
第VI部

ＤＮＳの拡張および運用環境

W I D E P R O J E C T

6

第 6 部
ＤＮＳの拡張および運用環境

第 1章 はじめに

DNS ワーキンググループは、DNS の運用環境お

よび DNS の拡張に関する議論を行う。現在、DNS

WGではルートネームサーバの運用技術や、DNSの

セキュリティ拡張に関する議論、DNS の計測に関す

る研究などを主として行っている。

現在は、以下のトピックについて重点をおいている。

• DNS の計測

DNS 運用技術の研究のため、ルートネームサー

バ、jp ゾーンサーバに来るトラフィックを計測

している。また、多地点からの各 ccTLD の応

答速度の測定も行っている。

• DNS の健全化

DNS は堅牢なシステムであり、多少誤った構成

であっても動作する。そのため、構成の異常さ

に気が付いていない誤った構成のネームサーバ

が多く存在し、上位サーバやネットワークに大

きな負担をかけている。

そこで、誤った構成のネームサーバを健全化す

るための試みが JPNIC/JPRS と共同で行われ

ている。現在、DNS の正当性チェック用の実装

が完成し、それに関する議論が行われている。

本報告書では、2002 年度の DNS wg の活動成果

を以下の順に報告する。第 2 章でネームサーバ選択

アルゴリズムとネームサーバの配置に関する研究を、

第 3 章では JP ドメインのネームサーバに対するク

エリーの集計と分析について報告する。

第 2章 The Effects of Server Placement and

Server Selection for Internet Services

2.1 abstract

Many services on the Internet are provided by

multiple identical servers in order to improve per-

formance and robustness. The number, the loca-

tion and the distribution of servers affect the per-

formance and reliability of a service. The server

placement is, however, often determined based

on the empirical knowledge of the administrators.

This paper investigates issues of the server place-

ment in terms of the service performance and the

server load.

We identify that a server selection mechanism

plays an important role in server placement,

and thus, evaluate different server selection algo-

rithms. The result shows that it is essential to the

robustness of a service to employ a mechanism

which distributes service requests to the servers

according to the measured response time of each

server.

As a case study, we evaluate the server selection

mechanisms employed by different DNS (Domain

Name System) implementations. Then, we show

the effects of the different server selection algo-

rithms using root-server measurements taken at

different locations around the world.

Keywords: server placement, server selection al-

gorithm, DNS, root name server

2.2 Introduction

As the Internet continues to grow at an explo-

sive rate, the increasing number of services on the

Internet become indispensable to our life. Many

services on the Internet are provided by multiple

identical servers in order to improve performance

and robustness. For such services, server place-

ment is an important factor of the quality of a

service. Server placement has been a subject of

research where the number, the location and the

distribution of servers are studied so as to increase

the total system performance and the reliability of

the service.

Although the best-server selection is often as-

85

●
第
6
部

Ｄ
Ｎ
Ｓ
の
拡
張
お
よ
び
運
用
環
境

W
I

D
E

P
R

O
J

E
C

T
2

0
0

2
a

n
n

u
a

l
r

e
p

o
r

t
●第 6部 ＤＮＳの拡張および運用環境

sumed for server placement, we found it is not

the case with many Internet services in use, no-

tably with DNS (Domain Name System), and use

of different selection mechanisms has a significant

impact to server placement strategies. This pa-

per investigates server selection mechanisms, and

explores issues of server placement using differ-

ent selection mechanisms. We categorize server

selection algorithms and illustrate their behavior

in simple synthetic situations.

As a case study, we evaluate the server selec-

tion mechanisms employed by different DNS im-

plementations. Then, using measurements of the

DNS root servers from different locations, we in-

vestigate how server selection algorithms affect the

performance perceived by users, and load-sharing

of the servers.

Our results show that proper use of the server

selection algorithms is essential to the perfor-

mance and the stability of Internet services.

2.3 Related Work

The center placement problem has been a well-

known subject of research, and studied both in

theory and practical applications [98]. It is a prob-

lem to find the optimal placement of a set of cen-

ters or the minimum number of centers for given

users.

Although placement of servers in the Internet

is similar, there are other practical issues such

as distance measurement, fluctuations or uncer-

tainty of the environment, and constant growth of

the network. Jamin et al. propose distant maps

which provides a relative distance between end-

hosts, and discuss its application for mirror server

placement [115, 137]. It is also shown that the

closest server selection performs much better than

random server selection. Qiu et al. evaluates dif-

ferent placement algorithms for web server replicas

by means of simulation [96]. The focus of these ap-

proaches is to improve the performance for users,

and thus, users are assumed to access the closest

server. This paper investigates the load distribu-

tion of servers as well as the performance, and

focuses on the effects of different server selection

algorithms.

As for DNS measurement, Brownlee et al. pas-

sively observed DNS traffic on a university campus

and analyze the behavior of the root and gTLD

servers [105]. They also analyze DNS traffic at the

F root server [104]. Fomenkov et al. investigate

the connectivity of the DNS root servers to a large

number of DNS clients [99]. The measurement is

done by co-locating an active measurement tool,

called skitter, with six of the root servers. These

DNS results do not consider the effects of server

selection algorithms on the user side, which mo-

tivated our research on DNS. We make use of

measurements of the root servers taken by Sekiya

et al. [166] for our simulation.

2.4 Server Placement and Server Selection

Server placement is heavily influenced by the

server selection mechanism used for the system.

For users to receive good performance, it is im-

portant to choose a near server since some servers

could be very far on the Internet. In addition,

to increase availability, a user should be able to

switch to an alternative server if needed. If the

nearest server fails, or its performance degrades,

a user needs to choose another server to continu-

ously receive the service in good quality.

On the other hand, a service provider should

arrange servers so as to provide good system-wide

performance. However, load-sharing among the

servers is sometimes more important than the per-

formance from the administrator’s point of view.

It is often needed to place an additional server

to reduce the load of heavily-loaded servers. The

location of the new server should be chosen care-

fully in order to distribute the service load appro-

priately. Furthermore, it is necessary to consider

the effects to the performance perceived by users

as well. That is, the performance should not be

sacrificed too much by load distribution.

In this paper, distance or response time is used

as a metric for server selection but there are other

metrics such as throughput. Our principle of bal-

86

W I D E P R O J E C T

6

ancing performance and load distribution in an

adaptive way also applies to other metrics.

2.4.1 Server Selection Algorithms

When a set of servers for a certain service are

available, a user selects one of the servers. There

are different mechanisms to select a server to use.

We introduce three representative server selection

algorithms and illustrate the differences.

1. best-server algorithm

2. uniform algorithm

3. reciprocal algorithm

The best-server algorithm measures the condi-

tions of the servers and chooses one as the best

server. The metric can be round-trip time, the

number of hops, or other kind of network distance.

The best server can be chosen from these metrics.

This algorithm is optimal in performance but hard

to control load-sharing as described later.

The uniform algorithm selects all the servers

uniformly. This algorithm can be realized by

round-robin or random selection, and does not use

any metrics. It is easy to implement this algo-

rithm so that it has been used widely by many

network applications. This algorithm is good for

load-sharing but poor in performance, especially

if a bottleneck server exists.

The reciprocal algorithm selects a server with a

probability reciprocal to some metrics. Unlike the

best-server algorithm, not only the best server but

also other servers are used. The access probability

to each server is a function of some metrics. For

example, if a distance is used as a metric, a near

server is used more frequently than a far server,

and two servers located at the same distance are

used equally. This algorithm is adaptive in the

face of fluctuating server conditions since selection

is dynamically determined by the function.

2.4.2 Algorithm Evaluation

To illustrate the differences of the three algo-

rithms, simple synthetic network configurations

are used. In the following examples, the distance

between a user and a server is used as the metric

for server selection. That is, when user i accesses

server j and the distance between i and j is dij ,

the access cost is defined as dij . When a set of

servers S is given and the number of the servers is

m, The cost function of user i, c(i), for the best-

server algorithm is

c(i) = min
j∈S

dij

For the uniform algorithm, c(i) is simply the av-

erage of the distances.

c(i) =
1

m

m∑

j=1

dij

For the reciprocal algorithm, the probability of us-

ing a server is reciprocal to the distance. There-

fore, the probability of user i using server j is

pij =
1

dij

∑

j∈S

1

dij

The cost function of the reciprocal algorithm is

c(i) =
∑

j∈S

dijpij =
m

∑

j∈S

1

dij

Optimal Placement

The optimal placement is to minimize the total

cost. That is, for given set of users U , place a set

of servers S so as to

minimize
∑

i∈U

c(i)

To illustrate the differences of the algorithms,

we use a simple configuration as shown in

Figure 2.1. Assume 16 users are placed at each

vertex of a 4 × 4 square mesh. We consider the

optimal arrangement of 4 identical servers for each

algorithm.

Figure 2.1 (A) shows the optimal placement for

the best-server algorithm. We need to minimize

the average distance from each user to the nearest

server. This is known as the k-median problem

[98] and a generic solution is NP-hard. However,

it is easy to solve in this configuration by dividing

87

●
第
6
部

Ｄ
Ｎ
Ｓ
の
拡
張
お
よ
び
運
用
環
境

W
I

D
E

P
R

O
J

E
C

T
2

0
0

2
a

n
n

u
a

l
r

e
p

o
r

t
●第 6部 ＤＮＳの拡張および運用環境

: user : server

(A) Best-server Algorithm (B) Uniform Algorithm (C) Reciprocal Algorithm

Fig. 2.1. optimal placement of 4 servers for 16 users with different selection algorithms

the users into 4 clusters and placing a server at

the center of each cluster.

Figure 2.1 (B) shows the optimal placement for

the uniform algorithm. We need to minimize the

average distance from each user to all servers. In

this example, it is optimal to place the 4 servers

altogether at the center of the users.

Figure 2.1 (C) shows the optimal placement

for the reciprocal algorithm. When server selec-

tion is performed with the reciprocal algorithm,

a user uses not only the nearest server but also

others with probability reciprocal to the distance

between the user and the server.

As easily seen from the figures, the best-server

algorithm shows the best performance and the

performance of the uniform algorithm is the worst.

All servers have the same share of the load for all

the algorithms.

Adding a Server for Load-Sharing

It is often needed to place an additional server to

reduce the service load of heavily-loaded servers.

We consider the effects of an additional server to

the system-wide performance.

: user
: present server
: additional server

A

B

C D D’D’’

Fig. 2.2. 3 existing servers, a new server at D,

at D′ or at D′′

The network configuration in Figure 2.2 is used

here. 16 users and 4 servers are used as in the pre-

vious case but, this time, the locations of the users

and the servers are the same for all the algorithms.

The effects of an additional server, D, D′ or D′′

in the figure, are observed. D and D′′ are close to

one of the existing servers, C, D′ is far from the

existing servers and the users. Table 2.1 shows

the changes in the load distribution and the aver-

age response time by the additional server. The

distance of two points is computed as the Euclid

distance, and the cost of response time between

adjacent vertices is normalized to 1.

Table 2.1. server load and response time by an

additional server

Algorithm Load Distribution Response

A B C D(’) Time

Best-server 25% 25% 50% - 1.020

+D 25% 25% 50% 0% 1.020

+D′ 25% 25% 50% 0% 1.012

+D′′ 25% 25% 25% 25% 0.941

Uniform 33% 33% 33% — 2.116

+D 25% 25% 25% 25% 2.174

+D′ 25% 25% 25% 25% 2.748

+D′′ 25% 25% 25% 25% 2.016

Reciprocal 32% 32% 36% — 1.614

+D 26% 26% 27% 21% 1.656

+D′ 29% 29% 32% 10% 1.890

+D′′ 24% 24% 25% 27% 1.538

In the case of the best-server algorithm, adding

D or D′ has no effect. The right half of the users

use server C and the left half of the users are di-

vided into server A and server B. Both D and D′

are behind server C for all the users so that they

88

W I D E P R O J E C T

6

are not used at all. However, when D′′ is added,

the load of C is divided between C and D′′. This

example illustrates a difficulty in controlling load-

sharing with the best-server algorithm. Even if

a new server is added to the existing overloaded

server as is the case for D, it may not help at all.

The opposite case is also possible; if a new server

is placed just in front of the existing server, all the

load could be shifted from the existing server to

the new server.

On the other hand, the load is assigned equally

to all the servers with the uniform algorithm. Re-

gardless of the position of the new server, the load

of each server is reduced from 33% to 25% by

adding a server. The response time is, however,

affected by the position of the new server. Be-

fore adding the new server, the response time of

the unform algorithm is already the worst in the

3 algorithms. It degrades slightly by adding D,

and degrades severely by adding D′ since the users

access D′ equally. This illustrates a difficulty to

control the system-wide performance with the uni-

form algorithm

In the case of the reciprocal algorithm, D con-

tributes to load-sharing and the response time de-

grades slightly. The impact of D′ is small since its

distance is large for all the users. The users still

access D′ and the performance drops accordingly.

We can infer dynamic condition changes using

Table 2.1. If the connectivity to D fluctuates, D

is perceived as being at D′ or D′′. Further, if it

fails, only the other 3 servers remain. It is easy

to see that the load distribution of the best-server

algorithm is heavily affected as the position of D

fluctuates. The performance of the uniform algo-

rithm also fluctuates as the position of D fluctu-

ates. On the other hand, the reciprocal algorithm

can adapt in both performance and load distribu-

tion as D fluctuates.

Although a simple configuration of 16 users is

used in this example, it is obvious that our ob-

servation also applies to more complex configura-

tions. The observed problems are inherent in the

algorithms, and it simply becomes harder to pre-

dict the effects as the number of users increases

and the user distribution becomes unbalanced.

2.4.3 Practical Issues

Distance Measurement

So far, we used the distance between a user and

a server as our metric. In a real network, how-

ever, it is difficult to define the distance. More-

over, a user can obtain limited information about

the network and the servers. How to measure the

distance on the Internet is still under active re-

search [115, 137].

In practice, the response time from a server is

often used instead of the distance to the server.

The response time measured by a user includes

the network delay, the server processing time and

the local processing time.

Since the response time fluctuates, the average

response time in the recent past is used to predict

the response time in the near feature. Depending

on applications, the variance of the response time

is used as well.

The network and server conditions can change in

a short time. A server selection mechanism should

be able to adapt to changes of the situation. How

quickly a mechanism adapts to a change depends

on how often it measures the condition. The more

frequently it measures the condition, the quicker

it adapts.

When the response time is used to measure the

condition, a user needs to send a request to obtain

the response time. The best-server algorithm is

not suitable for detecting condition changes since

it does not access the servers other than the best

server and does not update the response time of

the other servers. The reciprocal algorithm can

detect condition changes of a near server better

than a far server since the near server is accessed

more than the far server. This is another advan-

tage of the reciprocal algorithm.

Operational Restrictions

It is often not possible to realize ideal server

placement in a real environment due to opera-

89

●
第
6
部

Ｄ
Ｎ
Ｓ
の
拡
張
お
よ
び
運
用
環
境

W
I

D
E

P
R

O
J

E
C

T
2

0
0

2
a

n
n

u
a

l
r

e
p

o
r

t
●第 6部 ＤＮＳの拡張および運用環境

tional restrictions. There are a limited number of

places where servers can be accommodated. Once

a server is installed and a service is started, it is

not easy to change the configuration even when a

need for rearrangement arises. On the other hand,

the service may need to stop for hardware or soft-

ware maintenance. Other unexpected problems

could arise such as failures of network or facilities.

As the scale of a service increases, the ser-

vice becomes more difficult to manage as planned.

Therefore, server placement and server selection

should be designed to be flexible and fail-safe.

To this end, adaptivity is an important property

for large-scale services, especially from the opera-

tional point of view.

2.4.4 Summary

In server placement planning, it is important to

take server selection mechanisms into considera-

tion. We have illustrated the behavior of three

types of server selection algorithms.

The behavior of the best-server algorithm is in-

tuitive and the best performance can be achieved.

However, its load distribution is sensitive to the

server placement, and hard to control in a real

network. A slight change of the environment could

lead to an unexpectedly-large shift in load distri-

bution.

The uniform algorithm provides fair load dis-

tribution but it is hard to improve the perfor-

mance. Because each server has the same share,

the system performance is dominated by the bot-

tleneck server. In global Internet services, it is

usually much more difficult to control the bottle-

neck server than the best server.

The performance of the reciprocal algorithm is

not as good as the best-server algorithm but it

is much easier to control load-sharing by server

placement. The algorithm is adaptive to condi-

tion changes, which is important to make a service

robust on the Internet.

For large-scale Internet services, the following

properties are needed for a server selection algo-

rithm.

1. An algorithm prefers servers with better per-

formance. It is not only for performance but

also allows server placement to control load

distribution.

2. An algorithm sends equal load to 2 servers

if their performance is equal. This prevents

oscillations between 2 servers.

3. An algorithm adapts to condition changes.

The reciprocal algorithm satisfies these properties.

2.5 A Case Study: DNS

2.5.1 Domain Name System

DNS translates host names to IP addresses.

DNS is a distributed database in which domain

names are maintained in a hierarchical tree struc-

ture. A domain in the domain name space may be

divided into subdomains, and the administration

of a subdomain may be delegated. A zone is an

administrative unit of the domain name space in

which a set of name servers are authoritative for

the domain as well as responsible for providing re-

ferrals of its delegated subdomains. When a name

server at the client side is asked to resolve a name,

it traverses the name hierarchy and sends queries

recursively to an authoritative server of each zone

within the specified name. DNS also uses caching

extensively to reduce repetitive queries for the

same zone.

A zone can have multiple authoritative servers

for better performance and robustness. When

there are multiple name servers authoritative for

a zone, a recursive server picks up one to send

a query. How to select a server is implementa-

tion dependent. The DNS specifications [124, 125]

suggest to sort the server list by statistics such as

previous response times and batting average.

2.5.2 DNS Implementations

There are several DNS implementations which

employ different server selection mechanisms.

These mechanisms can be categorized into the

three algorithms described in the previous section.

90

W I D E P R O J E C T

6

BIND-8

The Berkeley Internet Name Domain system

(BIND) [70] is the most widely used implemen-

tation of DNS. The server selection algorithm of

BIND-8, version 8 of BIND, can be viewed as a

variant of the reciprocal algorithm in the sense

that the access probability is a function of server

response time. The older versions of BIND also

have the same algorithm.

BIND-8 maintains the list of name servers for a

zone. When BIND-8 finds multiple name servers

to resolve a request, it sorts the servers by the

smoothed response time, and tries the servers in

this order1. The smoothed response time is the

average response time of this server in the recent

past.

The smoothed response time is maintained

as follows. When a response comes back, the

smoothed average response time, srtt , is computed

using the exponentially-weighted moving average:

srtt = α · srtt + (1 − α) · rtt (2.1)

Then, the entries of the unused servers in the list

are decayed by

srtt = γ · srtt (2.2)

y

θ

xθ

ρ

the number of access

smoothed response time (srtt)

(1)

(2)

(2)

Fig. 2.3. a model of smoothed response time in

BIND-8

By slowly reducing srtt of the unused servers, they

are eventually tried again2. BIND-8 uses (α =

0.7) and (γ = 0.98).

Figure 2.3 illustrates the effect of the algorithm.

For simplicity, we assume a server has a constant

response time and there is a constant threshold to

select a server. When a server is accessed for the

first time, the response time is recorded. While

this server is not used, srtt is slowly decayed by

Equation 2.2 every time other servers for the same

name are referenced. Eventually, srtt hits the

threshold θ, and this server is used again. This

time, srtt is increased by Equation 2.1. Then,

this server is not used until srtt hits the threshold

again.

In the steady state, srtt follows a sawtooth

track, and the server is selected once in y access.

In other words, the expected share of the server is

1/y.

Let the constant response time be x times larger

than θ. That is, rtt = x · θ. Let ρ be the peak

value of the sawtooth track. When the server is

accessed, (srtt = θ). From Equation 2.1,

ρ = θ(α + x(1 − α)) (2.3)

The server is not used for the next (y − 1) times,

and becomes θ again. From Equation 2.2

γ(y−1) · ρ = θ (2.4)

From Equation 2.3 and 2.4, we can eliminate θ

and ρ.

γ(y−1) =
1

α + (1 − α)x

y − 1 = logγ

1

α + (1 − α)x

y = 1 − log(α + (1 − α)x)

log γ
(2.5)

By applying (α = 0.7) and (γ = 0.98)

1 BIND maintains separate entries for cached data and for data read from the file. We assume the cached entry

and its TTL is long enough.
2 BIND also penalizes those who had earlier chances but have not responded. This algorithm is omitted in this

analysis for simplicity.

91

●
第
6
部

Ｄ
Ｎ
Ｓ
の
拡
張
お
よ
び
運
用
環
境

W
I

D
E

P
R

O
J

E
C

T
2

0
0

2
a

n
n

u
a

l
r

e
p

o
r

t
●第 6部 ＤＮＳの拡張および運用環境

y = 1 − log(0.7 + 0.3x)

log 0.98
(2.6)

Figure 2.4 plots how selection cycle y changes

with varying response time factor x. We also plot

(y = x) and (y = x2) for comparison. (y = x)

corresponds to the reciprocal algorithm.

0

50

100

150

200

0 20 40 60 80 100

y
(c

yc
le

 le
ng

th
)

x (response time factor)

1 - log(0.7+0.3*x)/log(0.98)
x

x**2

Fig. 2.4. the server selection cycle of BIND-8

with varying response time

The BIND-8 algorithm employs a concave func-

tion instead of a linear function. Intuitively, it

magnifies the difference when a server is close, and

minifies the difference when the server is far away.

This prevents the access probability of a far server

from being too small. It allows a user to keep track

of all the servers, and is suitable when the server

set is relatively small as is the case for DNS. On

the other hand, if the server set is large, a con-

vex function is suitable to ignore far servers. It is

also an effective way to reduce the effect of poorly-

performing servers.

A concave function of BIND-8 also has a bias to

select the nearest server more than a linear func-

tion. The BIND-8 algorithm seems to be a little

aggressive to segregate near servers. When the

distance ratio of two servers is 1 : 2, the ratio of

their access probability is 1 : 0.07. When the dis-

tance ratio is 1 : 5, the access ratio is 1 : 0.025.

One way to distribute the load more to other

near servers is to use larger α, although α is the

weight for moving average and larger α means

slower convergence. If α is set to 0.9 instead of

0.7, the access ratio becomes 1 : 0.18 for distance

ratio 1 : 2, and 1 : 0.056 for distance ratio 1 : 5.

On a side note, the BIND-8 implementation di-

rectly applies Equation 2.2 to srtt for aging, and

does not keep track of the real measured response

time. It might be useful to have a separate vari-

able for the purpose of server selection since the

response time can be used for other purposes such

as identifying a malfunctioning server.

BIND-9

The algorithm of BIND-9, version 9.2.1 or be-

fore, is a variant of the best-server algorithm. The

latest version of BIND-9 has a same algorithm

as BIND-8. Old BIND-9 implements Equation

2.1 but not Equation 2.2. The srtt parameter

for a name server is initialized to a small random

value so that all name servers are accessed at least

once. However, a recursive server will refer to only

the best performing server, once srtt of the other

servers are recorded.

This could be a problem in some situations. The

algorithm is adaptive only when the best perform-

ing server slows down. It is unable to detect a

situation where the performance of another server

improves. It is possible that a recursive server

switches to a non-optimal server under a short out-

age but never goes back to the best server there-

after.

DJBDNS and Windows Internet Server

The algorithm of djbdns [51] selects one in the

server list randomly, and can be categorized into

the uniform algorithm.

Also, our experiments indicate that the name

server implementation of Microsoft Windows 2000

Internet Server is in this category, although we

could not find any reference to confirm our exper-

iment result.

2.5.3 Evaluation by Root Server Measure-

ment

In this section, we apply different server-

selection algorithms to a data set measured on the

Internet in order to observe their effects to the real

92

W I D E P R O J E C T

6

Table 2.2. the median response time (msec) of the root servers from different locations

Measurement Root Servers
Point A B C D E F G H I J K L M
US(1) 88 22 520 75 16 24 385 80 203 89 163 38 134
US(2) 79 21 545 67 2 2 374 72 183 79 152 24 123
US(3) 72 135 521 315 178 111 499 316 437 71 236 140 105
US(4) 2 70 430 6 64 76 315 4 116 3 79 75 192
US(5) 4 67 477 1 70 82 275 5 135 2 89 92 189
US(6) 22 76 449 9 70 82 200 15 131 23 93 94 192
CA* 140 200 570 140 371 181 461 160 220 120 191 200 330
MX* 110 91 101 100 131 100 290 90 200 81 170 100 211
UK 190 179 542 105 170 170 310 114 57 110 72 184 254
FR 116 188 540 108 193 148 397 152 32 112 32 179 251
CH 96 178 514 112 163 158 258 115 58 96 27 199 300
IT* 200 251 630 150 270 220 347 160 100 170 70 220 331
PL* 170 220 660 140 361 200 361 150 90 150 80 230 356
UA* 180 501 620 440 270 250 620 451 350 160 350 500 590
CN(1)* 280 401 930 220 551 400 591 470 371 480 351 151 421
CN(2)* 750 670 1190 720 250 360 910 720 820 710 521 660 540
KR* 310 220 980 291 281 201 671 290 400 291 360 231 220
JP 178 140 614 169 102 100 430 170 270 170 230 137 1
NZ 209 137 648 202 146 135 434 206 307 201 270 150 160
AU* 360 270 800 381 390 250 705 320 480 321 440 250 200
ZA* 348 388 808 308 489 378 498 298 338 308 378 389 508
KE* 329 359 489 250 - 340 480 369 399 350 360 330 490
DZ* 210 280 630 181 250 250 351 180 140 180 100 280 350
BR(1)* 140 161 541 111 161 151 101 101 211 101 181 181 251
BR(2) 140 198 555 149 190 194 327 125 248 141 216 196 303
AR 171 203 613 163 222 220 364 167 270 163 243 203 322
CL* 140 220 571 140 210 180 481 140 250 140 220 181 310

environment. From the response time of a set of

servers, we can derive the expected load distribu-

tion and the expected average response time for

each client with the different algorithms.

Note that the simulations are used merely to

observe the effects of different server selection al-

gorithms in more realistic situations. Because of

the limitations of the data set used for simulation,

the results are not intended to show specific DNS

issues on specific locations or their response time.

Measurement Data

The data set includes the response time of the

DNS root name servers measured from different

locations around the world. Currently, there are

13 root name servers named from ’A’ to ’M’; 6 in

the East Coast, 4 in the West Coast, 2 in Europe,

and 1 in Japan.

The measurements were collected from 27 loca-

tions around the world in May and June, 2002

[166]. It uses an active measurement tool which

sends DNS queries to the root servers and mea-

sures the response time. For locations where set-

ting up the tool is difficult, dialup from Japan is

performed, and the results are compensated for

the delay caused by the dialup access.

The median of the measured response time for

each root server is shown in Table 2.2. The re-

sponse time differs in orders of magnitude since

the root servers are distributed around the world.

The measurement points are shown by their coun-

try codes. The dialup points have ‘∗’ after the

country code.

Although the measurement points are classified

by their country codes, the data does not necessar-

ily reflect a typical view from the country because

the measurement points are selected based on ease

of access and have different topology and an access

line type to the Internet. The time of measure-

ment also varies for different locations. Nonethe-

less, it shows a real view of a set of servers observed

from different locations around the world.

We do not use information of response loss in

our simulation since there is no standard or simple

way to reflect the loss rate. However, response-loss

is an important factor to select a server. Even if

the response time is small, the loss rate could be

high for a server. Obviously, such a server is not

good. To take BIND-8 as an example, BIND-8

penalizes srtt by 20% when it does not receive a

93

●
第
6
部

Ｄ
Ｎ
Ｓ
の
拡
張
お
よ
び
運
用
環
境

W
I

D
E

P
R

O
J

E
C

T
2

0
0

2
a

n
n

u
a

l
r

e
p

o
r

t
●第 6部 ＤＮＳの拡張および運用環境

Table 2.3. Simulation results of the best-server algorithm

Measurement Load Distribution (%) Response
Point A B C D E F G H I J K L M Time (msec)
US(1) 0 0 0 0 100 0 0 0 0 0 0 0 0 16.0
US(2) 0 0 0 0 100 0 0 0 0 0 0 0 0 2.0
US(3) 0 0 0 0 0 0 0 0 0 100 0 0 0 71.0
US(4) 100 0 0 0 0 0 0 0 0 0 0 0 0 2.0
US(5) 0 0 0 100 0 0 0 0 0 0 0 0 0 1.0
US(6) 0 0 0 100 0 0 0 0 0 0 0 0 0 9.0
CA* 0 0 0 0 0 0 0 0 0 100 0 0 0 120.0
MX* 0 0 0 0 0 0 0 0 0 100 0 0 0 81.0
UK 0 0 0 0 0 0 0 0 0 100 0 0 0 57.0
FR 0 0 0 0 0 0 0 0 100 0 0 0 0 32.0
CH 0 0 0 0 0 0 0 0 0 0 100 0 0 27.0
IT* 0 0 0 0 0 0 0 0 0 0 100 0 0 70.0
PL* 0 0 0 0 0 0 0 0 0 0 100 0 0 80.0
UA* 0 0 0 0 0 0 0 0 0 100 0 0 0 160.0
CN(1)* 0 0 0 0 0 0 0 0 0 0 0 100 0 151.0
CN(2)* 0 0 0 0 100 0 0 0 0 0 0 0 0 250.0
KR* 0 0 0 0 0 100 0 0 0 0 0 0 0 201.0
JP 0 0 0 0 0 0 0 0 0 0 0 0 100 1.0
NZ 0 0 0 0 0 100 0 0 0 0 0 0 0 135.0
AU* 0 0 0 0 0 0 0 0 0 0 0 0 100 200.0
ZA* 0 0 0 0 0 0 0 100 0 0 0 0 0 298.0
KE* 0 0 0 100 0 0 0 0 0 0 0 0 0 250.0
DZ* 0 0 0 0 0 0 0 0 0 0 100 0 0 100.0
BR(1)* 0 0 0 0 0 0 0 100 0 0 0 0 0 101.0
BR(2) 0 0 0 0 0 0 0 100 0 0 0 0 0 125.0
AR 0 0 0 0 0 0 0 0 0 100 0 0 0 163.0
CL* 0 0 0 0 0 0 0 0 0 100 0 0 0 140.0

Table 2.4. Simulation results of the uniform algorithm

Measurement Load Distribution (%) Response
Point A B C D E F G H I J K L M Time (msec)
US(1) 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 141.3
US(2) 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 132.5
US(3) 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 241.2
US(4) 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 110.2
US(5) 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 114.5
US(6) 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 112.0
CA* 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 252.6
MX* 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 136.5
UK 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 189.0
FR 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 188.3
CH 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 174.9
IT* 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 239.8
PL* 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 243.7
UA* 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 406.3
CN(1)* 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 432.1
CN(2)* 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 678.5
KR* 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 365.1
JP 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 208.5
NZ 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 246.5
AU* 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 397.5
ZA* 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 418.2
KE* 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 378.75
DZ* 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 260.2
BR(1)* 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 184.0
BR(2) 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 229.4
AR 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 255.7
CL* 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 244.9

response.

We also do not consider the effects of caching

in our simulation. Caching does not affect the

load distribution but significantly reduces the per-

ceived response time and the traffic.

2.5.4 Simulation Results

The different server selection algorithms are ap-

plied to the measurement data in order to observe

the effects of the algorithms. In addition to the

3 basic algorithms described in the previous sec-

tion, 2 variants of the reciprocal algorithms are

94

W I D E P R O J E C T

6

Table 2.5. Simulation results of the reciprocal algorithm (1/d)

Measurement Load Distribution (%) Response
Point A B C D E F G H I J K L M Time (msec)
US(1) 4.6 18.4 0.8 5.4 25.3 16.8 1.0 5.1 2.0 4.5 2.5 10.6 3.0 52.5
US(2) 1.1 4.1 0.2 1.3 42.8 42.8 0.2 1.2 0.5 1.1 0.6 3.6 0.7 11.1
US(3) 16.6 8.9 2.3 3.8 6.7 10.8 2.4 3.8 2.7 16.9 5.1 8.6 11.4 155.8
US(4) 37.4 1.1 0.2 12.5 1.2 1.0 0.2 18.7 0.6 24.9 0.9 1.0 0.4 9.7
US(5) 12.3 0.7 0.1 49.2 0.7 0.6 0.2 9.8 0.4 24.6 0.6 0.5 0.3 6.4
US(6) 13.1 3.8 0.6 31.9 4.1 3.5 1.4 19.2 2.2 12.5 3.1 3.1 1.5 37.4
CA* 11.2 7.8 2.7 11.2 4.2 8.7 3.4 9.8 7.1 13.1 8.2 7.8 4.7 203.7
MX* 8.3 10.0 9.0 9.1 6.9 9.1 3.1 10.1 4.5 11.2 5.3 9.1 4.3 356.7
UK 5.5 5.8 1.9 9.9 6.1 6.1 3.4 9.1 18.3 9.5 14.5 5.7 4.1 135.6
FR 6.8 4.2 1.5 7.3 4.1 5.3 2.0 5.2 24.6 7.0 24.6 4.4 3.1 102.3
CH 8.3 4.5 1.6 7.1 4.9 5.1 3.1 7.0 13.8 8.3 29.6 4.0 2.7 104.0
IT* 6.9 5.5 2.2 9.2 5.1 6.3 4.0 8.6 13.8 8.1 19.7 6.3 4.2 179.7
PL* 8.0 6.2 2.1 9.7 3.8 6.8 3.8 9.0 15.1 9.0 17.0 5.9 3.8 176.3
UA* 14.4 5.2 4.2 5.9 9.6 10.4 4.2 5.7 7.4 16.2 7.4 5.2 4.4 336.5
CN(1)* 9,8 6.8 3.0 12.5 5.0 6.9 4.6 5.8 7.4 5.7 7.8 18.2 6.5 356.7
CN(2)* 6.0 6.7 3.8 6.2 18,0 12.5 4.9 6.2 5.5 6.3 8.6 6.8 8.3 584.7
KR* 7.5 10.5 2.4 7.9 8.2 11.5 3.4 8.0 5.8 7.9 6.4 10.0 10.5 300.3
JP 0.5 0.7 0.2 0.6 0.9 0.9 0.2 0.5 0.3 0.5 0.4 0.7 93.5 12.2
NZ 7.4 11.3 2.4 7.6 10.6 11.4 3.6 7.5 5.0 7.7 5.7 10.3 9.6 200.5
AU* 7.3 9.8 3.3 6.9 6.8 10.5 3.7 8.2 5.5 8.2 6.0 10.5 13.2 342.7
ZA* 8.6 7.7 3.7 9.7 6.1 7.9 6.0 10.1 8.9 9.7 7.9 7.7 5.9 389.5
KE* 9.3 8.5 6.2 12.2 0.0 9.0 6.3 8.3 7.6 8.7 8.5 9.2 6.2 365.7
DZ* 7.8 5.9 2.6 9.1 6.6 6.6 4.7 9.1 11.7 9.1 16.4 5.9 4.7 213.5
BR(1)* 8.3 7.2 2.1 10.4 7.2 7.7 11.4 11.4 5.5 11.4 6.4 6.4 4.6 213.5
BR(2) 10.8 7.6 2.7 10.1 7.9 7.8 4.6 12.1 6.1 10.7 7.0 7.7 5.0 196.0
AR 10.0 8.4 2.8 10.5 7.7 7.8 4.7 10.3 6.4 10.5 7.1 8.4 5.3 222.9
CL* 11.1 7.0 2.7 11.1 7.4 8.6 3.2 11.1 6.2 11.1 7.0 8.6 5.0 201.4

Table 2.6. Simulation results of the reciprocal algorithm (1/d2)

Measurement Load Distribution (%) Response
Point A B C D E F G H I J K L M Time (msec)
US(1) 1.4 22.7 0.0 1.9 42.8 19.0 0.1 1.7 0.3 1.4 0.4 7.6 0.6 27.1
US(2) 0.0 0.4 0.0 0.0 49.5 49.5 0.0 0.0 0.0 0.0 0.0 0.3 0.0 2.3
US(3) 25.7 7.3 0.5 1.3 4.2 10.8 0.5 1.3 0.7 26.4 2.4 6.8 12.1 111.1
US(4) 55.3 0.0 0.0 6.1 0.1 0.0 0.0 13.8 0.0 24.6 0.0 0.0 0.0 3.0
US(5) 4.6 0.0 0.0 73.9 0.0 0.0 0.0 3.0 0.0 18.5 0.0 0.0 0.0 1.5
US(6) 9.6 0.8 0.0 57.1 0.9 0.7 0.1 20.6 0.3 8.7 0.5 0.5 0.1 16.1
CA* 14.0 6.9 0.8 14.0 2.0 8.4 1.3 10.7 5.7 19.1 7.5 6.9 2.5 175.6
MX* 8.0 11.7 9.5 9.7 5.7 9.7 1.2 12.0 2.4 14.8 3.4 9.7 2.2 107.0
UK 3.0 3.3 0.4 9.7 3.7 3.7 1.1 8.2 32.8 8.8 20.6 3.1 1.7 102.2
FR 3.1 1.2 0.1 3.6 1.1 1.9 0.3 1.8 40.8 3.3 40.8 1.3 0.7 53.1
CH 4.9 1.4 0.2 3.6 1.7 1.8 0.7 3.4 13.5 4.9 62.2 1.1 0.5 56.7
IT* 4.6 3.0 0.5 8.3 2.5 3.8 1.5 7.3 18.6 6.4 37.9 3.8 1.7 134.5
PL* 6.4 3.8 0.4 9.4 1.4 4.6 1.4 8.2 22.7 8.2 28.7 3.5 1.4 135.5
UA* 21.7 2.8 1.8 3.6 9.7 11.3 1.8 3.5 5.7 27.5 5.7 2.8 2.0 271.8
CN(1)* 10.0 4.9 0.9 16.3 2.6 4.9 2.3 3.6 5.7 3.4 6.4 34.5 4.4 287.1
CN(2)* 3.8 4.8 1.5 4.2 34.5 16.6 2.6 4.2 3.2 4.3 7.9 5.0 7.4 479.5
KR* 6.5 12.9 0.6 7.4 7.9 15.4 1.4 7.4 3.9 7.4 4.8 11.7 12.9 269.5
JP 0 0 0 0 0 0 0 0 0 0 0 0 100 1.1
NZ 6.2 14.5 0.7 6.7 12.8 15.0 1.4 6.4 2.9 6.8 3.7 12.1 10.7 177.0
AU* 6.2 11.0 1.3 5.5 5.3 12.9 1.6 7.8 3.5 7.8 4.2 12.9 20.1 304.8
ZA* 9.2 7.4 1.7 11.7 4.6 7.8 4.5 12.5 9.7 11.7 7.8 7.3 4.3 370.0
KE* 9.9 8.3 4.5 17.2 0.0 9.3 4.7 7.9 6.8 8.8 8.3 9.9 4.5 352.8
DZ* 6.6 3.7 0.7 8.9 4.7 4.7 2.4 9.0 14.9 9.0 29.2 3.7 2.4 178.2
BR(1)* 7.8 5.9 0.5 12.5 5.9 6.7 15.1 15.1 3.5 15.1 4.7 4.7 2.4 178.2
BR(2) 13.5 6.8 0.9 11.9 7.3 7.0 2.5 17.0 4.3 13.3 5.7 6.9 2.9 175.8
AR 12.0 8.5 0.9 13.2 7.1 7.2 2.6 12.6 4.8 13.2 5.9 8.5 3.4 204.4
CL* 14.0 5.7 0.8 14.0 6.2 8.5 1.2 14.0 4.4 14.0 5.7 8.4 2.9 177.7
DZ* 6.6 3.7 0.7 8.9 4.7 4.7 2.4 9.0 14.9 9.0 29.2 3.7 2.4 178.2

used; one uses 1/d2 instead of 1/d and the other

uses the BIND-8 algorithm. The simulation re-

sults are shown in Table 2.3 through 2.7.

For each algorithm, the expected load distribu-

tion and the expected average response time are

computed from the measured response time of the

root servers.

Regarding the performance, The best-server al-

gorithm is optimal in this simulation. The per-

formance of the uniform algorithm is poor due to

large variations in the response time of the servers.

For a global Internet service, it is unavoidable that

some servers are located on the other side of the

planet, which is an adverse condition for the uni-

95

●
第
6
部

Ｄ
Ｎ
Ｓ
の
拡
張
お
よ
び
運
用
環
境

W
I

D
E

P
R

O
J

E
C

T
2

0
0

2
a

n
n

u
a

l
r

e
p

o
r

t
●第 6部 ＤＮＳの拡張および運用環境

Table 2.7. Simulation results of the BIND-8 algorithm

Measurement Load Distribution (%) Response
Point A B C D E F G H I J K L M Time (msec)
US(1) 2.2 13.6 0.8 2.5 55.1 11.0 0.9 2.4 1.3 2.2 1.4 5.1 1.6 38.9
US(2) 0.8 1.4 0.4 0.8 45.7 45.7 0.5 0.8 0.6 0.8 0.6 1.3 0.7 11.7
US(3) 27.0 5.9 1.7 2.4 4.1 8.3 1.7 2.4 1.9 27.0 3.1 5.6 9.0 127.9
US(4) 71.3 0.8 0.6 3.9 0.8 0.8 0.5 6.8 0.7 11.8 0.8 0.8 0.6 10.7
US(5) 3.0 0.7 0.4 82.8 0.6 0.6 0.4 2.4 0.5 6.9 0.6 0.6 0.5 8.4
US(6) 5.0 1.6 0.7 69.2 1.7 1.6 1.0 9.4 1.2 4.7 1.4 1.4 1.0 24.8
CA* 12.9 6.5 2.1 12.9 3.1 7.6 2.5 9.6 5.6 20.3 6.9 6.4 3.4 187.6
MX* 7.6 11.2 9.0 9.0 5.8 9.0 2.5 11.2 3.5 14.8 4.2 9.0 3.3 112.4
UK 3.3 3.5 1.5 7.0 3.7 3.7 2.1 6.2 41.3 6.5 15.4 3.4 2.5 108.4
FR 3.0 2.0 1.1 3.2 2.0 2.4 1.2 2.4 38.0 3.1 38.0 2.1 1.6 67.9
CH 3.3 1.9 1.0 2.8 2.1 2.1 1.5 2.8 6.1 3.3 69.9 1.8 1.4 62.2
IT* 4.0 3.1 1.5 5.8 2.9 3.6 2.4 5.2 11.9 4.9 48.7 3.6 2.4 136.6
PL* 5.4 3.9 1.6 7.2 2.4 4.3 2.4 6.5 20.0 6.5 33.7 3.7 2.4 145.9
UA* 19.3 3.4 2.8 3.8 7.6 8.6 2.7 3.8 5.1 31.6 5.1 3.4 2.9 281.5
CN(1)* 7.0 4.3 2.0 11.1 3.0 4.3 2.9 3.6 4.7 3.5 5.1 44.6 4.0 283.5
CN(2)* 3.8 4.2 2.4 3.9 44.4 11.3 3.0 3.9 3.4 3.9 5.8 4.2 5.6 465.2
KR* 6.4 12.2 1.9 7.1 7.5 15.3 2.6 7.1 4.5 7.1 5.1 10.9 12.2 285.7
JP 0.5 0.5 0.4 0.5 0.6 0.6 0.4 0.5 0.4 0.5 0.5 0.5 94.1 13.4
NZ 6.4 14.3 1.9 6.4 12.0 14.3 2.7 6.4 3.8 6.4 4.4 11.4 9.8 189.0
AU* 5.9 9.8 2.5 5.5 5.4 11.4 2.8 7.1 4.1 7.1 4.6 11.4 22.3 316.4
ZA* 8.8 7.2 2.9 11.3 5.0 7.5 5.0 12.0 9.2 11.2 7.5 7.2 5.0 378.4
KE* 9.3 8.0 5.1 18.8 0.0 8.8 5.1 7.7 6.7 8.3 8.0 9.3 5.0 353.4
DZ* 5.7 3.9 1.9 7.0 4.5 4.5 3.1 7.0 11.4 7.0 37.0 3.9 3.1 180.7
BR(1)* 7.2 5.8 1.8 11.7 5.8 6.5 14.5 14.5 4.1 14.5 5.0 5.0 3.4 140.9
BR(2) 12.6 6.6 2.2 11.0 6.8 6.6 3.4 17.3 4.8 12.6 5.7 6.6 3.7 184.1
AR 11.5 8.0 2.3 12.6 7.0 7.0 3.6 12.1 5.2 12.6 6.0 8.0 4.2 213.4
CL* 13.4 5.8 2.1 13.4 6.1 7.8 2.5 13.4 4.8 13.4 5.8 7.8 3.8 189.2

form algorithm.

As for the load distribution, Table 2.3 shows

that B, C and G root servers are not used by the

best-server algorithm. This is due to the fact that

the measurement points are very limited in our

data set, and it is unlikely that these servers are

not used in the real environment even if all the

users use the best-server algorithm. Still, the al-

gorithm is sensitive to the server locations, and

the results indicate difficulties in arranging server

locations.

When the 3 variants of the reciprocal algorithms

are compared, there is a trade-off between perfor-

mance and load distribution. Better load distri-

bution is obtained in exchange for poorer perfor-

mance. As explained in section 2.5.2, the BIND-8

has a bias towards the best-server but still access

far servers more than the other two. The 1/d2

algorithm has a strong bias against far servers.

We believe that the BIND-8 algorithm is fairly

reasonable in terms of both performance and load

distribution. The best-server algorithm in old

BIND-9 is good for performance when the system

environment is stable. However, it is not flexible

in the face of a condition change and the behav-

ior is not predictable when uncertainty exists in

the environment. The uniform algorithm in djbdns

or Microsoft server is suitable if the performance

does not matter or if all servers show similar per-

formance to all users.

Currently, BIND-8 has the majority of the in-

stalled base of name servers but the share of old

BIND-9 and Windows Internet Server is increas-

ing. If the best-server algorithm or the unform

algorithm becomes dominant, it could have an im-

pact to the stability of DNS. On the other hand,

it could contribute to the stability of the DNS ser-

vice to improve server selection algorithms in DNS

implementations.

It should be noted that DNS is a unique ser-

vice for its importance as an Internet infrastruc-

ture and for its unparalleled scale. In addition,

the maximum number of authoritative servers for

a zone is currently limited only to 13 to fit a re-

sponse into a single packet with the minimum size.

Among name servers, the root and top level do-

main servers have special significance. The en-

tire system of DNS relies on these servers that

need to serve the whole Internet. The root servers

currently processes about 5,000 queries per sec-

96

W I D E P R O J E C T

6

ond [104].

Therefore, our discussion on DNS and the root

servers is not necessarily applied to other services

on the Internet. Still, we believe that understand-

ing the issues is essential for possible future ser-

vices with the same level of scale as DNS.

2.6 Conclusion

We have identified that a server selection mech-

anism plays an important role in server placement,

and evaluated different server selection algorithms

from the operational point of view. In a real envi-

ronment, simple methods such as the best server

selection or the uniform server selection may not

work as expected due to uncertainties of the work-

ing environment.

For large-scale Internet services, the following

properties are needed for a server selection algo-

rithm. (1) An algorithm prefers servers with bet-

ter performance. It is not only for performance

but also allows server placement to control load

distribution. (2) An algorithm sends equal load to

2 servers if their performance is equal. This pre-

vents oscillations between 2 servers. (3) An algo-

rithm adapts to condition changes. The reciprocal

algorithm or its variant satisfies these properties

and is more suitable for Internet services.

Then, we have examined practical issues by

looking into the different server selection algo-

rithms of the existing DNS implementations. The

effects of the different algorithms are shown by

simulation using measurements of the DNS root

servers.

The results indicate that it could contribute to

the stability of the DNS service to improve server

selection algorithms in DNS implementations. As

DNS becomes increasingly important as an infras-

tructure of the Internet, it is time to seriously

study server selection algorithms in DNS imple-

mentations.

第 3章 DNSトラフィックの計測

3.1はじめに

WIDEプロジェクトはインターネット上の名前を

管理するための DNS(ドメイン名サービス) を運用

している。その DNS では、トラフィックを長期的

に観測し、その傾向や新技術の普及具合の調査に利

用されている。本報告書では、日本を示す jpドメイ

ンの名前空間を管理するサーバの 1つを対象とした

トラフィック計測の結果を報告する。

3.2 JPドメインの DNS

DNSとは、IPアドレスとコンピュータのドメイン

名 (名前)を相互に変換するためのサービスである。

DNS のサービスを行うコンピュータをネームサー

バと呼ぶ。ドメイン名は階層構造で管理された分散

データベースになっている。

今回計測を行ったネームサーバは、jpドメインを

管理するサーバ群の 1つである。jpドメインは末尾

に “jp”の文字 (日本を示すカントリーコード)を含

む、日本国内で多く利用されている多くのドメイン

名である。仮に、jpドメインを管理するネームサー

バが全て利用できなくなった場合には、末尾に jpを

含むドメインは全て利用できなくなる。このため、

jpドメインはネットワーク的な位置や負荷分散、地

理的な分散を考慮した複数台のネームサーバによっ

て管理されている。今回は、このうちの 1台である

WIDEプロジェクトが管理するネームサーバのトラ

フィックを収集し、いくつかの調査を行った。

3.3計測目的と計測内容

JPドメインを管理する DNSの計測は、以下のよ

うな目的で行われている。

• ネットワークリソースの消費量を監視する
• 新たな DNS技術の利用状況を調べる

• サーバの配置やネットワーク構成を改善する際
の参考となる情報を得る

計測では、DNS のパケット 1 つ 1 つを解析して

いる。これにより、単純なパケット数やネットワー

ク帯域を調べるだけでなく、メッセージの具体的な

97

●
第
6
部

Ｄ
Ｎ
Ｓ
の
拡
張
お
よ
び
運
用
環
境

W
I

D
E

P
R

O
J

E
C

T
2

0
0

2
a

n
n

u
a

l
r

e
p

o
r

t
●第 6部 ＤＮＳの拡張および運用環境

図 3.1. ネットワーク構成

内容を統計的に解析することができる。

現在は運用状況の把握や改善のための資料として

計測結果を利用している。しかし、今後は計測結果

から新しい研究成果を得られるように、様々な解析

を行っていく予定である。

3.4計測の方法

計測は、スイッチ機器のポートコピー (ポートミ

ラーリング)を用いて、ネットワーク上に流れるDNS

トラフィックを別の PCを用いて採取する方法を用

いた。図 3.1にその構成を示す。

流れるパケットは、PCでキャプチャし解析プログ

ラムを通される。解析プログラムは、得られたデー

タを蓄積し、Webを経由してグラフの形で閲覧可能

にするシステムを構築した。

3.5計測データ

3.5.1ネットワーク帯域

DNSのトラフィック量を計測した結果は図 3.2の

ようになる。アクセス元の長期的な統計は現時点で

は行っていないが、短期的な観測では、アクセス元

はやはり日本国内が圧倒的に多い。

図 3.2. DNSトラフィック量の推移 (帯域 bps)

サーバに対する問い合わせの数は、日を追うごと

に僅かながら増加している。ただし、8 月下旬頃か

らとあるサイトから正常で無い多数の問い合わせを

問い合わせが発生しており、実際に正しく処理され

ている問い合わせ数はグラフより若干少なくなる。

上記の正常でない問い合わせは、JPドメインを観

測する複数のサーバで観測されており、恐らくプロ

グラムの設計あるいは設定のミスと考えられる。

3.5.2問い合わせ数

図 3.3に示すように、DNSサーバに対する問い合

わのグラフはネットワーク帯域のグラフと異なる。

帯域のグラフではあまり目立たなかったが、10月と

11月の部分に問い合わせ回数が極めて多い期間があ

98

W I D E P R O J E C T

6

る。この時期はちょうど、昨年 10月のルートネーム

サーバに対する攻撃の時期と重なり、攻撃の影響で

DNSのトラフィックが増加したものと考えられる。

11月にも同様な影響が出ている。これの原因に関し

ては調査中である。

図 3.3. DNSサーバ問い合わせ回数

3.5.3 IPv6の利用割合

IPv6は、次世代のインターネット標準プロトコル

として現在普及が進められている。アドレス空間の

拡大など、従来の IPv4が持っていた仕様上の問題を

見直し、豊富なアドレス空間で、IPv4アドレスの不

足の問題などを解決することができると言われてい

る。しかしながら、現在のところ、IPv6はそれほど

普及していないため、DNSのために IPv6を利用し

ている例は少なく、IPv4の、およそ 1/400～1/600

程度にしかすぎない。

現状では、ほんの一部で利用されているだけの IPv6

だが、徐々に増加していくと考えられる。IPv6普及

度合いを示す一つの指標として長期的な観測を続け

たい。

3.5.4 EDNS0

EDNS0は、現在のDNSに対する拡張仕様で、UDP

の場合には従来 512バイトだったサイズ制限を無く

す目的などに利用される。著名な DNS 実装である

ISC BINDのバージョン 9以降ではこの EDSN0が

実装されており、ユーザは増加している。

実際に、全ての Query中で EDSN0のオプション

を含むものをグラフにすると図 3.4のようになる。全

体の 3割から 4割が EDSN0を含んでいる。この技

術も IPv6と同様に今後増加していくと考えられる。

図 3.4. DNSサーバ問い合わせ (EDSN0)

3.6考察

全体的なトラフィックの総量は、僅かながら増加

を続けている。汎用 JP ドメインの増加により、今

後も JP のサーバに対するアクセス数は増加すると

考えられる。計測は今年度から行われいるため、他

の年度との比較はできないが、今後も計測を続け、長

期的な観測を行う予定である。来年度以降も計測項

目を増やしながら計測を続けたい。

3.7今後の予定

昨年 10月に、世界中に存在するルートネームサー

バに対して、大量のトラフィックが送りつけられ、

名前解決のサービスの一部に障害が生じた。今後は

更に大規模な攻撃が起こりうる可能性があり、また、

特定の国家を対象とした特定 ccTLD に対する攻撃

も存在しうる。

こうした攻撃にいち早く対処するためには、通常

から異常なトラフィックの観測を続けることが重要

である。そこで、現状のトラフィック内に含まれる

異常な Queryや Updateのメッセージを観測し、攻

撃の検知や間違った設定のサーバ・実装に対して問

題を報告可能な観測を行いたい。

99

●
第
6
部

Ｄ
Ｎ
Ｓ
の
拡
張
お
よ
び
運
用
環
境

