1 XIO

JUoooooobobobboooid

W I D E

0110
gbobooooobbooogon

010 0000000

11RM-WGOOO

Reliable Multicast WG O OUOOOO0OO0OOO0OO
ocoooooooooooooooobooooooo
ocoooooooooooooooobooooooo
ooo

12RM O000O

Reliable Multicast 0000 OO0 0OOIETEF O
mt-wg OO0 O0000000O000O00O0O0ODOO
gooooooboooboobooboobooog
goboobobooooboboooobooooboooo
M. Ruby OO OOOOoOoOOOOOOoDOOOOO
ooooooogogos. Floyd OO RM O E2E
000000000000 0OOO unicast, multicast
goooooobooobooobobooboooog
ooooooobooooobooobo

IETF mt-wg OO OOO0O00OO0O0O0OO0OOOO
gooboooopoooobooboooo rRMODOO
gooooooobooobooboobooboooog
gooooooobooobooboobooboooog
gooooooboobooboooooobobooboooo
gooooooobooobooboobooboooog
gooooooobooobooboobooboooog
goooooooboooooobobooobo

gooobooboooooooobobobbooooooo
OOWEBRCUOOOOO (Wave and Equation Based
Rate Control) 00 00O O00OO0OOOOOOOO
goooooobooobooobobooboooog
goooooobooobooobobooboooog
goooooobooobooobobooboooog
gooooooooboooooboooooboboooo
goooooobooobooobobooboooog
gooooooobobo TecpobbObODO
O0OooTrcpOoUOOO (TCP-friendliness) 0 00

gooooooTcpUObOOUOOOOOoOoUoOooO
goooooooooooooooooooooo
ooooooO0oO0o0oO0ooooooogoooooooo
goooooooooooooooooooooo
oooooo
ooooooooooOoOooooooooooo
goooooooooooooooooooooo
JO000o0oO0O0o0o0oOooooOdAck Implosion O
gMoooooQoooooopooooUopooboooo
goooooooooOooooboooooooooo
gooooooooood TCP-friendly OO O
Jo0000000D000D0000 layered multicast
goooooboooboooobboOwWEBRCO
layered multicast[] TCP-friendlyness [0 O 0O 00O O
gooooooooOoUooooooooooooo
goooooooocooooo
0oooooooopooob 200000000
ood
e00J0I0O0DODODOUOOUUODDDODOOO
gdooopooooooooooooogoo
gdooopooooooooooooogoo
gdooopooooooooooooogoo
gdooopooooooooooooogoo
goo0o0oOodoooDooooooooooog
gdooopooooooooooooogoo
goooopoooooooooooooogoo
OFTPproxy UOOOOOOOOO
e 0000000 DUODOUDOOFTP proxy OO
0000000ddoooguguguuUFrETP proxy
0JoododooooooooooDooog FTP
gdooopooooooooooooogoo
0000000o0oooog FTPproxy OO OO
gdooopooooooooooooogoo
gd0oooooOoodoooUooooooooo
RMOOOOOO 10000 SRMODOOO
FTPProxy UOOOOFTP proxy 0O OO0
oooooooooogd

155

PR OIJECT

ooooooooooooooon ogoe

e 110 O0OD0O0OOOOOOOOOOOOO

020 0O000O0O0OOOOOOOOOOOCOOO
oooooo

2100

ooooooooobooo20ooooooooo
jooooooooooooooogrroboon
jiooobooooooooooooooIpobOO
goooooooooooooocoOoooooon
000000 UDP(User Datagram Protocol) O 0
gooooooooooooooboOooooooon
gooooooooooooooboOooooooon
gooooooooooooooboOooooooon
gooooooooooooooboOooooooon
gooooooooooooooboOooooooon
gooooooooooooooboOooooooon
gooooooooooooooboOooooooon
gooooooooooooooboOooooooon
gooooooooooooooboOooooooon
gooooooobooboooooooooooooo
gbooobooobooboooooboobooooo
gbooobooobooboooooboobooooo
gbooobooobooboooooboobooooo
gbooobooobooboooooboobooooo
gbooobooobooboooooboobooooo
gbooobooobooboooooboobooooo
gbooobooobooboooooboobooooo
gboooobooooooon

220000
gobooooooooobooooooooboobooo
gooboobooobooobooboobooboooobooo
pboooobooobooboooooboobooooo
pboooobooobooboooooboobooooo
pboooobooobooboooooboobooooo
pboooobooobooboooooboobooooo
pboooobooobooboooooboobooooo
pboooobooobooboooooboobooooo
goboooodobooboobobobooobooobooo
pboooobooobooboooooboobooooo
gboobooooooboooooobooooobooboooo
gbooobooooooooobo

156

000000000000 OP (Internet Protocol)
0ooooooooooooo p0oO0OooOOOO
oooorpoOO0O0OoOO0O0O0OO0O0OOO0B0OO
gooooooooooobooooO0oooooooo
gooooooooooobooooO0oooooooo
gooooooooooobooooO0oooooooo
oobooooboooooooOoooPoOOOOB0OO
0000000 000D0000DOn UDP(User
Datagram Protocol) 0000 O0O00O0OO0OOODO
oooooopoooooooooO0oooooooo
oooooopoooooooooO0oooooooo
oooooopoooooooooO0oooooooo
ooooooooooooOo0oo0onbo

e000O0OOOOOOOODOOODODOODOO

ooooooooooooOoOoooooooo
oooooooooooooboooooooooo
ooooooooooooOoOoooooooo
ooooooooooooo
e000O0OOOOOOOODOOODODOODOO
ooooooooooooOoOoooooooo
oooobobooooooobooooooobooo
ooooooooOoooooooooooboooo
ooooooooooooOoOoooooooo
ooo0ooo0oooooooooooo

23000000
gboooooboobooboboobooboobooobo
gboobooooboboboooobooooboo
O000000o00o0Oo [4ej00000OOOO
gooooboobooooooboobooboodoo 200000

1. Jobooboooooooobooobooboooooo
gobobbooooboooobboooooobo
gbooogo

2. 0000000000O0O0ODOOOOOOOO
goooooooooooooooboooobooo
gboobooooobooooboo

(1)boooooooOoOoooooooooooo
goooooboooooooooboooooooon
goooooboooooooooboooooooon
o0o000ooo()oooooooooooooo
goooooboooooooooboooooooon
goooooooooooooobooOoooooo
00 (2)00000000o0oooooooooo

00000000000000000000000
000000000000000000000000
00000000000000000000000
00000 [87)[88) D000 DOO

00 IETF O RMT-WG 0000 Building
Blocks 00 [26) J000000000000000
000000000000000000000000
Building Blocks 10 0 0000000000000
00000000000000000000000
00000000000000000000000
00000000000000000000000
00000000000000000000000
00000000000000000000000
00000000000000000000000
00000000000000000000000
00000000000000000000000
00000000000000000000000
00000000000000000000000
nfufalulufalufsls

0000000000000000000000
000000000000000000000000
00000 1000000000000000000
000000000 ADDODOODOOD0100
0000000000000 BOOOOOOOOO
00000000000000000000000
010000000000000000000000
00000000000000000000000
00000000000000000000000
00000000000000000000000
00000000000000000000000
00000000000000000000000
00000000000000000000000
00000000000000000000000
000000000

24000000000000

gooooooooooooooobooooooon
gooooooooooooooooooooon
gooooooooooooooooooooon
gooooooooooooooooooooon
ooooooooogd

241 0000000000000 COOOOOO
goooooooooobooooboobooooon

W I D E

0000000 OAFDP(Adaptive File Distri-
bution Protocol)[43] O SRM(Scalable Reliable
Multicast)[60] 0 20 00000AFDPODOOOO
00O000000000000000000 NACK
oooboooooO0ooO0ooOooOoooooooo
000000000 sSRMOOO0000O00O NACK
ooooOooOooooOooOoOoooOoooOooon
oooboooooO0ooO0ooOooOoooooooo
oooO0o0oo0oooooooooboOooooo 2
ooOooobooOoobooOoooOooooskRMOOO
AFDPOOOO0OOO0OODO0ODOODOOOOOOODN
oooboOoboooO0ooO0o0oOooOooOoooooo
0000000000 AFDPO SRMOOOOOO
oooooooooooo

242000000000000
gooooocooooooooboboooooooo
2000000000

1. Jbobboooogoooooooboooooooo
gboobooooobooooboo
2. 00000000000O0

(1)b0oooooooooooooooooooo
gooooood210000ooooooooo
gooboooooooooooooooboooooo
goooooboooooooooboooooooon
goooooboooooooooboooooooon
goooooboooooooooboooooooon
goooooboooooooooboooooooon
goooooboooooooooboooooooon
goooooboooooooooboooooooon
goooooboooooooooboooooooon
goooooboooooooooboooooooon
goooooboooooooooboooooooon
goooooboooooooooboooooooon
goooooboooooooooboooooooon
goooooboooooooooboooooooon
goooooboooooooooboooooooon
goooooboooooooooboooooooon
goooooboooooooooboooooooon
gooRrRTTooOoOOO0oOO0O0OoooOoOO0 RTTO
goooooRrrroooooooooooooon
gooooooocooooooooon

goooooooooooooboOoOooooooo

157

PR OIJECT

ooooooooooooooon ogoe

e 110 O0OD0O0OOOOOOOOOOOOO

T7A IVEREY— /N T7AIEREISAT U
1
JaraLg& vk (multicast) - :
|
JaktaLgryk R ;
FI—T~Sm
JakajLg/ryk _
BWEOTOrLE
EER — ZIEMA
Jokaj&ryk -
BEELR—IER/ b (mulicast) | LR—REREBE
LiR—hERIEEA~

ZIEHELAR—b (unicast)

ZIEFENLDLAR—
hEED.
RIEEEHEHI
ZIEFEONTIRRE
%

JokraiL&ryk

Jokajl&ryk

0 2.1.

0000000000000000 UDPOOODO
00000000000000000000000
00000000000000000000000
0000000000 100%00000000000
00000000000000000000000
00000000000000000000000
000000000000000000
(200000000000000000000
0000000000 22000000(@()000
00000000000000000000000
00000000000000000000000
00000000000000000000000
00000000000000000000000
(2)00000000000
0000000000000000000000
00000000000000D0000000000
00000000000000000000000
000000000000000000000000
000000000000000000000000
000000 AFDPOOOOOOOO0OO0AFDP
00000000000000 NACKOOOOO
00000000000000000000000
00000000000000000000000
00000000000000000000000
000000000000000000000000

158

uobooooooobooboooo

(H)oooooooooooooooooooOoo

250 000000000000 00000OOCOCO
goooooodd
uobodobooboobooooboobooboooo

gboobooooboboboooobooooboo
gboobooooboboboooobooooboo
goboooooooooooboooobobooobueBO
gbbooboboooboooobooOo0o0obOd ns20
gooao

2510000

00000000000 JGN(Japan Gigabit Net-
work) 00000000000 O0O0O0OCOOOOO
gooooooob 2300000000 23000
goooooooooboog oGhbpsO oo
gdooopooooOouoOoooooooooooo
gooooboooooboboboooAsOoOoO
gobooboooooboooD 1ooMbps DO OO
goo0odo0oDO0odooooooooooogoo
gdooopooooOoooooooogooooo
oooo

oooooooOooooOoiogooooooo
O000D (202000)000000000000
gdoooooooOouoOoooooooooooo

T 7 A IVEREY—/N

o kag/y ~IB)

W I D E

T7ANERED SAT Vb

JOkalLgRry k

»

1

ZEHELKR—FERAT Y b

ZEHELKR—

L— FEREBIE
L— k£ 2 EE~

REEREHI Vb
DTRREER

RIfEL &L, 2
HRHNEEEBA

7o katE@Ess/ 4 v ~(AFDP)

[]
BB Y FD
EEET FTHHE
(B7A kaLTO
BERTEDND)

]

JO raBRT Yy ME)

JoOraLouEE
t&REN

‘--

H7O0RILTD
F—AEE ERR

‘-----

;HI7O0FILTD
T—4AZEEMA

022 0O00O0OO0OO0OOCOOOOO

023 0000000000

021 0O000C0COODOOOOOO

oooooo (1) (2) (3)
RTT OO0 [ms] | 52.26 | 43.87 | 68.59
0000 [ms] 12.23 | 8.207 | 8.845

ooodoooooobodlcoo0oooooon
10Mbps O 1000 0000000000 23000
ooooooooooooooooooooooon
ooooosbooooobooooboooooooon

5%0000000000000000O000OO0O0
gbooboooooboboboooobooooboo
gbooboooooboboboooobooooboo
gbooboooooboboboooobooooboo
gbooboooooboboboooobooooboo
gbooboooooboboboooobooooboo
gooaoo
ubobodoooobooboooooobooboooo
gbooboooooboboboooobooooboo

159

PR OIJECT

ooooooooooooooon ogoe

e 110 O0OD0O0OOOOOOOOOOOOO

2000 - T H SRM =
AFDP - 4+

©1500
o}
i~
&}
©
o
©
o
1000
ks
9]
o
IS
2

500

+
0 i i i
0 50 100 150 200

Number of Receivers
0 2.4. AFDPO SRMUOOOOOOOO (DOOOO ASOOOOOOOODO)

cooocooooobooooooooooooooo
ooooooooooboo 20000 2000000
coooooooooooooooooosooon
oooooooooboooo

1. 00000 ASO00o0ooooog
2. 000000 ASOO0OO0O0OO0OoOooODOoD
3. 0000000 AsOoooooooooo

(1)0DO0oO0oo0oo0 20000000000
OO0 ASODOOO0O02000000000000O
0000000 (@)D0o00o0200000000
00000 ASOODO0O00000000 ASOOOO
00000000@)0o000o0oooooooo
AsOO0O0OO0OO0OO0O00O0O0OOOO0OO000O0

gooooooooooooooooooooo
ooooooooooooooooooooooo
00 RTT(Round Trip Time) OO0 OOORTT OO
ooooooooooooooooooooooon
ooooooooooooooooooooooon
ooooooooooooooooooooooon
ooooo

252 AFDP O SRMO0O0O
gooooooooooooooooooooo
ORTTOOOOOOOOOOOOOOOOOO0 21
cobo0ooooooooobooooooboOo Asooo
00000000 (2)0ooooooooooooo

160

000000 ASOOD00OO0OO0O0O0O0 (3)0000
0000000000000000000 ASOO
00000000000000 (1)0000000
00000000000000000 (2)0(3)00
0000 (1)00000000000000000

00000000 2400 2600000 240
00000000 (1)00 ASO000D000000
02500000 (2)00 2600000 (3)000
00000000000000000000000
00000000000000000000000
000000000000

0240000000 (1)000000000 80
O00000O0O00AFDPOOOODOOOOOODO
0000000080 00000000000000
SRMODODODODODOD0D0O00D0000000000
000000 2500 26000000000000
00 SRMODO0OO0OOO0O0D0000O0OOO0O0
ooo

25300000000000

O00ooo0oonD (1)O0oOoO0oUOOoUOUOAFDP
gsrRMOOOooOoOooooooooooooo
OUOAFDPOOOOOOOODOOOO NACKODO
gbooboooooboboboooobooooboo
gobooooo NACKOOOoOoooooooo
gboobooooobobooboooobooooboo
gboooboodoboooboobooobobobooobo

W | D E PR OJECT
2000 T T T SRM —¢
: : AFDP - +
jg 1500 .. é -
Q H
X H
&% : +..
3 . i H
ol H ot H
E 1000 E. Sssssssssssssdasssasbannns E “esssssssssssasss -
5 : .
£ ¢ it
> : . :
P4 (51010} SERRLELTITITETEPEREPEPEPE FLECITCPIECPIEPED B eeessssssssansnssannnnnn , -
0 i i
0 100 150 200

Number of Receivers
0 2.5, AFDPO SRMOOOOOOOO0(DOOOOO0 ASOOOOOOOOOOO)

2000 ,

—_
)]
o
o

1000

Number of Repair Packets

500

100 150 200

Number of Receivers
0 2.6. AFDPO SRMUUOOOO0O0OO (DOOODOOO ASOOOOOOOOOONO)

00000000000000000000000
00000000000000000000000
0ooooo

000000 (2)0(3)00000 ASOO00O00
00000000()00000000000000
000000 SRMOOOOOOOOOOOOO0O
00000D000000OSRMOOOOO0O0O0O0
0D0000D00O0O00O0SRMOODOOOOOOOO
00000000000000000000000
00000000 AOODOOOOOOOOOOBO

0000000000 BOOODOOOOOOOOO
0 AD0D0DDDDOODOOOOOOOOOO000
SRMOOODODODODODODODD0D000000000
0000000000000000000 (2)0(3)
00000000000000000000000
0000000000 (1)00000000000
0000000000000000 ASOOO00OD
0000000000000000()O0@3)000
000000000000000000000

161

ooooooooooooooon ogoe

e 110 O0OD0O0OOOOOOOOOOOOO

260000
oooooooboooooooooboboooooo
coooooooooooooooobooooooo
coooooooooooooooobooooooo
coooooooooooooooobooooooo
coooooooooooooooobooooooo
coobOooooooooboOooOoOoooooooo
coooooooooooooooobooooooo
coooooooooooooooobooooooo
coooooooooooooooobooooooo
0000000000 O0O0OAFDPO SRMO 200
cooooooooooooooooboboooooo
ooooooooooooooooon
ooooooobooooooooobooooooo
cooooooooooooooooboboooooo
cooooospooooboboboooooooboooon
coooooooooooooooobooooooo
coooooooOrrrOOOOOOODOODOO
cooooooooooooooobooooooo
cooooooooooooooobooooooo
cooooooooooooooobooooooo
ooooooooooooooooobooooooon
ooooooooooooooooobooooooon
ooooooooooooooooobooooooon
ooooooooooooooooobooooooon
oooooooooobooooo

00 30 Study on Merge of Overlapped TCP Traf-
fic using Reliable Multicast Transport

3.1 Introduction

As the Internet has been developed, various
services are provided over the Internet such as
WWW, FTP, E-mail and so on. Especially WWW
and FTP services are widely used as a method of
information provision or data distribution. Also
in recent years, new technologies such as ADSL
make extensive improvements in internet access,
and this allows users of the Internet to retrieve
large amount of information or data through the

Internet more easily. Under these circumstances,

162

it is expected that traffic on the Internet involved
in the use of the services continues to increase,
and overlapped traffic occur in higher probabil-
ity. Many services over the Internet use TCP
as a transport protocol. If multiple receivers at-
tempt to retrieve the same data on a server at
the same time, multiple TCP connections are es-
tablished between the server and each receivers,
then the data is duplicated and sent through each
connection. Such overlapped traffic degrades the
efficiency of networks.

Overlapped traffic described above results from
the fact that the services use TCP, i.e. uni-
cast, which is one-to-one communication model.
On the other hand, IP also supports multicast(IP
multicast), which is one-to-many communication
model. Using IP multicast, data sent from a
sender to multiple receivers is duplicated only
at points in networks to be needed to delivery
the data to all receivers. In this communication
model, redundant traffic are eliminated, and it
is possible to save bandwidth of networks when
data are sent to multiple destinations. If we could
transfer data of WWW or F'TP using IP multicast,
it would become possible to eliminate overlapped
traffic and redundant traffic in the Internet. How-
ever, WWW and FTP are based on TCP and they
are already in widespread use. Even if a new fa-
cility for IP multicast is added to them, it is im-
practical to modify existing many systems to use
new protocols.

In this paper, we propose architecture for merg-
ing overlapped TCP traffic by replacing TCP data
stream with IP multicast in networks. And we
propose FTP proxy as a instantiation of apply-
ing our architecture to FTP traffic. Moreover we
mention the implementation of FTP proxy and an
experiment we performed.

The remainder of this paper is organized as fol-
lows. Chapter 2 describes the goal of our research.
Chapter 3 presents architecture for merge of TCP
traffic. Chapter 4 shows FTP proxy as a instantia-
tion of proposed architecture. Chapter 5 describes

implementation and experiment of FTP proxy and

W I D E

@ Server
O Client

Router

:i Router with Protocol
Translation Server

— TCP
[—— IP muticast

Fig. 3.1. Overview of replacing TCP streams with IP multicast by protocol translation servers

chapter 6 concludes this paper.

3.2 Goal of our Research

We have two major goals in designing the ar-

chitecture we propose in this paper. One is trans-
parency to users and the other is scalability. If
some modifications are needed to user applications
in order to use the architecture, it becomes diffi-
cult to apply the architecture to existing systems.
Therefore, the architecture must be transparent
to users and all processing must be done in net-
works. Scalability of the architecture is also im-
portant. The more networks are covered by the
architecture, the more overlapped traffic are able
to be merged, and the architecture is able to make

networks more efficient.

3.3 Architecture for Merge of Overlapped
TCP Traffic

This chapter describes important components of

architecture for merge of overlapped TCP traffic.
They are protocol translation server, session and
reliable multicast protocol.

Protocol translation servers are the main com-
ponent of our architecture. They transfer the
data of overlapped TCP traffic using IP multicast
between multiple points on networks. Protocol
translation servers create a multicast session when
they merge overlapped TCP traffic. Information
of a created session is announced to all protocol
translation servers in order to allow other protocol
translation servers to join the session. When pro-

tocol translation servers send data of overlapped

TCP traffic using IP multicast, they use reliable
multicast protocol. Reliable multicast protocol
provide reliability with IP multicast, which is un-
reliable in data delivery. Each components are

explained in following sections.

3.3.1 Protocol Translation Server

In our architecture, we locate multiple servers
at various points on networks. They receive data
by TCP and send the data by IP multicast and
vice versa in order to realize merge of overlapped
TCP traffic transparently for end-hosts. In this
paper, we call such a server as protocol trans-
lation server. Protocol translation servers keep
watch on TCP streams on networks. When they
detect overlapped TCP streams such as multiple
transfers of the same file, they start protocol trans-
lation. Protocol translation server communicates
with end-hosts using TCP and transmits the data
received from a end-host to other protocol trans-
lation servers using IP multicast. The judgment
way of whether multiple streams carry the same
data depends on the protocol of the higher layer.

Figure 3.1 shows overview of replacing TCP
streams with TP multicast by protocol translation

servers.

3.3.2 Session

In this section, we describe a multicast session
in our architecture.
Multicast Session

When a protocol translation server merges over-

lapped TCP streams, it creates a multicast session

163

PR OIJECT

ooooooooooooooon ogoe

e 110 O0OD0O0OOOOOOOOOOOOO

a session creator multicasts
SAP packets periodically.

/ S Server)

/Protocol Translation\

Protocol Translation -
Server

SAP
N packet

/)

/Protocol Translation

S
S erver)

7
- \
/ \ /Protocol Translation\

v Server

-

7 i \
- - \
SAP header
Session Description
v=1

s=File Distribution
i=File Distribution
c=INIP4 224.5.6.7/16

0=- 12345678 0 IN IP4 192.168.1.1

Fig. 3.2. Relationship between SDP and SAP

to send data using IP multicast. Each multicast
session uses a different multicast address and the
same well-known port number.

Session Description

We need a common format to describe multi-
cast sessions in order to share session informa-
tion among protocol translation servers. We use
SDP(Session Description Protocol)[101] for that
purpose.

SDP defines text format for general real-time
multimedia session description purposes. Though
SDP is originally defined to describe multimedia
sessions, which distribute audio or video streams,
SDP provides a method of describing application
specific attributes as well. We decided to use SDP
because it has enough capability for describing
multicast sessions we create.

Session Announcement

A protocol translation server which created a
session has to announce the information of the ses-
sion to other protocol translation servers. We use
SAP(Session Announcement Protocol)[100] in or-
der to distribute the session information described
using SDP.

Figure 3.2 shows the relationship between SDP

and SAP. A protocol translation server which cre-

164

ated a session multicasts SAP packets periodically.
A SAP packet consists of a SAP header and a
payload. The payload is a session description de-
scribed using SDP. An example of session descrip-

tions is explained in section 3.4.5.

3.3.3 Reliable Multicast Protocol

IP multicast does not ensure reliability in data
delivery. It means that lost packets are not recov-
ered, and receivers may receive duplicated packets,
and the order packets arrive may be different from
the order packets were sent. On the other hand,
TCP provide reliability. Therefore, communica-
tions between protocol translation servers using
IP multicast must be reliable in order to ensure
reliability of communications between end-hosts
using TCP.

As a method of providing IP multicast with re-
liability, many reliable multicast protocols have
been proposed such as AFDP[43], SRM[60] and
RMTP[118]. These protocols provide reliability
by implementing facilities of detection and recov-
ery of lost packets and sequencing packets. How-
ever, methods of implementing such facilities are
different per reliable multicast protocols, and they

respectively have different characteristics of scal-

ability and throughput. It is needed that the re-
liable multicast protocol used in our architecture
has good scalability because the more extensively
protocol translation servers are deployed, the more
efficiently we can merge streams. Though there
are many reliable multicast protocols as men-
tioned above, there is no single reliable multicast
protocol which always achieves good throughput
for various receiver sets.

Therefore, we use dynamic protocol selection ar-
chitecture for reliable multicast[144, 145], which
our laboratory are researching. In this archi-
tecture, the system dynamically selects an opti-
mum reliable multicast protocol using information
about the type of the application and the number
of receivers in the multicast group. Then it sends
data received from the application to multicast
group members using the selected protocol. Ap-
plications can efficiently multicast with reliability

under various circumstances by this architecture.

3.4 FTP Proxy

In this chapter, we propose FTP proxy as a in-
stantiation of applying our architecture to FTP

traffic.

3.4.1 Target Traffic of FTP Proxy

We suppose to overlapped merge download traf-
fic of a file from an anonymous FTP server by FTP
proxy. Upload traffic is outside of target of FTP
proxy because we consider that there are few op-
portunity to merge upload traffic. In this paper,
we assume that anonymous FTP servers allows
users only to download files and upload of files to

the servers is prohibited.

3.4.2 System Configuration

A system which merges download traffic con-
sists of multiple FTP proxies. Each FTP proxy
is located at various point on networks. A FTP
proxy has the role of protocol translation server
described in section 3.3.1. Though we described
that merging of traffic must be completely trans-

parent to users, we let protocol translation server

W I D E

pretend to be FTP server in this system to simplify
the implementation. Namely, FTP proxy has two
roles. The first is as a protocol translation server,
and the second is as a FTP server. This is why
we call protocol translation server as FTP proxy
here.

FTP clients login to FTP proxy instead of a
real FTP server and request files or file lists. FTP
proxy itself does not have any files to provide
FTP clients with in initial state. FTP proxy re-
trieves the file requested by a client from a real
FTP server according to need, and at that time,
it merges traffic using reliable multicast protocol
if possible. When FTP proxy retrieves files or file
lists from a real F'TP server, it saves retrieved data
in a local disk as a cache. The behavior of FTP

proxy is described in detail later.

3.4.3 Components of FTP Proxy

A FTP proxy consists of five components. They
are FTP server, file list retrieval server, file re-
trieval server, session management server and re-
send server. FTP server accepts login from FTP
clients and provides them with FTP services. List
retrieval server retrieves file lists from a real FTP
server and manages retrieved file lists. File re-
trieval server retrieves files from a real FTP server
and manages retrieved files. Session management
server creates multicast sessions, announces them,
and collects session information using SAP. Re-
send server accepts resend requests from other
FTP proxies.

Figure 3.3 shows the system configuration and

the relationship between each components of FTP

proxy.

3.4.4 Behavior of FTP Proxy

In this section, we explain the behavior of FTP
proxy in detail.
Basic Behavior

FTP server listens on port 21 and provides
clients with FTP services. When a client re-
quests a file list by a LIST or STAT command,

FTP server asks file list retrieval server for the re-

165

PR OIJECT

ooooooooooooooon ogoe

e 110 O0OD0O0OOOOOOOOOOOOO

q FTP proxy

FileList retrieval
server
[~ /
File retrieval ™\ ._|
|~ server
>
Session mana-
gement server

FTP client

FTP client

- J

Fig. 3.3.

I / FTP proxy
—

FTP client

A

FTP client

~— TcP
= = * IP multicast

Illustration of the system configuration and components of FTP proxy system

FTP PROXY

FTP PROXY

Fig. 3.4.

quested file list. When a client requests a file by
a RETR command, FTP server asks file retrieval
server for the requested file. The behaviors of file
list retrieval server and file retrieval server are de-
scribed later in this section.

Session management server maintains two ses-
sion lists. One is an active session list and the
other is a completed session list. Session man-
agement server joins the well-known multicast ad-
dress defined by SAP and collects session infor-
mation which other FTP proxies are announcing.
The collected session information are added to
the active session list. When session management
server receives a session deletion packet, it moves
the ended session from the active session list to
the completed session list.

Process for File List Request

When a client requests a file list, FTP server

asks file list retrieval server for the requested file

166

FTP PROXY

Tllustration of the experimental network

list. The file list retrieval server checks through
a local cache. If the requested file list exists in
the cache, the file list retrieval server passes it to
the FTP server. Otherwise, the file list retrieval
server logins to a real FTP server and retrieves the
requested file list. In this case, the file list retrieval
server uses TCP to connect to the real FTP server.
It means that traffic of the file list retrieval is not
merged by IP multicast. In general, the size of a
file list is not so large, and we consider that it is
difficult to merge this kind of traffic. The file list
retrieve server passes the retrieved file list to the
FTP server and saves it in a local disk as a cache.
The FTP server sends the received file list to the
client.
Process for File Request

When a client requests a file, FTP server asks
file retrieval server for the requested file. The file

retrieval server checks through a local cache. If

the requested file exists in the cache, the file re-
trieval server passes it to the FTP server. Oth-
erwise, the file retrieval server sends inquiries to
session management server about whether there is
an active session for the requested file. If there is
a session for the file, the file retrieval server joins
the session and receives the file using reliable mul-
ticast protocol. At that time, the beginning part
of the file has been already sent, and the file re-
trieval server is not able to obtain them from the
session. Therefore, the file retrieve server asks re-
send server running on the sender of the session to
resend the missing data. The resend server sends
the requested data using unicast or IP multicast.
The resend server selects protocol in considera-
tion of the size of the requested data. If the size is
smaller than a threshold, the resend server chooses
unicast, and otherwise it chooses IP multicast. We
are going to investigate appropriate value for the
threshold in process of employment of this sys-
tem. The file retrieval server passes the file re-
ceived from the session and the resend server to
the FTP server.

If there is no active session for the requested
file, the session management server looks up in
the completed session list. If there was a session
for the requested file, the file retrieval server asks
resend server running on the sender of the com-
pleted session to send the file. The resend server
asks session management server running on the
same host to create a new session. Then, the re-
send server sends the requested file to the created
session. The file retrieval server joins the created
session and passes the received file to the FTP
server.

If there is no session for the requested file even in
past times, the file retrieval server logins to a real
FTP server and retrieves the file. In parallel, the
file retrieval server asks the session management
server to create a new session in order to inform
other FTP proxies that it is possible to merge traf-
fic. The file retrieval server passes the received file
to the FTP server.

The FTP server send the received file from the

W I D E

file retrieval server to the client. The File retrieval

server saves the file in a local disk as a cache.

3.4.5 Session Information

As described in section 3.3, when a new session
is created, session management server announces
the session information described by SDP using
SAP. The session description used in this system
contains the following information.

e multicast address, port number and TTL used

in the session

e the name of the file transfered in the session

e the size of the file transfered in the session

3.5 Implementation and Experiment

In this chapter, we describe implementation and

experiment of FTP proxy.

3.5.1 Implementation

We implemented servers of FTP proxy on Linux.
Each server communicates with other servers us-
ing UNIX domain socket. As for implementation
of FTP server, we leveraged wu-ftpd 2.6.2, which
is FTP server widely used on the Internet to pro-
vide anonymous ftp service. Main modification
applied to wu-ftpd is that codes to read file lists
or files are replaced by ones to communicate with
file list retrieval server or file retrieval server.

Though we described that our architecture use
dynamic protocol selection architecture to multi-
cast with reliability, the implementation of the ar-
chitecture has not completed yet. Therefore, cur-
rently we have employed libsrm, which is an im-
plementation of SRM by MASH project. Libsrm
is provided in the form of C++4 library and very

easy to build into application softwares.

3.5.2 Experiment

Figure 3.4 shows the network for this experi-
ment. We set up four FTP proxies in the ex-
perimental network. Each Linux PC is equipped
with Pentium III 1GHz processor, 256 MB mem-
ory and 100Base-T NIC. The original FTP server

is located at outside of the experimental network.

167

PR OIJECT

ooooooooooooooon ogoe

e 110 O0OD0O0OOOOOOOOOOOOO

90406

only unicast
ing multicast

80406 -

7esos | H

| \‘.
=) gl o
I L ' \

Ie+ﬂ$" ‘ u

0

60406

50406

Traffic rate(bps)

0 10 20 30 40 50 60 70 80 % 100
Elapsed time(sec)

Fig. 3.5. Total traffic rate of backbone links (in-
terval: 3 seconds)

We measured the total traffic rate of back-
bone links in the experimental network when four
clients download the same file from the respec-
tively different FTP proxy. Backbone links are
drawn thickly in figure 3.4. Whether overlapped
traffic occur depends on how clients access. In
this experiment, each clients start downloading
one after another with three or ten seconds in-
terval. Though clients access FTP proxies from
outside of the experimental network, packets be-
tween clients and FTP proxies are not counted
into the result. For comparison, we also measured
the total traffic rate of backbone links when FTP
proxies don’t merge overlapped traffic using mul-
ticast. At this moment, we are not able to mul-
ticast with libsrm at faster than 50 kbytes/s due
to a problem on implementation. We limited the
transfer speed between FTP proxies and clients to
50 kbytes/s to perform measurements under the
same condition.

Figure 3.5 and figure 3.6 show the total traffic
rate of backbone links in the experimental network
when clients start downloading with three and ten
interval respectively. In figure 3.5, the traffic rate
is reduced to half by merging overlapped traffic
in many portion. However, the effect of merg-
ing overlapped traffic is not clear until twenty sec-
onds elapsed. This is because FTP proxies re-
send missing part of files by unicast immediately
after the second or later clients start download-
ing. On the other hand, in figure 3.6, the traffic
rate decreases in fewer degree than in figure 3.5

when FTP proxies merge overlapped traffic. In

168

.
g SV

|11
=Y AN R

Traffic rate(ops)

0 20 40 60 80 100 120
Elapsed time(sec)

Fig. 3.6. Total traffic rate of backbone links (in-
terval: 10 seconds)

this case, the time which clients’ accesses overlap
is shorter and FTP proxies have to resend more
by unicast, then FTP proxies communicate using
both multicast and unicast while transferring the
file. This makes traffic rate larger. However, when
FTP proxies merge overlapped traffic, data trans-
fers finish more first than as in only unicast and
they eventually save total network bandwidth.
Currently, FTP proxies always resend data us-
ing unicast. However, resend traffic may be possi-
ble to merge under some situations. For example,
if two clients start downloading the same file at
once when other client is already retrieving the
file, FTP proxy must resend twice and the two
resend traffic exactly overlap. We are now consid-
ering to use multicast when FTP proxies resend

relatively large amount of data.

3.6 Conclusion

The goal of our research is the realization of effi-
cient use of networks by merging overlapped TCP
traffic into a single stream using reliable multicast
transport. In this paper, we proposed architec-
ture for our goal. In our architecture, multiple
protocol translation servers are located at vari-
ous points on networks. When they detect over-
lapped TCP traffic, they create a multicast session
and transfer the data through the created session.
SDP and SAP are used to share the information
of created sessions among all protocol translation
servers. Moreover, they use reliable multicast pro-

tocol in order to ensure reliability of the commu-

nication on IP multicast.

We also proposed FTP proxy as a instantiation
of our architecture for FTP traffic. FTP prox-
ies accept users’ login and retrieve files from a
real FTP server on behalf of users. When mul-
tiple FTP proxies are requested the same file at
the same time, they transfer the file using multi-
cast between FTP proxies. In this paper, we im-
plemented FTP proxy and performed experiment.
Using FTP proxy, we succeeded to save bandwidth
of backbone links when overlapped traffic occur.

Our experiment in this paper was done under
the condition that overlapped traffic certainly oc-
cur. We are currently considering to examine how
much FTP proxy can save bandwidth when real

ftp users access them.

E

PR O J

ECT

169

ooooooooooooooon ogoe

