1 X0

JUoooooobobobboooid

W I D E

0100
gbobooooobbooogon

010 0OO0OoOoocoooooooOoobooooooo
od

110000

gooobooobooooboobooobooooooo
goobooooooooboooooboooooboog
gooooooboooobooobooboobooog
gooooooboooobooobooboobooog
gooooooboooobooobooboobooog
gooooooboooobooobooboobooog
O MPEGO I0OoOoOoOooooooooonDg
goooooobooooboobooboobooog
goooooobooooboobooboobooog
goooooobooooboobooboobooog
goooooobooooboobooboobooog
goooboooboobobooooboo gorpOd
gooooooooobooobobooboooboog
oooooooooo

gobobooobooboobooboobooooobo
oopoooo

e 00O DOODOO

e JO0J0IDOOODOODODOO
020000000000000000000 ARQ:
Automatic Repeat reQuestU0 000000000
TCpOOOUOOOODODODDODOOOOOOODDODDO
gooooooboooboobobooboooboo
gooooooboooboobobooboooboo
ooobooo0o0b0obOobO0O0dFEC: Forward
Error Correction00 000000000 OOOOO
gooooooooobooobobooboooboo
gooooooooobooobobooboooboo
gooooooooobooobobooboooboo
oopoooo

gooooooooooboboooooboobooo
gooooooooobooobobooboooboo
gooboooooooooooorepbbboOO
gooooooobooobooobobooboooboo

gooooooooooooooboooooooo
gooooooooooooooboooooooo
gooooooooooooooboooooooo
goboobooboosblbobboOOObOOOOOOOBbO
gooooobooooooooobooOoooooo
gooooobooooooooobooOoooooo
ooooooooobooooooooooboooboobooo
gooooobooocoooooooo
oo0O0oooooOO000dooRMOReliable Mul-
ticastUO OO0 O0OOOOOOOCOOOOOODOOO
gooooooooooooooboooooooo
OO0 ARQUOOOOOO0O000O0O0O0DOOOOO
gooooooooooooooboooooooo
gooooooooooooooboooooooo
reCcOOOOOO0OO0OO0OO0OOoOooooOoboOoooooo
gooooobooooooooobooOoooooo
recOO0O0O0ooooooooood
ooOorecO0Ogoboooooboooooobooboobo
goboboooboboooboobooobobooooooboao
gboobooobooobobooboooobooooboo
gboobooobooobobooboooobooooboo
goooooooooooooobOoOorFECOOO
gboobdoooobobooboooboobooo
obdoooobooboooboobooooboooo
gbooboooobobooboooobooooboo
gbooboooobobooboooobooooboo
gbooboooobobooboooobooooboo
gbooboooobobooboooobooooboo
gbooboooobobooboooobooooboo
gbooboooobobooboooobooooboo
gbooboooobobooboooobooooboo
gbooboooobobooboooobooooboo
gbooboobooo
obdoooobooboooboobooooboooo
gbooboooobobooboooobooooboo
O reECOO00O0O0O0O0O0OCOO0O0OOOO0DOOG
gboobooooobobooboooobooooboo
gboobooooobobooboooobooooboo

143

PR OIJECT

oooooooooooooooo ogoe

el] 100 OO0ODOOOOOOOOOOODOOO

l2FECOO0OO0000000000
recid00oooooooooooonooonn
coooooooooooooooobooooooo
coooooooooooooooobooooooo
cooooobooooooooooboooooooon
coooooooooooooooobooooooo
coooooooooooooooobooooooo
coooooooooooooooobooooooo
coooooooooboooooooboooo
oooooooocoooooooobooooooo
coooooooooooooooobooooooo
coboooooooboOooooooOoooOoOooobooon
coooooooooooooooobooooooo
coooooooooooooooobooooooo
coooooooooooooooobooooooo
cooobooooobooboooooOoOoOoOoOooooboooo
coooooooooooooooobooooooo
coooooooooooooooooo1000
obooooocoooooboooooOobo10b00Oon
coooooooooooooooobooooooo
cbooooooooooooooooobooooooo
coboocooooobooooOoooooooooooon
ooooooooooooooooobooooooon
ooooooooooooooooobooo
goooooooooooOoOoOoOorECOOOO
ooooooooooooooooobooooooo
coooooobooooooooooboboboooooon
ooooooooooooooooobooooooo

AN ON

Ay @7

SNy b@ T

Ay G

| |
| |
’ RYMIYCE ‘
| |
| |

011 0O0OO0OOOCOOOOOOCCO

144

) - MR b x
v T
K 2]

i
h

AT iy —

L [a17 T HE J‘ [l AHE J‘ [AHE J‘ =17 ATHE J

FEC 2 & 2 [FIfi

&
]
o

5
A

— JUUUT Ity

7 EREORT (7 -4 d=n 1)

012 00000O0O0O0O0OCOOOOOOO0OO0

goooooooo nO00O0O0OOOODDDOO
gooooooobo 0000000000000
gooooooooooooooooo -0000
r/2000000000000000000000
gbobooooooooooooooooooooaon
rO0do0o00c0oooboooooocoooonoag
Un0OO0000O0COOO0O0O0OOCOOOODOOG
ooooooooooooooooo -00000
goooooboooooooooboooooooon
oooooooooooooooon
oooooi12000000000C000O00 3
goooooboooooooooboooooooon
obd200000000000000000 500
gooooooooooooooooooo 200
goooooboooooooooboooooooon
ooooooooooooooooooooon 10
2000000000000O0O0O030400000
ooooooood
FECOOOOOOOOOOOOOOOOOOOO
gobooooboooooooooboooooooon
oooo0oo0ooO0O FECOOOOOOOOOOCGO
goooooboooooooooboooooooon
goooooboooooooooboooooooon
goooooboooooooooboooooooon
goooooboooooooooboooooooon
goooooboooooooooboooooooon
goooooboooooooooboooooooon
goooooboooooooooboooooooon
goboooooooooooooocoooooon
oooooooooooooooobooOoooo
goooooboooooooooboooooooon
0000000000000 000 [151, 13900

cooooooooooooooooboboooooo
coooocooooobooo rECOOOOOOO
coooooooooooooooboboooooo
coooooooooooooooboboooooo
coooooooooooooooboboooooo
ooooooooooboooo
oooooooooooo 00000 ro0000O
oooooboob s0b0000d=n—-—r 0000
coooooooooobooboooo -oooooo
cobooooooobooooooooooooooo
coobOoooooooobooOoOoOoooooooo
cooooooooooooooooboboooooo
cooooooooooooooooboboooooo
coooooooobooo
ooooooobocooooooobooooooo
cobooooobooboooooooOoooOoOooooo
cooooooooooooooooboboooooo
cooooooooooooooooboboooooo
cooooooooooooooooboboooooo
cooooooooooooooooboboooooo

130000o0o0o0o00d

gobooooooo FrECOOOOOOOOOO
bobooobooobooboobobooboobooobog
bobooobooobooboobobooboobooobog
bobooobooobooboobobooboobooobog
O000o0ooooooooooooo (151, 139]
bobodooboobooboobobooboobooobodg
bobodooboobooboobobooboobooobodg
bobodooboobooboobobooboobooobodg
bobodooboobooboobobooboobooobodg
bobodooboobooboobobooboobooobodg
bobodooboobooboobobooboobooobodg
bobodooboobooboobobooboobooobodg
uobooooboobooboooda

gbobooboobooobooboboobooooobo
bobodooboobooboobobooboobooobodg
bobdoooboooboooooboboob10o0oo0a
oooobooooooboobodo pbO0odddn
oooooooooooooboooo k000o0o0o
obodobooodo pbOoOobbOOOOnd
ooooooooooo kbobobooooooooo
boboooboobooboobobooboobooobog
ubobdoob pbbO0b0ObOOO0ObOOOOOOObOO

W I D E

B’IK

FRN\vIR—Y SINET PN

1.5Mbps
DR1500

CIsCo
00

Ay
=0
{ freebsd

celeron300
AEY64k

2IEVIH

M3 EER AT LD

013 0O0O0O0O0OOOOO0OO

ggoooooooogonoOOO0O0O0oo0obO 00400
obod k<rgbboooobO0O0Oks>r00on0o0O
gobooooo
ddooooooooooooooooobooon
gogoooooooobooooooooboobooooooo
gooooooz2oooooooobbobooooo
gooboooooobobooooooooooooooo
ubpUOOOOOO0ODOOOOOODOOOOOODOO
gooooooooobboooooooooooo
gogoooooooboooooooooooooo
goboooooooooooboooomoooooo
gooooooooobooboobbobooboooooo
gooooooooooobooboboooooobooo
goO0OSINETOOOODOO0OOO0ODOOOODOOOO
gooOooobooooboOo SINETDOOODOOO
goomoboilsMbpsOOO0OO0OOOOODOO
OSINETOOOOOO0OO0O0O0O0000 1.3mo00o
UubPOOO0O0O0O 130byted UDPOOOOO 10ms
gooooooooooOobooooO0O00 30byte
gooooooooooood 160byted 0000
128kbps0 OO OO0O0O0OO0OOOOOOOOOO
00 160 x 8 bit/10 ms = 1280 x 1000 bit/s = 128 kbps[
goooooboooooooooboooooooon
oooooooooooocooooooooooon
goooooboooooooooboooooooon
goooooooogoo rze000020000000
ooooooooi0o000000000000
01100 1200000000000 0O00) x
(boooOo)oOooOoooOooOoooOoooooo
gooooooooooooooooood 1000
goooooboooooooooboooooooo

145

PR OIJECT

oooooooooooooooo ogoe

el] 100 OO0ODOOOOOOOOOOODOOO

0 1.1. SINETOOOOOOOOOOOOOOOOOO128kbpsd20byte/0 0000
od oo od g ooo ooad ooo(@oo)
1 100 90 13:300 15:30 | 720000 | 40972 0.0561 | 6
2 100 100 14:300 16:30 | 720000 | 99200 0.1378 | 14
3 100 110 15:3000 17:30 | 720000 | 53063 0.0737 | 8
4 100 15 0-1 | 13:300 15:30 | 720000 | 35123 0.0488 | 5
5 100 15 0-2 | 16:000 18:00 | 720000 | 49715 0.069 6
6 100 16 O 13:000 15:00 | 720000 | 6666 0.0093 | 1
7 100 17 0-1 | 13:000 15:00 | 720000 | 34991 0.0486 | 5
8 100 170-2 | 15:000 17:00 | 720000 | 89162 0.1238 | 13
9 100 170-3 | 17:0000 19:00 | 720000 | 10486 0.1456 | 2
10 100 18 0J-1 | 13:000 15:00 | 720000 | 38245 0.0531 | 6
11 100 18 0-2 | 15:0000 17:00 | 720000 | 18868 0.0262 | 3
0 1.2, SINETOOOOOOOOOOODOOOOOOOG4kbpsO20byte/O0 0000
od goo ao oo goo obod
12 10 250-1 | 14:000 14:30 | 720000 | 18892 0.026239
13 10 250-2 | 15:000 15:30 | 720000 | 111077 | 0.154274
14 10 250-3 | 17:000 17:30 | 720000 | 15676 0.021772

coooooooooboooooo

1400000000000

gbobooboobooboobbooboooooo
ddooooooooobooooboboouoooooo
vbobooobooboooboobobooboobooobog
vbobooobooboooboobobooboobooobog
vbobooobooboooboobobooboobooobog
vbobooobooboooboobobooboobooobog
oboboooooboooobooobo

goboooboooo poobobooooboboobo
gobobobocooboboooobooooooon 300 ms
bobodooboobooboobobooboobooobodg
oobooooobooobouobobO e4kbpst 00O
omoooob 20byte000O00O0OOODOOO
Oo0oo0oooo4o00/000000000000
300msU00 12000000000000000O
tdoooooooooooooooooboboood
ooboooooobo12o00000FECOOODO
vboboooooboobooobooboobooobog
obodobbooobodb 10ms0O0 30ms U
goboooboooooodooboobbooood
3o00msUbboooooooooooooboooon

146

Obdde4kbpsOOOOO20byte 00 OOOO0O
goooobooobooooooooobooboooooo
li1bodboooooooboboboboboooo
goboob1l2b00000bobo00oboooooobooo
gbooooooooooob pgbbOooboo
0000/Oo00o0oU0ooooooooooog
gboobooooobobooboooobooooboo
gboobooooobobooboooobooooboo
14000 1600000000000C0O00O0O0O0O
gobodoooooobodoowoxpbboboog
gbooboobooboooboobooooboobood
gbooboobooboobooboodob 100
gbooboooooboboboooobooooboo
4000 vo0oboboooooooboooboooo

#H12

08 [~ =5
o o cmsd [

BEHAXEHZTOvHDE|
Py
)

0 20 40 60 80 100
WEITOVIRDBER

coooooooooboooo

#FK13

07 | ——EAT—%
06 = AL
0.2

01 [a

0

0 20 40 60 80 100
MET OV IROIEEE

HEHANE ﬁfajﬂw’)ﬂ)ﬂ

U 1.5. JOoooooooobooobd

#X14

®=

g 09

a0 —~—ETF—%
noo | = —E5%
:S@ 05

H 04

% 03

& 02

oL

0 20 40 60 80 100
n\BIOYHROIERK

016 0O0OO0OO0OOOO000000O000O0O00

; BAR1
§ 09
a o ~—RATF—5
™ . = ZIBNH
@ g 06
8= 05
@ﬂ'ﬂ
% 04
g 03
g o2
w01

0

0 20 40 60 80 100
n\EIOVHRDELRE

017 0O0000O00O1000000000000

#BA2

©

|—— %3501 |

—=— %52

©

BRENEHZIOVIDE
coocoBoooo

o=NMwaT O
T

20 40 60 80 100

o

MEITOVIROEER

018 0O0OO0O0O0O0OO1m0000000000O0O

ooooooooooooooooooooooon
ooooooooooooooooooooooon
ooooooooooooooooo
oomooooooooooooobooobdoon
oooooobooobooooobooooobooooooon

W I D E

ooooooooooooooooooodMPEG
gboooboooooooonol28kbps00OO0OO
goooooboooooooooboooooooo
obobooboUbomsOOO0OOO0OOO0OOOOCOOO
UubPpUOO0O00 10000000 130byted 0 d
obooboobooooooobDieobyteooono
128kbps DO O OOOOOOOOOOOODOOOO
gooooobooooooooobooOoooooo
oooooooooooocoooObD 1000500
gobboobobobomsO0OOOOCOOO0O1IO
oooooooooo0ooooooobobooooo
goobiobboOoooboboboboboobooooo 1o
1100 oo 0O0O0O0O0OOO00OOCODOOOOOOOO
gooooobooooooooobooOoooooo
goooooooooooooooo pOOCDOOO
gooooobooooooooobooOoooooo
1700 1.800C0OOOOOOOOCOObbbO
goboooboooooooooo wwoxpooon
goooooooobooooboooobooooooooo
gooooooooooooooboooooooo
gooooooooooooooboooooooo
gooooooocoooooooobooo
ubobdoooobooboooobooboooboooo
gboobooooobobooboooobooooboo
gboobooi1boboooboobooooo
gboobooooobobooboooobooooboo
gboobooooobobooboooobooooboo
gboobooooobobooboooobooooboo
gboobooooobobooboooobooooboo
gboobooooobobooboooobooooboo
gboobooooobobooboooobooooboo
gboooobooobooboooboobooboo oo 3
gboboirooooobooobooooboboooo
gbi1otobolinloooooobodoobooo
gboobooooobobooboooobooooboo
otboboobooboools3bosbbbbOOOO
gbooboooooboboboooobooooboo
goooooboobooooooobobooooooooo
gbooboooooboboboooobooooboo
gbooboooooboboboooobooooboo
gbooboooooboboboooobooooboo
gbooboooooboooo

147

PR OIJECT

oooooooooooooooo ogoe

el] 100 OO0ODOOOOOOOOOOODOOO

=3} >3
1 1
09 0.95
08 09
07 085 Py
W 08
% y LA “_‘H 07
04 2T 0.65
03 Y 06
02 0.55
01 . 05
0 = N 0 200 400 600 800 1000
0 20 40 60 80 100 120 WEIOVIR D7
B
019 O0OO00O0O0O0OO0O0O0O 0 1.12. OJ0O0OODOOOOOOOOOOOOOd
e Op=0.05610
;A2 BA2
1 1
0.9 0.95
0.8 0.9
0.7 0.85
% 0.6 M 08
{E: 05 ; #E 0.75 1
P] y =
T LA 08
02 K1 WM " 055
% [VA] Vi W S T o 05 ‘ ‘ ‘ ‘
0 20 40 60 80 100 120 0 200 400 600 800 1000
HR WIBTOYIRD Ay
01.10. O0OO0OO0OO0OOOOOOOO 01.13. O00O0OO0ODODOOODOOOOOOOOOad
Op=0.137801
A3 b]
0s 1
’ 0.95
o 09
! 085 #
\ 06 A
% 05 B 08 Q-
" 04 1LI!F 075 \
0:3 07 e
02 0 - . 0.65
0.1 o/ p] R w“w n ‘ L AN ‘.‘ 06
0 Wl L Y L YL | 055
0 20 40 60 80 100 120 05
Sk 0 200 400 600 800 1000
WEITOVIRD /4y L

0111 0000O0OOO0OO0OO0OOO

ISFECOOO00000O0O0O000000D0
ooooooboOooOooOooOooOoOOOrFECOO
cooobooooooooooooooooooooo
gooooooooooooooon
1. 000o0000oooooooooooobn
ooooo
2. 0Jgooo0o0ooooooooooobooboooo
oooo
3. Job00oooooooooooboooooog

148

0114 0000O000O00COO0OOCOOOO
Op = 0.07370

ooooooooooooooooooboooo
4. 00000000O0100000 10000 100
ooooooowodooo 200000 1000
ooooooooon
5. 0000000000 0090%099.0%099.9%0
ood
oooooooobooooooooooooooo
gooooooooooooooboooooooon
O0oo0o0oo{ooooooooooooog

W I D E PR OIJECT

#/E
@ 1 T —
= " ——9g%
g 08 99.90%
w06 -
§
g W
o2
=}
™ o
0 100 200 300 400 500 600 700 800 900 1000
MBI Ov) ROy
#A2
@ 1. —e—90%
w —=—399%
@ 08 99.90%
W 0.6
I k“‘_,“
S 04
£
Q02
o
[
0 200 400 600 800 1000|
WEITOVIRD Uy
A3
a 1 ——g0% |
® —=—g9%
g 08 r 99.90%
W06 -
3
S 04
& otoornane—,
Ro2
o
]
0 200 400 600 800 1000|
WBTOYIRD Ay bE
0 115 00O0OO0OOOOoOOObDOObDOOn
ooo 1-30
EXR4
@ ——90%
= —=—99%
g 08 99.90%
W 0.6
E
04
g
§02 M _
™ o
0 200 400 600 800 1000|
WEIOVIRD /7y
#AS
@ 1 ——90%
= —=—99%
@ 0.8 99.90%
W 0.6
E ~-\'\'~\—-—-—-——-‘_._.“|
04
g7 oo00ttueny o
RNoaz
o
]
0 200 400 600 800 1000|
MBTOYIRD Ay bR
A6
@ 1 ——90%
= —=—99%
g 0.8 99.90%
W o6 —
3
S 04
g
f\‘ 0.2 %—RM
o
nN o
0 200 400 600 800 1000|
WIBITOYIRD /Ty
0116 OO00OO0OO0OO0OODOOODOOOODOO

oo 4-60

#/R7

@ 1 ——90%
® —=—90%
S 08 —
S 1{ 99.90%
¥ 0.6
[
S 04)
£y
Ro2 f"‘”’H—o——O——.—.——o—.—M
a
2
0 200 400 600 800 1000
MEBTOVORD /Ty
#48
@ 1 —e—90%
w —=—g0%
5080 99.90%
w06
[y
S 04 —‘“’h‘»—\
€
Ro2
o
]

0 200 400 600 800 1000
WEITOVIRD, 7y bl

"A9

T —+— 0%
—=—99%
08 99.90%

06
04 L\—¢—l\-——-—-——-—-—-‘4

02

TavIRADTREDEIE

0 200 400 600 800 1000]
WEITOYIRND Ty

0117, 0ooobOOooooooooboooo
ooo 790

ooy ooooooooooooobooDboon
o0} po000oooomooooog
oooooooobomooboooooboooooo
FECOOOOODOOOODOOOOOOOOmMmOO
gooooooooooboooboooooobooo
gooooooooooooooooobooboooon
00000000 /ooooooxooooooo
oooooooooooooooooooon 1.2
Udd114000000000000000000
goooooboooooooooboooooooon
oooooooooooo
oooooooooooooooooboooooo
goooooboooooooooboooooooon
ogobooooo 115000 1avgooooooon
oooooooobobobooooodooooooooo
goooooboooooooooboooooooon
gooooooooooooooon
ooooooobooooooooooobooOoooo
goooooboooooooooboooooooon
goooooboooooooooboooooooon
gooooooooooooooooooooooon
gboboooooooooboobo4o000 700000

149

oooooooooooooooo ogoe

el] 100 OO0ODOOOOOOOOOOODOOO

coooooooooooooooobooooooo
coooooooooooooooobooooooo
oooooooooooooo40000 700000
coooooooooooooooboboooooo
ooooOooo%ilioiooooooooon
cooooooooooooooooboboooooo
oooo

1600
oooocooooooOoOobOOoOoooboboooooo
e 00OODOOOOOOOOOOOOOOO

gooooboooooooooobooooooo
gooooooocoooooooon
e0000O0O00OOODOOOCODOOOODOOOO
goooooooooooooobooooo
oo 20000rFrecO00ooooboooonn
ocoooooooooooooooobooooooo
ooboobborecO0boboooooobbooooo
coooooooooboo
1. 00000obooO reECOO0OO0OOOO0OOn
ooooobobooooboooooobooooobooo
ooooooooooobooboooooboooo
2. 000000000000000000G00OO0O
gobooboobooboooboooobog
g40000 7oodoobooooooooood
gbooobooboooaoo
0o00ooooooooooo 1ng2)ooooo
boboooboooboobooobooboobooog
gobodooboo400b0 000bobooobooOod

9% 00000000 40000000099.9%0

uobooooobstoboooobooooon
gbobooboobooooboboobooobooobo

tbtoto=0000000000000000D0O0
boboooboobooboobobooboobooobog
vdooooobboobooooooboooboood
boboooboobooboobobooboobooobog
boboooboobooboobobooboobooobog
boboooboobooboobobooboobooobog
gooooboobooooooooboooooobobooooo
boboooboobooboobobooboobooobog
boboooboobooboobobooboobooobog
boboooboobooboobobooboobooobog
boboooboobooboobobooboobooobog
boboooboobooboobobooboobooobog

150

gooooooooooooboooboooooooo
gbobooooobooooboooboooooboboooo
gooooobooooooooobooOoooooo
gooooooooooooobooOooooooboobo

0O 20 Design and Evaluation of Dynamic Pro-
tocol Selection Architecture for Reliable
Multicast

2.1 Introduction

In recent years, as Internet gains widespread
use, many applications have been developed.
Some of them aim at group communications
such as teleconferencing tool, software distribu-
tion tool, and so on. If we apply multicast to these
applications, the sender doesn’t have to copy the
data for each receiver and has only to send one
copy of it to the group address because routers
duplicate it to the group members.

In case of Internet Protocol (IP) multicast, the
sender doesn’t need to know who is joining the
group, and receivers can join and leave the group
whenever they want. Although these aspects make
communications scalable, multicast applications
use UDP (User Datagram Protocol) for transport
protocol and have the responsibility for reliable
communications. Then it is difficult to apply these
implementations to other applications because im-
plementations of multicast protocols have been

pushed into application programs.

2.2 Goal of this research

In chapter 2.1, we described the problem of reli-
able multicast. To solve this problem, we progress
the research for realization of generic reliable mul-
ticast architecture[95, 84]. There are three points
to realize versatility.

(1) We have proposed the reliable multicast ar-
chitecture which pulls out the process for re-
liability from multicast applications.

(2) Multicast applications don’t have to select re-
liable multicast protocol because appropriate

protocols to the condition of the network are

selected automatically.

(3) Depending on the network situation, multi-
ple protocols are selected to meet the network
which changes dynamically.

(1) means that the process for reliability is sepa-
rated from multicast applications. We incorporate
protocol stacks into network nodes, and retrans-
mission control, flow control, and so on are exe-
cuted on these stacks. If the process for reliability
are pulled out from applications by (1), each appli-
cation has to select the reliable multicast protocol.
Then (2) and (3) provide the mechanism which se-
lects protocols for applications automatically and
switches protocols in response to the state of the
network.

Section 2.4 and 2.6 describe the procedure of
preparation for the data distribution and the
mechanism of the dynamic protocol selection to

realize the mechanism on (2) and (3).

2.3 Related works

There are some related works which try to

provide generic reliable multicast architecture.
RFC3048[147] suggests Building Blocks which
separate the each function of reliable multicast
protocols into building block. This architecture
provides reliable multicast protocols which is ap-
propriate to multicast applications by combining
these building blocks.

Also, Tajima, Morikawa and Aoyama add
some functions to the routers to support reliable
multicast[157]. In this architecture, RMAC (Re-
liable Multicast Adaptive Caching), routers exe-
cute functions to support reliable multicast by dis-
carding unnecessary both NACKs and retransmis-
sion packets. In addition, by caching data packets
adaptively to congestion and distributing them to
multiple routers, RMAC realizes effective retrans-
mission even if cache size is small.

Compared to these related works, our archi-
tecture is able to provide the mechanism which
switches protocols dynamically. This mechanism
can response to changes of the network condition

as described above.

W I D E

2.4 Preparation for the data distribution

Figure 2.1 shows the procedure of the prepara-
tion for the data distribution. In the following

sections, we explain each item on Figure 2.1.

2.4.1 Acquirement of receiver information

At the beginning, preparatory for the appropri-
ate protocol selection, the sender needs to know
the number of receivers because it selects the pro-
tocol by considering two points, an application
type and the scale of the multicast group.

We use RTCP (Realtime Transport Control
Protocol)[55] receiver report packet to acquire re-
ceiver information. If the sender get this informa-
tion, it will be able to select appropriate protocol

because it knows the application type in advance.

2.4.2 Acquirement of topology information

Topology information is defined as the connec-
tion information of multicast routers. This infor-
mation is used when the aggregation nodes are
decided.

Figure 2.3 shows the format of the topology in-
formation for the network on figure 2.2. In this
example, the sender’s IP address is written on the
first line, and the routers are written in order of
scanning the multicast tree on depth first.

This information is distributed to receivers us-
ing multicast, and all members of the multicast

group shares this information.

2.4.3 Allocation of aggregation nodes

If the number of receivers is large, the control
packets between the sender and receivers put pres-
sure on the bandwidth of the network and prevent
the data transfer which is the intended purpose.
We set two types aggregation nodes on the net-
work, Designate Nodes and Intermediate Nodes.
One designate node is allocated per one segment
and aggregates the control packets from this seg-
ment (Figure 2.4). Intermediate nodes are the
subset of designate nodes and aggregate the con-

trol packets between designate nodes (Figure 2.5).

151

PR OIJECT

oooooooooooooooo ogoe

el] 100 OO0ODOOOOOOOOOOODOOO

|Acquirement of receiver information |

| Acquirement of topology information |

| Allocation of aggregation nodes |

|Protoco| selection |

!

| Program distribution |

| Data distribution |

Fig. 2.1.

data distribution

Sender
|:R0ute:|r C - Receiver
| | | :l Router
Router D Router E Router F
Fig. 2.2. Sample network

topology information

depth address
0 [Sender’s IP address
1 Router A’s
2 Router B's
3 Router D’'s
3 Router E's
2 Router C's
3 Router F's

Fig. 2.3. Format of topology information

152

Procedure of the preparation for the

O

®

Fig. 2.4. Aggregation of control packets by des-
ignate nodes

/\

Router B

®

Fig. 2.5. Aggregation of control packets by in-

termediate nodes

We suggest the way of determining these nodes in

section 2.5.

2.4.4 Protocol selection

When data distribution is started, we think over
two factors to select reliable multicast protocols as
described above. One is the application type, and
the other is the scale of the multicast group. To
select the appropriate protocol, we need to know
an efficient protocol for each application and the
threshold of the scale previously. In our architec-

ture, we use simulation to get these information.

We configure the topology on the simulator along
the actual network topology, and run the simu-
lation on the various patterns about application
type and group scale. It is possible to select proto-
cols to meet the situation of the network by using

these thresholds.

2.4.5 Program distribution

‘We make the process of reliable multicast pro-
tocol library functions to separate these process
from multicast applications. Consequently, appli-
cations don’t have to be conscious of reliability,
and have only to send or receive the data. How-
ever, when the sender decide the protocol to start
data distribution, each node aren’t ready to exe-
cute the process for reliability. Then each node
receives programs of the process from the server
and they execute these programs. This mechanism
uses the concept of active network[91] and is called
programmable switch approach. This mechanism
enables to switch protocols dynamically because
each node is able to receive new programs if the
state of network changes.

These programs are distributed using multicast,
and this architecture needs to guarantee the reli-
ability because all receivers have to receive them.
When the recipients get the program from the
sender, they return ACK (ACKnowledgement)
packet to notify the sender of the reception. Desig-
nate nodes and intermediate nodes aggregate this
packet because the number of ACK packets be-
comes large as the scale of the multicast group

does.

2.4.6 Data distribution

After each node receives the program, the
sender starts data distribution. The receivers who
is joining the multicast group are able to join
and leave this group all the time. The scale of
the multicast group may become larger or smaller
and communication efficiency may go down if one
protocol is used for a long time. Our architec-
ture enables each node to switch protocols halfway

through communications. In section 2.6, we dis-

W I D E

@ Q@ ©

0 "

Router C

x o
[Router D] [Router E| [Router F|

|

4306 Toob

@ - Sender

® - Receiver

E== - ImDesignator packet !

o

|:| - Router(able to become Designate node)
X

:l - Router(can’t become Designate node)

Fig. 2.6. Flow of ImDesignator packet

cuss about the mechanism of dynamic protocol

switching.

2.5 Aggregation nodes

2.5.1 Determining the designate node

One designate node is allocated per one seg-
ment. If possible, the router of each segment
becomes the designate node because the router
doesn’t leave the multicast group. The receiver
who has the smallest IP address among the group
member becomes the designate node in case the
router doesn’t become the designate node.

Firstly, the router sends ImDesignator packet
to his segment using broadcast if possible (Figure
2.6). Secondly, the receiver who has the small-
est IP address sends ImDesigantor packet. Both
the router and the receiver sends this packet, the

router becomes the designator.

2.5.2 Determining the intermediate node
Intermediate nodes are the subset of designate
nodes. We use topology information to decide this
node. Firstly, each designate node checks topology
information and designate nodes of which depth is
the even number become intermediate nodes (Fig-
ure 2.7). Then all intermediate nodes have to de-
cide the management area. In fact, each designate

node needs to know the destination of the con-

153

PR OIJECT

oooooooooooooooo ogoe

el] 100 OO0ODOOOOOOOOOOODOOO

¢ @ 9

Router A
RouterB| |Rout|erC
|[Router D| [Router E| |Router F|

508 0806 &

topology information
0 | Sender’s IP address
1 [Router A’s

2 [Router B’s

3 [Router D’s
3
2
3

Router E's
Router C’s
Router F’s

Fig. 2.7. Determination of Intermediate nodes

S e

%uter A

Router B| |Router C
&T@I
|Router D| |Router E| |Router/F|

508 O%0

black - Intermediate node
XY - ImInterNode packet

Fig. 2.8. Flow of ImInterNode packet

trol packets. Each intermediate nodes sends Im-
InterNode packet using multicast scoped by the
TTL (Figure 2.8). When designate nodes receive

154

this packet, they check the topology information
and select the nearest and upstream intermediate

node as the manager.

2.5.3 Relation between aggregation and
multicast routing protocols

This architecture uses the tree structure to allo-
cate the aggregation nodes. This tree has to corre-
spond multicast routing protocols. There are two
major types of multicast routing protocols. One
type is the rooted tree. The root of the distribu-
tion tree on this type is the sender. Representa-
tive example of the rooted tree is DVMRP[141].
The other is the shared tree.
type is PIM-SM[46].

Example of this
Shared tree type protocol
has a core point (for example, Rendezvous Point
on PIM-SM) and this point becomes the root of
the distribution tree.

In either case, multicast routing protocol has the
root and makes distribution tree using this root.
Our architecture allocates the aggregation nodes
in tune with this tree.

Furthermore, there are two modes in terms of
the expanse of receivers, dense-mode and sparse-
mode. When the receivers are distributed densely,
our aggregation mechanism certainly works. In
case the sparse mode, multicast routers which
has the receivers on its segment are distributed
sparsely. This means that designate nodes are al-
located sparsely. Our mechanism also works on
the sparse mode because aggregation nodes are
allocated only the segments which have receivers.
On this situation each intermediate node keeps
away from the other intermediate node but mak-

ing tree is possible.

2.6 Mechanism of dynamic protocol selec-

tion

The situation of the network changes every mo-
ment during data distribution. For example, there
are 200 receivers when the data distribution starts,
but the recipients who have finished receiving the
data leave the group one after another, then the

scale of the group becomes small. On this situa-

| Start data distribution |

s

¥
|Acquirement of receiver information |

| Acquirement of topology information |

Exceed threshold?

Yes

[Protocol delection |

|Program distribution |

| Restart data distribution |

v
| Finish data distribution |

Fig. 2.9. Procedure of the dynamic protocol se-
lection

tion, in case the sender selected protocol of which
scalability for communications is better for the
first time and continued to use this protocol, we
can’t able to get the high communication efficiency
in the latter part of distribution. As a result, the
sender selected a bad protocol for latter part.

We enable our architecture to switch protocols
to response the change of network like this ex-
ample. Figure 2.9 shows the procedure of the dy-
namic protocol selection. In the following sections,

we explain each item on Figure 2.9.

2.6.1 Acquairement of receiver and topology

information

It is important for appropriate switching to
monitor the network and the scale of the multi-
cast group. On this mechanism, the sender con-
tinues to gather RTCP receiver reports periodi-
cally . We use aggregation nodes (designate node,
intermediate node) like preparation (section 2.4).
If the scale of the group becomes small, the num-
ber of receiver reports becomes small, too. Con-
sequently, the sender is able to detect network

changes.

W I D E

In addition to the receiver information, the
sender continues to monitor the network topol-
ogy. If the node which is the aggregation nodes
leave the group or the multicast distribution tree
changes, the new aggregation nodes have to be ac-

tivated.

2.6.2 Protocol switching

The sender doesn’t only monitor the network
but also check the threshold by the simulation
(section 2.4). When the sender detects the change
of the scale, it compares the current number of
receivers with the threshold. For example, if the
number of recipients exceeds the threshold, the
sender decides that each node is switched to the
new protocol of which scalability for communica-

tions is better.

2.6.3 Program and data distribution

If the sender decides to switch protocol, it dis-
tributes the program of the new protocol. The way
of distribution is the same as preparation (section
2.4). Receivers send ACK packets to the aggre-
gation nodes when they receive the program, and
the aggregation nodes retransmit it if necessary.

Though the sender is able to start distributing
the data after program distribution, it is difficult
to decide the timing of protocol switching. Be-
cause the retransmission process on old protocol
still remained even if it stops on the middle of data
transfer. Our architecture needs the time both the
retransmission on the old protocol and the data
distribution on the new one runs simultaneously.

We discuss about this timing on section 2.9.

2.7 Evaluation of dynamic protocol selection

In this section, we evaluate the dynamic proto-
col selection using simulation. We make sure the
effect of the dynamic protocol selection by using

two protocols in response to the scale of the group.

2.7.1 Environment of experiment
We suppose that the number of receivers

changes largely during data distribution. When

155

PR OIJECT

oooooooooooooooo ogoe

el] 100 OO0ODOOOOOOOOOOODOOO

the data distribution starts, there are 200 recip-
ients, but the receivers are decreased by 100 on
reaching a certain time.

We use two reliable multicast protocols on
this experiment, AFDP (Adaptive File Distribu-
tion Protocol)[31] and SRM (Scalable Reliable
Multicast)[48].

AFDP is a NACK-based protocol. When AFDP
recipients can’t receive the data packet correctly,
they send NACK (Negative ACKnowledgement)
packet to the sender using unicast. On AFDP,
only the sender is able to retransmit data pack-
ets using multicast. Flow control of AFDP is
that sender’s bandwidth of data transfer increases
while recipients receives the data correctly. When
the sender receives NACK from recipients, band-
width of the sender decreases.

SRM is also a NACK-based protocol. When
SRM recipients can’t receive the data, they send
NACK using multicast. SRM enables the sender
and receivers to retransmit data packets. They
send repair packets using multicast. SRM doesn’t
have the mechanism of flow control.

According to the experiment which we have
done before, AFDP provides more effective re-
transmission in case of 100 receivers, and SRM
provides more effective one in case of 200[83].
Then we assign SRM during 200 receivers, and
switch to AFDP when the number of recipients
changes from 200 to 100.

We examine the number of repair packets and
throughput about the following three patterns.

1. Using only AFDP even if the number of re-

ceivers changes

2. Using only SRM

3. Using dynamic protocol switching (AFDP &

SRM)

If the number of repair packets increases, they
put pressure on the bandwidth of the network. In
fact the less the number of packets is, the higher
the performance is. And the performance of this
protocol is higher when the throughput of this ex-
periment is high.

In case of using dynamic switching, we use the

156

procedure described in section 2.6. Figure 2.10

shows the time chart of protocol switching.

recipients detection of

200->100 recejver decrement SRM finished
i 3 ; -t
SRM ! retransmission
SCLALLLNRC E—— s o e
AFDP

Fig. 2.10. Time chart of protocol switching

1. At the beginning, there are 200 receivers and
they use SRM.

2. The number of receivers decreases from 200
to 100.

3. The sender detects decrement by receiver re-
ports.

4. The sender stops data distribution on SRM.
SRM only retransmit for recipients who can’t
receive data packets correctly.

5. The sender starts on AFDP.

On this environment, we configure Network
Simulator (ns-2)[112]. The sender of this group
sends the following data and we count the number
of repair packets and calculate the throughput.

e Sender Bandwidth : 10 Mbps
: 1000B
e Data size (total) : 10 MB

e Packet size

2.7.2 Result of experiment

Figure 2.11 and Table 2.1 shows the result of
this experiment. According to this graph, there
are many repair packets on AFDP only pattern.
In addition, this pattern takes more time to fin-
ish data distribution than others. In terms of
retransmission, SRM only pattern and AFDP &
SRM pattern seem to have the same performance,
but AFDP € SRM pattern has higher throughput
than SRM only pattern from Table 2.1. Thus this

experiment shows that protocol switching has the

highest performance of the three on this situation.

2.8 Imprementation problem of dynamic

protocol selection

In section 2.7, We have found that our architec-

W I D E

Table 2.1. Effect of dynamic protocol selection

AFDP SRM AFDP & SRM
repair packets 577 387 375
throughput [Mb/s] 0.44 0.58 0.70

(repair packets means that the number of repair packets per one receiver (average))

ture contributes to the effective data distribution
according to the circumstances. But this archi-
tecture has processes on preparation and protocol
switching, so this processes may become an over-
head.

When our architecture isn’t used and a single
protocol runs, We don’t have to consider about
this overhead because a single protocol doesn’t
need the complicated process which occurs by us-
ing multiple protocols. The problem of using a
single protocol is that it doesn’t correspond to
changes of the network as described above.

Considering the advantage of single protocol,
there may be a situation that is more effective by

using single one. For example, the rate of protocol

50000 SRM only >

AFDP & SRM - +
+ AFDP only -%-

40000

|
|
;

30000 ¢
|
j
|
i

20000

10000 i *‘ &
LKk AR K e Ko e Ko sk Koy

'
'

o L ;e Se—3¥ e
H—t ¥ He—H— H—H—H

20 40 60 80 100
elapsed time[%]

Number of Repair Packets

decrement of receiver decrement of receiver

200->100 200->100
(only) (AFDP&SRM)
5000 SRM only =~
" AFDP&SRM -+
: AFDP only -%- x %
4000 % /
o L. * SEN AN K
I S A ’ L N
S . N \ h \ p)
% 3000 * s ¥
g \ * -
g .
x ‘. \
5 .
5 2000 : :
2 . \
5 *“ ;
1000 '. 5
0 & T * : e
30 40 50 60 70 80 90 100
elapsed time[%)] t
AFDP&SRM SRM only AFDP only
finished finished finished

Fig. 2.11. Effect of dynamic protocol selection

switching overhead becomes high in case the ap-
plication which doesn’t take much time for data
transfer. We suggest the following two solution
for this problem.

(1) Our architecture has two mode, single proto-
col mode and multiple protocol mode, and the
sender selects the mode in tune with the ap-
plication type.

(2) We adjust the timing of protocol switching to
decrease the overhead of protocol switching as
far as possible.

It is easy to implement solution (1) because the
sender knows the application type. We get ready
for the threshold to select single mode or multiple
mode using simulation in advance. Then if the ap-
plication has the large size data to send, the sender
selects multiple mode because it takes much time
to finish sending data. In section 2.9, we consider
about the overhead of protocol switching to evalu-
ate the solution (2) and about whether we get the

appropriate timing of switching using simulation.

2.9 Consideration of the overhead

It is important for our architecture to switch
protocols smoothly to get the high throughput.
We consider about the timing of protocol switch-

ing on this experiment.

2.9.1 Environment of experiment

We suppose the same environment as section 2.7
about the number of receivers. We assign two
protocols according to the following time chart
(Figure 2.12). T is the parameter which controls
the timing of protocol switching. We examine the
number of repair packets and throughput on the
various value of T'. The data from the sender is

also the same as section 2.7.

157

PR OIJECT

oooooooooooooooo ogoe

el] 100 OO0ODOOOOOOOOOOODOOO

T
recipients . : o
200->100 dgtectlon SR’IM finished
: H H : >t
SRM retransmission

— et o £

AFDP

Fig. 2.12. Time chart of protocol switching
with parameter T'

2.9.2 Result of experiment

Figure 2.13 shows the result of this experiment.
According to this graph, when the value of T is
small, the throughput is low. Small 7" means that
it takes much time to start data distribution on
AFDP. As the sender has to wait for a long time
to start sending on AFDP, the throughput isn’t
high. On the other hand, when T is large, the
number of repair packets is large. Large T' means
that the sender distributes the data using both of
the protocols simultaneously for a long time. This
situation puts pressure on the bandwidth of the
network. On this experiment, We found that the
most appropriate value of T for this situation is
6[s].

1

3500
throughput +¢— /
Repair Packets +4— ’

0.9 3400

4

@
~

3

330!

o
3

320!

3

throughput[Mbps]
1
i
1
|
i
1
]
1
i
|
i
i
|
Number of Repair Packets

0.6. 3100

05 3000
0 2 4 6 8

Tlsec]

Fig. 2.13. Change of efficiency by parameter T

2.10 Conclusion

Our research aims at generic reliable multicast
transport and we have designed the procedure of
the dynamic protocol selection. On this proce-
dure, the sender grasps the scale of the multi-

cast group, and then selects appropriate protocols.

158

These mechanisms enable to meet changes of the
network dynamically. And we have experimented
to evaluate the dynamic protocol selection. Using
simulation, we have found that the dynamic pro-
tocol selection provides high performance accord-
ing to the circumstances. Then we have discussed
about the problem of the dynamic protocol selec-
tion and got the best timing to switch protocols

to decrease the overhead.

2.11 Future work

In future, we need to simulate the various net-
work situation, and we are going to implement our
architecture on the basis of this experiment.

In this report, we consider about the scale of
the multicast group as the factor to switch pro-
tocols. We also consider about the congestion as
the second factor. More specifically, the sender
checks the packet loss field of RTCP receiver re-
port and monitor the receiving conditions. If some
receivers are on the bad condition, the sender as-
signs the other protocol which is more effective
to the bad receivers. In fact, multiple protocols
run simultaneously from one locality to another.
This mechanism needs to the boundary between
two protocols. On our architecture, intermediate
node plays as this boundary and translate from
one protocol to the other protocol as the gateway.

After implementation, we compare single proto-
col transmission and multiple protocol one, then
discuss with the overhead by using multiple pro-

tocols.

0 30 Study on Merge of TCP Traffic using Re-

liable Multicast Transport

3.1 Introduction

As the Internet has been developed, various
services are provided over the Internet such as
WWW, FTP, E-mail and so on. Especially WWW
and FTP services are widely used as a method of

information provision or data distribution. Also

in recent years, new technologies such as ADSL
make extensive improvements in internet access,
and this allows users of the Internet to retrieve
large amount of information or data using the In-
ternet more easily. Under these circumstances, it
is expected that traffic on the Internet involved
in the use of the services continues to increase,
and overlapped traffic occur in higher probability.
Many services over the Internet including the ones
described above use TCP as a transport protocol.
If multiple receivers attempt to retrieve the same
data on a server at the same time, multiple TCP
connections are established between the server and
each receivers, then the data is duplicated and sent
through each connection. Such overlapped traffic
degrades the efficiency of networks.

Overlapped traffic described above results from
the fact that the services use TCP, i.e. uni-
cast, which is one-to-one communication model.
On the other hand, IP also supports multicast
(IP multicast), which is one-to-many communica-
tion model. Using IP multicast, data sent from
a sender to multiple receivers is duplicated only
at points in networks to be needed to delivery
the data to all receivers. In this communication
model, redundant traffic are reduced, and we are
able to save bandwidth of networks when we send
data to multiple destinations. If we could trans-
fer data of WWW or FTP using IP multicast,
it would become possible that we eliminate over-
lapped traffic and reduce redundant traffic in the
Internet. However, WWW and FTP are protocols
based on TCP. Even if we add a facility for IP mul-
ticast to the protocols, it is impractical to modify
existing many systems to use new protocols.

In this report, we propose architecture for merg-
ing overlapped TCP traffic by replacing TCP data
stream with IP multicast in networks. Moreover,
we propose F'TP proxy as a instantiation of apply-
ing our architecture to FTP traffic.

The remainder of this report is organized as fol-
lows. Section 2 describes the goal of our research.
Section 3 presents architecture for merge of TCP

traffic. Section 4 shows F'TP proxy as a instantia-

W I D E

tion of proposed architecture. Section 5 describes
implementation issue of FTP proxy and Section 6

is a conclusion.

3.2 Goal of our research

We have two major goals in designing the ar-
chitecture proposed in this report. One is trans-
parency to users and the other is scalability. If
some modifications are needed to user applications
in order to use the architecture, it becomes diffi-
cult to apply the architecture to existing systems.
Therefore, the architecture must be transparent
to users and all processing must be done in net-
works. Scalability of the architecture is also im-
portant. The more networks are covered by the
architecture, the more overlapped traffic are able
to be merged, and the architecture is able to make

networks more efficient.

3.3 Architecture for merge of TCP Traffic

This section describes important components of
architecture we propose for merging of overlapped
TCP traffic. They are protocol translation server,
session and reliable multicast protocol.

Protocol translation servers are the main com-
ponent of our architecture. They transfer the data
of overlapped TCP traffic between TCP and IP
multicast at multiple points on networks. Protocol
translation servers create a multicast session when
they merge overlapped TCP traffic. Information
of the created session is announced to all protocol
translation servers in order to allow other proto-
col translation servers to join the session. When
protocol translation servers send the data of over-
lapped TCP traffic using IP multicast, they use re-
liable multicast protocol. Reliable multicast pro-
tocol provide reliability with IP multicast, which
is unreliable in data delivery. Each components

are explained in the following sections.

3.3.1 Protocol Translation Server

In our architecture, we locates multiple servers
at various point on networks. They receive data

by TCP and send the data by IP multicast and

159

PR OIJECT

oooooooooooooooo ogoe

el] 100 OO0ODOOOOOOOOOOODOOO

Server

Client

Router

[y Rovter vith Protocol
Translation Server

. Tep
1P muticast

Overview of replacing TCP streams
with IP multicast by protocol trans-
lation servers

vice versa in order to realize merging of overlapped
TCP traffic transparently for end-hosts. In this
report, we call such a server as protocol trans-
lation server. Protocol translation servers keep
watch on TCP streams on networks. When they
detect overlapped TCP streams such as multiple
transfers of the same file, they start protocol trans-
lation. Protocol translation server communicates
with end-hosts using TCP and transmits the data
received from a end-host to other protocol trans-
lation servers using IP multicast. The judgment
way of whether multiple streams carry the same
data depends on the protocol of the higher layer.

Figure 3.1 shows overview of replacing TCP
streams with IP multicast by protocol translation

Servers.

3.3.2 Session

We describe a multicast session in our architec-
ture.
Multicast Session

‘When a protocol translation server merges over-
lapped TCP streams, it creates a multicast session
to send the data in the streams using IP multicast.
Though it is possible to identify multicast sessions
by transport address they use, we use different
multicast address and the the same well-known
port number for every multicast sessions created
by protocol translation servers.
Session Description

We have to decide the way of description of mul-
ticast sessions to share session information among
protocol translation servers. We use SDP (Session
Description Protocol)[60] for that purpose.

SDP defines text format for general real-time

160

multimedia session description purposes. Though
SDP is originally defined to describe multimedia
sessions, which distribute audio or video streams,
SDP provides a method of describing application
specific attributes as well. We decided to use SDP
because it has enough capability for describing
multicast sessions we create.

Session Announcement

A protocol translation server which created a
session has to announce the information of the ses-
sion to other protocol translation servers. We use
SAP (Session Announcement Protocol)[61] in or-
der to distribute the session information described
using SDP.

In SAP, a host which creates a multicast session
periodically multicasts a packet which contains in-
formation about the session to well-known multi-
cast address and port. Hosts have only to listen
on the multicast address and port to collect infor-
mation of current active sessions. When a session
ended, the announcer of the session is able to send
a session deletion packet to inform listeners that
the session ended.

Figure 3.2 shows the relationship between SDP
and SAP. A protocol translation server which cre-
ated a session multicasts SAP packets periodically.
A SAP packet consists of a SAP header and a
payload. The payload is a session description de-
scribed using SDP. An example of session descrip-
tions is explained in section 3.4.5.

SAP is relatively a simple protocol and does not
have good scalability. In future, if new protocol is
proposed for session announcement as an alterna-
tive to SAP, we will discuss the use of the new

protocol.

3.3.3 Reliable Multicast Protocol

Since IP multicast use UDP as transport pro-
tocol, IP multicast does not ensure reliability in
data delivery. It means that lost packets are not
recovered, and receivers may receive duplicated
packets, and the order packets arrive may be dif-
ferent from the order the packets were sent. On

the other hand, TCP provide reliability. There-

a session creator multicasts

Protocol Translation
Server
SAP packets periodically. /
Protocol Translation) A4 gap Protocol Translation
— —>
Server N packet Server

.
' \
4 .
e \\A Protocol Translation
.7 \ Server
.
- \

SAP header
Session Description

v=1

0=- 12345678 0 IN IP4 192.168.1.1
s=File Distribution

i=File Distribution

c=IN IP4 224.5.6.7/16

Fig. 3.2. Relationship between SDP and SAP

FTP proxy

\,
FTP proxy FTP client

Tcp
< 1P multicast

Fig. 3.3. [Illustration of the system configura-

tion and components of FTP proxy
system.

fore, the communication between protocol trans-
lation servers using IP multicast must be reliable
in order to ensure reliability of the communication
between end-hosts using TCP.

As a method of providing IP multicast with re-
liability, many reliable multicast protocols have
been proposed such as AFDP[32], SRM[49] and
RMTP[89]. These protocols provide reliability by
implementing facilities of detection and recovery
of lost packets and sequencing packets. However,
the method of implementing such facilities is dif-
ferent per reliable multicast protocols, and they
respectively have different characteristics of scal-
ability and throughput. It is needed that the re-
liable multicast protocol used in our architecture
has good scalability because the more extensively
protocol translation servers are deployed, the more
efficiently we can merge streams. Though there
are many reliable multicast protocols as men-
tioned above, there is no single reliable multicast
protocol which always achieves good throughput

for the various receiver set size.

W I D E

Therefore, we use dynamic protocol selection ar-
chitecture for reliable multicast[129, 130], which
our laboratory are researching. In this architec-
ture, the system selects an optimum reliable mul-
ticast protocol using information about the type
of the application and the number of receivers in
the multicast group and sends data received from
the application to multicast group members using
the selected protocol. Applications that use this
architecture can efficiently multicast with reliabil-

ity under various circumstances.

3.4 FTP Proxy

In this section, we propose FTP proxy as a in-
stantiation of applying our architecture to FTP

traffic.

3.4.1 Target Traffic of FTP Proxy

We suppose to merge download traffic of a file
from an anonymous FTP server by FTP proxy.
Upload traffic is outside of target of FTP proxy
because we consider that there are few opportu-
nity to merge upload traffic. In this report, we
assume that anonymous FTP servers allows users
to only download files and upload of files to the

servers is prohibited.

3.4.2 System Configuration

A system which merges download traffic con-
sists of multiple FTP proxies. Each FTP prox-
ies are located at various point on networks. A
FTP proxy has the role of protocol translation
server described in section 3.3.1. Though we de-
scribed that merging of traffic must be completely
transparent to users, we let protocol translation
server pretend to be FTP server in the system
we describe here to simplify the implementation.
Namely, FTP proxy has two roles. The first is
as a protocol translation server, and the second
is as a FTP server. This is why we call protocol
translation server FTP proxy here.

FTP clients login to FTP proxy instead of a
real FTP server and request files or file lists. FTP

proxy itself does not have any files to provide

161

PR OIJECT

oooooooooooooooo ogoe

el] 100 OO0ODOOOOOOOOOOODOOO

FTP clients with in initial state. FTP proxy re-
trieves the file requested by the client from a real
FTP server according to need, and at that time,
it merges traffic using reliable multicast protocol
if possible. When FTP proxy retrieves files or file
lists from a real F'TP server, it saves retrieved data
in a local disk as a cache. The behavior of FTP

proxy is described in detail later.

3.4.3 Components of FTP Proxy

A FTP proxy consists of five components. They
are FTP server, list retrieval server, file retrieval
server, session management server and resend
server. F'TP server accepts login from FTP clients
and provides them with FTP services. List re-
trieval server retrieves file lists from a real FTP
server and manages retrieved file lists. File re-
trieval server retrieves files from a real FTP server
and manages retrieved files. Session management
server creates multicast sessions, announces them,
and collects session information using SAP. Re-
send server accepts resend requests from other
FTP proxies.

Figure 3.3 shows the system configuration and

the relationship between each components of FTP

proxy.

3.4.4 Behavior of FTP Proxy

In this section, we explain the behavior of FTP
proxy in detail.
Basic Behavior

FTP server listens on port 21 and provides
clients with FTP services as a real FTP server
performs. When a client requests a file list by a
LIST or STAT command, FTP server asks file list
retrieval server for the requested file list. The be-
havior of the file list retrieval server is described in
the next section. When a client requests a file by
a RETR command, FTP server asks file retrieval
server for the requested file. The behavior of the
file retrieval server is described in section 3.4.4.3.

Session management server maintains two ses-
sion lists. One is an active session list and the

other is a completed session list. Session man-

162

agement server joins the well-known multicast ad-
dress defined by SAP and collects session infor-
mation which other FTP proxies are announcing.
The collected session information are added to
the active session list. When session management
server receives a session deletion packet, it moves
the ended session from the active session list to
the completed session list.
Process for File list Request

When a client requests a file list, FTP server
asks file list retrieval server for the requested file
list. The file list retrieval server checks through
a local cache. If the requested file list exists in
the cache, the file list retrieval server passes it to
the FTP server. Otherwise, the file list retrieval
server logins to a real FTP server and retrieves the
requested file list. In this case, the file list retrieval
server uses TCP to connect to the real FTP server.
It means that traffic of the file list retrieval is not
merged by IP multicast. In general, the size of a
file list is not so large, and we consider that it is
difficult to merge this kind of traffic. The file list
retrieve server passes the retrieved file list to the
FTP server and saves it in a local disk as a cache.
The FTP server sends the received file list to the
client.
Process for File Request

When a client requests a file, FTP server asks
file retrieval server for the requested file. The file
retrieval server checks through a local cache. If
the requested file exists in the cache, the file re-
trieval server passes it to the FTP server. Oth-
erwise, the file retrieval server sends inquiries to
session management server about whether there is
an active session for the requested file. If there is
a session for the file, the file retrieval server joins
the session and receives the file using reliable mul-
ticast protocol. At that time, the beginning part
of the file has been already sent, and the file re-
trieval server is not able to obtain them from the
session. Therefore, the file retrieve server asks re-
send server running on the sender of the session to
resend the missing data. The resend server sends

the requested data using unicast or IP multicast.

The resend server selects protocol in considera-
tion of the size of the requested data. If the size is
smaller than a threshold, the resend server chooses
unicast, and otherwise it chooses IP multicast. We
are going to investigate appropriate value for the
threshold in process of employment of this sys-
tem. The file retrieval server passes the file re-
ceived from the session and the resend server to
the FTP server.

If there is no active session for the requested
file, the session management server looks up in
the completed session list. If there was a session
for the requested file, the file retrieval server asks
resend server running on the sender of the com-
pleted session to send the file. The resend server
asks session management server running on the
same host to create a new session. Then, the re-
send server sends the requested file to the created
session. The file retrieval server joins the created
session and passes the received file to the FTP
server.

If there is no session for the requested file even in
past times, the file retrieval server logins to a real
FTP server and retrieves the file. In parallel, the
file retrieval server asks the session management
server to create a new session in order to inform
other FTP proxies that it is possible to merge traf-
fic. The file retrieval server passes the received file
to the FTP server.

The FTP server send the received file from the
file retrieval server to the client. The File retrieval

server saves the file in a local disk as a cache.

v=1

o=- 12345678 0 IN IP4 192.168.1.1
s=File Distribution
i=File Distribution
c=IN IP4 224.5.6.7/16
t=0 0

m=data 8888 udp 0O
a=filename:/ls-1R.gz
a=filesize:2790879
a=start:0
a=end:2790878

Fig. 3.4. Example of session descriptions

W I D E

3.4.5 Session Information

As described in section 3.3, when a new session
is created, session management server announces
the session information described by SDP using
SAP. The session description used in this system
contains the following information.

e multicast address, port number and TTL used

in the session
e the name of the file transfered in the session
(absolute path)

e the size of the file transfered in the session

e the range of the file transfered in the session

When a file is transfered, as the case may be,
whole file is not needed. In that case, the session
description includes information about which part
of the file is transfered through the session.

Figure 3.4 is an example of session descriptions.
Each line is one field, and the head character of
each line is the field name. “v=" field is the ver-
sion of SDP, and “o=" field contains information
about the originator of the session. “s=" and “i="
field are the session name and the additional ses-

«

sion description respectively. “c=" field contains
the multicast address and TTL used in the ses-
sion. “t=" field specify the start and stop times
for the session. “0 0” means that the session is

«

not bounded to time. “m=" field is a media de-
scription. The first sub-field is the media type
whose value is defined by SDP. The second sub-
field is the transport port, and the third sub-field
is the transport protocol. The fourth and subse-
quent sub-field are media formats. In figure 3.4,
the “m=" field means that bulk-data are trans-
fered in the session, and it uses UDP as a transport
protocol, and the used port number is 8888. “a="
field contains the attribute of the session. FTP
proxy uses four attributes. “filename” and “file-
size” specify the name and the size of the whole
file transfered in the session. “start” and “end”
specify the start and the end position of the part
of the file transfered in the session. In case of fig-
ure 3.4, the whole file is transfered in the session

because the start position is the head of the file,

163

PR OIJECT

oooooooooooooooo ogoe

el] 100 OO0ODOOOOOOOOOOODOOO

and the end position is the tail of the file.

3.5 Implementation Issue of FTP Proxy

In this section, we show implementation issue of

FTP proxy described in the previous section.

3.5.1 FTP server

FTP server which is a part of FTP proxy must
implement FTP services. However, it is difficult to
implement FTP server from scratch. We decided
to use the source code of WU-FTPD[56], which is

widely used as anonymous FTP servers.

3.5.2 Reliable Multicast Protocol

As described in section 3.3.3, it is ideal to use
dynamic protocol selection architecture in order
to achieve good throughput under various circum-
stances. However, the implementation of dynamic
protocol selection architecture has not completed
yet. We are temporarily going to use an existing
implementation of reliable multicast protocol for
a while. Though several implementation of reli-
able multicast protocol are available now, we use
libsrm developed by MASH project[117]. This is
because the libsrm is provided in the form of C++

library, and it is easy to build into our programs.

3.6 Conclusion

The goal of our research is the realization of effi-
cient use of networks by merging overlapped TCP
traffic into a single stream using reliable multicast
transport. In this report, we proposed architec-
ture for our goal. In our architecture, multiple
protocol translation servers are located at vari-
ous points on networks. When they detect over-
lapped TCP traffic, they create a multicast session
and transfer the data through the created session.
SDP and SAP are used to share the information
of created sessions among all protocol translation
servers. Moreover, they use reliable multicast pro-
tocol in order to ensure reliability of the commu-
nication on IP multicast. We also proposed FTP
proxy as a instantiation of our architecture for

FTP traffic.

164

In future, we are going to evolve the FTP proxy
proposed in this report to transparent FTP proxy.
Moreover, we are going to apply our architecture

to traffic of other protocols.

