If any
one of the bits is 0, the suspected packet was not

stored with the pair of identifiers. Then, xDGA

W I D E

generates hash values by another pair of identifiers
and checks the L2 digest table again. If all com-
binations of identifiers have been tested, but the
true pair could not be detected in any trial, the
suspected packet was not stored in the L2 digest
table. Then, if another L2 digest table is sus-
pected to record the packet signature in question,
xDGA tests it.

To reduce the storage requirements, xDGA
stores two identifiers in the L2 Bloom filter,
though the running time of our searching algo-
rithm is O(n?).

4.4 Implementation

We have implemented a PC-based prototype of
our proposed extension, based on an open source
code of hash-based IP traceback, spie-1.0.90[11],
on FreeBSD-4.3.

We have added two components in SPIE and
extended DGA to deal with L2 digest tables
(Fig. 4.6). Fdbgetter is an agent which fetches
FDB entries from L2 switches directly connected
to the leaf router via SNMP and makes conver-
sion tables. x_spiemem, a loadable kernel module,
converts MAC addresses of an incoming packet
to two identifiers and stores these identifiers in
an L2 digest table. The packet storing processes
by spiemem, which is a loadable kernel module
to record packet signatures for the purpose of IP
traceback, and the processes of recording identi-
fiers by x_spiemem are independent of each other.
Therefore, the Bloom filter’s parameters for L2
digest tables and L3 digest tables can be set inde-
pendently to achieve a different size or false posi-
tive rate.

For hash functions of L2 digest tables, we reuse
MD5, which SPIE computes for L3 digest tables.
Therefore, different hash functions are simulated
by a salt value seeded on the leaf router. The salt
values for L2 digest tables are generated indepen-
dently from the salt value for L3 digest tables.

xDGA on the leaf router checks L2 digest tables
while testing L3 digest tables for IP traceback in

parallel. The processes of examining L2 digest
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| [ Other SPIE Components ] I | [ Layer 2 Switch ]

(trace reply)| | ( trace request ) (SNMP Query )| | ( SNMP Reply )

IiDGA

Convert tables

< User Space >

< Kernel Space >

( L3 digest table)

( L2 digest tablfg

( capture )

X_spiemem
( capture )

[ Router ]

Packet

Fig. 4.6. Components of the Layer-2 extension of SPIE

tables do not affect processes of SPIE’s IP trace-
back because these processes are independent of
each other.

The information from L2 digest tables is signif-
icant for only the administrator of the leaf router
and should not be available to anyone else. There-
fore, xDGA records the result of checking the L2
digest table in a log file and, shows a warning
message on the standard output of the leaf router.
xDGA does not send the information of identifiers

to SCAR and/or STM.

4.5 Preliminary Evaluation

4.5.1 Memory Requirements

Our extension needs memory spaces for L2/L3
digest tables and for conversion tables. The
required memory space for L2 digest tables can
be characterized by the duration of record stor-
age and the accuracy of L.2 digest tables measured
by the number of false positives. Meanwhile, the
required memory space for L3 digest tables can
be determined by these parameters for L3 digest
tables. On the other hand, the required mem-
ory spaces for conversion tables are dominated by
the number of network interfaces of a leaf router
and affected by the sum of the number of FDB
entries fetched from L2 switches connected to the

leaf router.
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4.5.1.1 Memory requirements of the conver-
sion table

In our implementation, an entry in the NI-ID
table needs 16 bytes and an entry in a PortMAC
table requires 12 bytes. The total memory size
for conversion tables is dominated by the number
of NI-ID table and the sum of FDB entries on
each L2 switch. If a leaf router has three network
interfaces, and each interface aggregates a class C
(/24) subnet, the total memory size for conversion
tables is a maximum of 9192 bytes.

Consider the case when a leaf router connects
a BlackDiamond, which is a today’s High-end
Layer-2 switch developed by Extreme Networks.
A BlackDiamond can learn 256,000 entries on its
FDB. Therefore, a PortMAC table for a Black-
Diamond consumes a maximum of 3MB mem-
ory space. However, only rarely will the entry
space of an FDB be full; the average size of the
required memory for a PortMAC table will be

much smaller.

4.5.1.2 Memory requirements of the L2
digest table

The memory requirements for an L2 digest table

are the same as those for an L3 digest table. The

available memory size m with a capacity of stor-

ing n packets and a false positive rate P can be
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Table 4.3. Capacity of a Bloom filter

memory size max num of entries | average bit rate
8kB (2'° bit) 13,107 1 Mbps
128 kB (2%° bit) 209,715 20 Mbps
2MB (2% bit) 3,355,443 335 Mbps
32MB (22 bit) 53,687,091 5.3 Gbps
512 MB (232 bit) 858,993,459 8.5 Gbps

e N
xDGA
Router |
[Fastfron] | ., |
L VEANIOO VLANLOL
Attacker Net Victim Net
Traceback Net
[ layer-3 topology |
@‘ e-3 H e-5 ‘ ‘ e-7 H e9 H e-llH e-lS‘@@l DGA routerl
o D000 0000 0050
Fastiron] [0 [0 O] [0 0300 O (0 [0/ L]
[ e[| e |[eo ez erd[erff ] TrAPAKNE
7777773 @ Attacker Net
[ : Victim Net
: Traceback Net [layer-2 topology ]
N J

Fig. 4.7. Testbed topology

determined as
m = —n-log(1/P)/In(1/2) ~ 1.44n - log(1/P).

A 2% bits (2 MB)-sized L2 digest table with a false
positive rate of 0.092 can store 3,355,443 pairs of
identifiers. Table 4.3 shows typical memory sizes
and their capacity to store entries, when the num-
ber of hash functions is 3 and the false positive
rate is 0.092. In Table 4.3, we compute the aver-
age bit rate stored in a Bloom filter when the aver-
age packet size is 1000 bits and the length of time

required to use a Bloom filter is 10 seconds.

4.5.2 Preliminary Experiment
4.5.2.1 Experiment environment

We have evaluated our implementation on

a testbed network. Fig. 4.7 shows the L3/L2 net-
work topology of the testbed.

We carried out the experiment in the follow-
ing situation: only one xDGA leaf router, and
a traceback manager STM.

On the Victim Net, there were two victim nodes
(monitor agents): one received attacking packets
from e4 (connected to port 6 on FastIron) and e5
(connected to port 7) on the Attacker Net, and
the other received attacking packets from e6 (con-
nected to port 8) and e8 (connected port 10) on
the Attacker Net. Attacking packets were TCP
SYN packets transferred to the victim’s TCP port
7777, generated by a customized SYNflood pro-
gram based on the libnet sample SYNflood pro-
gram([255]. Each attacking packet had a spoofed
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Table 4.5. Parameters of Bloom Filters

size of hash values

24 bits

size of digest table

2MB (2%* bits)

length of time to refresh digest table 10 sec.

number of digest tables held on ring buffer | 6

number of hash functions

3

capacity factor of Bloom filter

5

Table 4.4. Time interval of each attacker node

name interval
ed 3 (sec.)
eb 5 (sec.)
e6 7 (sec.)
e8 11 (sec.)

source IP address and a spoofed source TCP port.
A sample monitor agent of spie-1.0.90 sent trace
requests about all packets received by snort 1.9.0
beta4[26]. In this experiment, the snort on each
victim node was set as a host IDS to catch only
attacking packets on the victim node so that SPIE
components traced only attacking packets. Each
attacker node sent attacking packets at different
time intervals (Table 4.4).

In testbed topology, we separated the network
for exchanging traceback queries from networks to
exchange normal/attacking traffic; that is, Trace-
back Net (Fig. 4.7) transmitted only traceback
messages.

The specification of the xDGA router is as fol-
lows: Pentium III 800 MHz processor, 128 MB
sized memory, and four physical network inter-
faces. To build L2 networks, we used an L2 switch,
Foundry’s Fastlron, firmware version 7.1.26T10.
Each network to exchange normal/attacking traf-
fic is connected to the xDGA router.

Parameters of the Bloom filter are described in
Table 4.5. In this experiment, we set the values
of parameters for L2 digest tables to the same
set of parameters for L3 digest tables (Parameters
of Bloom filters for L2 digest tables can be set
to different values from parameters for L3 digest
tables). Through calculation of parameters shown
in Table 4.5, each L2/L3 digest table could store
about 3.3 million packets at a 0.092 false positive

rate, and could hold each digest table for 1 minute.
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Table 4.6. Time spent to check a digest table

time L3 L2
max (micro sec.) | 70564 | 68474
min (micro sec.) 297 333

average (micro sec.) | 381 | 1124
median (micro sec.) | 333 | 1067

The time interval to fetch FDB entries from the

L2 switch was set to 60 seconds.

4.5.2.2 Experimental result

In this experiment, each attacker node sent 2000
attacking packets to the victim node, so STM and
xDGA dealt with 8,000 packets altogether. As
a result, all attacking packets were found on the
appropriate L3 and L2 digest tables.

Table 4.6 shows the time spent in finding the
record of the suspected attacking packet on the
appropriate digest table. Each maximum time
value is highly exceptional. In most cases, the
time spent to find a packet record is within the
range from 297 to 1704 microseconds on the L3
digest table, from 333 to 2733 microseconds on
the L2 digest table. Comparing the results for L3
and L2 digest tables, it is found that there is no
critical performance overhead for searching for an
appropriate ID pair on an L2 digest table in this

experiment.

4.6 Conclusion and Future Work

We have proposed a layer-2 extension to hash-
based IP traceback, which stores the L2 infor-
mation of incoming packets on each leaf router.
Using the L2 information, the port on a particu-
lar slot of the L2 switch that learned the incoming
attacking packet can be detected, which leads to
a narrowing down of the existence range of an

attacker node on an L2 network. Preliminary



evaluation of a prototype implementation shows
the potential usability of layer-2 traceback.

In this chapter, we have proposed an exten-
sion approach of SPIE for the first step of an
L2 traceback technique, and we have developed
an algorithm to reduce the memory requirements
for storing identifiers based on Bloom filters. The
preliminary evaluation shows that all traceback
trials found appropriate ID pairs with no criti-
cal overhead on the system in a small topology.
In future work, we will evaluate our extension in
a large topology, while looking for a more space-
and time-efficient algorithm.

Our extension essentially employs the FDB
information of an L2 switch. The contents of an
FDB are changed when a new entry is made or
when the oldest entry is aged out. Therefore, the
Port-MAC table should be renewed when FDB
entries have changed. However, dynamical syn-
chronization by SNMP would cause some over-
head on traffic or on a CPU of both a leaf router
and an L2 switch. There is a trade-off between
the accuracy of the Port-MAC table and the over-
heads on the system. We will evaluate this trade-

off in future work.
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