
第X部

Explicit Multicast

W I D E P R O J E C T

1
0

第 10 部
Explicit Multicast

第 1章 はじめに

明示的マルチキャスト (XCAST: Explicit Mulci-

tast)は、従来の ISM (Internet Standard Multicast)

でのグループアドレスに変えて、パケットヘッダに

到達すべき複数のユニキャストアドレスを明記する

ことで宛先を指定するマルチキャスト方式である。

XCASTは ISMに比べてグループメンバ数に制約が

ある一方で、グループ数に関するスケーラビリティ

に優れており、多地点ビデオ会議やネットワーク対

戦型ゲームなど、多数のエンドユーザがプライベー

トなマルチキャストグループに対して発信が必要な

用途に有効である。

WIDE project では 1999 年度に v6 WG の活動

として XCASTの研究開発を開始し、2000年 11月

よりWGとして独立した。本報告書では 2000年度

の XCAST WGの活動を以下の順に報告する。

• MDO6 (Multiple Destination Option) の実装

と試用

• グループ管理機構の設計と実装
• Explicit Multicast Basic Specification

第 2章 MDO6(Multiple Destination Option) の実

装と試用

MDO6 (Multiple Destination Option) は、富士

通研究所とWIDE projectの共同研究で設計された

小規模グループのための明示的マルチキャストプロ

トコルで、1999年度に Internet-Draftとして寄書を

行った。本年度は提案方式の実証的な検証をおこな

う目的で、KAME IPv6実装に基づいた実装を行い、

6Boneを用いた試用実験を行った。

実装と試用により XCASTの以下の利点を実証す

る事ができた。

• 既存 IPv6 protocol stack への改造量が非常に

小さい。

• core networkでの変更や設定なしでエンドユー

ザが独自に使用を開始できる。

• core netowork のルータの対応透過的に進める

ことでを漸近的に配送コストを改善できる。

2.1実装

MDO6 の最初の実装は FreeBSD 2.2.8 上の

KAME IPv6 stackを改造して作成した。作成規模

は kernel stack 1.6K line, library 2.7K lineである。

特に kernelの改造規模が ISMなどに比べて小さく

する事ができた。これは、XCASTが経路管理をユ

ニキャストに完全に依存しているため、マルチキャ

スト経路情報の維持管理論理が不要で、かつ中継処

理中の経路検索処理を KAMEが既に持つユニキャ

スト経路処理を完全に流用することができたためで

ある。さらに FreeBSD 自身のバージョンアップに

追随して、FreeBSD 3.5, 4.2に対する対応を行った。

このプロトコル実装を用いて、以下のグループマ

ルチキャストを用いたアプリケーションをMDO6に

対応させた。

• vic: 多地点画像配信アプリケーション

• rat: 多地点音声配信アプリケーション

• bzflag: ネットワーク対応マルチプレーヤ戦車対

戦ゲーム

2.2試用

上記の実装を 6Bone上に展開し実証を行った。

2.2.1 INET2000デモンストレーション

2000年 7 月に開催された国際会議 INET2000 会

場にシステムを設置するとともに、慶應大学・奈良先

端科学技術大学院大学・富士通研究所との間で、対

179

●
第
10
部

E
x
p
licit

M
u
ltica

st

W
I

D
E

P
R

O
J

E
C

T
2

0
0

0
a

n
n

u
a

l
r

e
p

o
r

t
●第 10部 Explicit Multicast

戦者がビデオチャットを行いながら多地点立体ゲー

ムを行うデモンストレーションを行った。

ネットワークの接続はWIDE 6Boneをそのまま使

用した。デモの時点ではMDO6ルータの安定性が充

分認知された状態ではなかったので、会場への接続を

含めたWIDE 6BoneのいずれのルータにもMDO6

中継機能の展開を行わなかった。しかし、MDO6の

IPv6 option headerの特性を生かした漸近的展開機

能により、エンドノードが daisy chainでマルチキャ

ストデータグラムを中継できたため、途中にマルチ

キャストルータ、トンネルノードなどを一切配置・

設定することなく、デモンストレーションを行う事

ができた。

���������	��
	
��
��������������������������������������

����������	
�

YOKOHAMA

�����

����������
	
���

���	������	�	��	

���

���������� ������

�!"#��$�%���	�&'()�'�*��+���,

NARA KEIO FUJITSU WIDE 6Bone

2.2.2 XCAST定例ビデオミーティング

XCAST のより実用的な状況での試用を目的に、

XCAST WG の会議をビデオミーティングとして

2000年 10月より週 1回のペースで行っている。単

なる通話テストとしての評価にしないために、WG

メンバである慶應大学の学生に XCASTを用いた修

士論文テーマを設定させ、その助言をメールとビデ

オミーティングを主体に行った。

当初心配された、帯域・遅延性能の不足による通話

品質の劣化はミーティングの進行を妨げるほどでは

なかった。一方、メンバー管理機構が欠如している

ため、アプリケーション起動時にユーザが明示的に

宛先ノードを指定する必要がある。このためヒュー

マンエラーによる宛先もれなどが頻発し、ミーティ

ングを正しく開始するまでに手間がかかっている。

第 3章 グループ管理機構の設計と実装

ISM においてはネットワーク上に存在する受信

者の情報は経路情報に埋め込まれる形で管理されて

おり、送信アプリケーションは単にグループアドレ

スにデータグラムを送出するだけで良い。ところが

XCASTはアプリケーションがメンバを明示的に指

定する必要があるため、配送先の情報を管理し取得

する処理が必要となる。XCAST WGは 2000年度

よりこの機構の検討を開始し、本年度は最初のプロ

トタイプの設計と実装を行った。

管理機構の備えるべき機能には以下があると考え

る。

• グループメンバの動的な変更
グループへの新規参加や脱退にともなうグルー

プメンバの動的な変更に対応する．

• グループメンバ情報の共有
自分の参加しているグループの他のメンバの情

報を知らなければ，グループコミュニケーショ

ンを図ることはできない．そのため，全てのメ

ンバが他のメンバの情報を知っていなければな

らない．本機構では，グループメンバの情報を

共有することにより，この問題を解決する．

• データ配送先の動的な変更の実現
ユーザの要求やグループメンバの追加／削除に

応じて，データの配送先を動的に変更する．

XCASTにおける「グループ」を、アプリケーショ

ンの使用者「ユーザ」が複数参加したものと捉え、こ

れを管理する機構を、ユーザ状況管理サーバ，セッ

ションマネージャ，アプリケーションの 3つで構成

されるモジュール群として設計した。それぞれの役

割と振舞は以下のように設定した。

• ユーザ状況管理サーバ
ユーザ状況管理サーバはユーザの情報を保持し，

またメンバの状態を監視する．ユーザの状態の

監視にはアウェアネスプロトコルを採用する．

• セッションマネージャ

180

W I D E P R O J E C T

1
0

セッションマネージャはユーザ状況管理サーバ

のクライアントであり，アプリケーションと同

じホストで動作する．サーバと通信し，他のメ

ンバの情報を取得する．また，他のセッション

マネージャと通信し，グループメンバの情報を

共有する．それらの情報を元にユーザはデータ

の送信先を決定し，送信先の IP アドレスのリ

ストをアプリケーションに通知する．グループ

メンバの情報はリアルタイムに変化するので，

セッションマネージャは，グループメンバの情

報が変化する度にアプリケーションに変更され

た送信先の IPアドレスのリストを通知する．

• アプリケーション
アプリケーションは実際にデータを送受信し，

グループコミュニケーションを実現する．セッ

ションマネージャから送信先の IP アドレスの

リストを受け取り，MDO6によってデータを送

信する．

• ユーザ
本システムの利用者である．ユーザはセッショ

ンマネージャを操作しグループの生成や変更を

行い，またデータ送受信の可否を決定する．

• グループ
データをやりとりするユーザの集合である．本

機構では，グループの最小単位を 1ユーザとす

る．またグループの範囲を「グループ内の任意

のユーザからデータを受信しているユーザ」と

する．グループに所属しているユーザをメンバ

と呼ぶ．

3.1実装

上記設計のもと、以下の環境で実装を行った．

オペレーティングシステム

FreeBSD 3.5 Release

IPv6スタック

KAME1 20000625 Stable

MDO6スタック

mdo6-kit-20001017-platform 2

データベース

PostgreSQL3 7.0.2 20000921 patched

開発言語

C言語

コンパイラ

gcc 2.7.2.3

Cライブラリ

glib 1.2.8，gtk+ 1.2.8，libpq

管理機構を用いて vic-2.8ucl-1.1.3，rat-4.2.4を改

造し、同一ユーザ状況管理サーバを指定してアプリ

ケーションを起動するだけで、自動的に正しく相互

の通信が行われることを確認した。

今度、管理機構をライブラリとして整備し、他の

アプリケーションからも利用できるようにするとと

もに、本実装によるメンバ管理機能を強化した VIC,

ratを実際のビデオ会議に適用し有用性を検証する。

さらに今回の実装では検討できなかった、セキュリ

ティ、性能スケーラビリティ実現方策を検討し実装

する。

第 4章 XCAST basic specification

1999年度にMDO6を Internet Draftとして寄書

するのとほぼ同時に、Alcatel より CLM (Connec-

tionless Multicast)、IBMより SGM (Small Group

Multicast)が寄書された。3者で各々のプロトコル

の検証を進め機構を精査した上で統合し、2000 年

12月に basic XCAST specificationとして Internet

Draft化した。本 Draftは以下のような特徴を持つ。

• マルチキャスト宛先をユニキャストのリストと
して持つ。

• IPv4, IPv6の両方のプロトコルをサポート

• 配送状況の bitmapによる表現

• ポートリスト
• DSCPリスト

• 経路キャッシュ・ISM との整合性を考慮した

Channel ID

1 http://www.kame.net/
2 http://www.alcatel.com/xcast/
3 http://www.postgresql.org/

181

●
第
10
部

E
x
p
licit

M
u
ltica

st

W
I

D
E

P
R

O
J

E
C

T
2

0
0

0
a

n
n

u
a

l
r

e
p

o
r

t
●第 10部 Explicit Multicast

• core networkでの対応を待たずに End-to-End

の使用が可能な各種の漸近的導入手法

この Internet Draftを元に、以下の団体が実装と

相互接続実験を行うことを表明している。

• IBM(IPv4)

• Alcatel(IPv4)

• ETRI(IPv6)

• WIDE Project・富士通研究所 (IPv4)

以下に Internet Draftの内容を掲載する。

4.1 Introduction

Multicast, the ability to efficiently send data to

a group of destinations, is becoming increasingly

important for applications such as IP telephony

and video-conferencing.

There seem to be two kinds of multicast that are

important: a broadcast-like multicast that sends

data to a very large number of destinations and a

“narrowcast” multicast that sends data to a fairly

small group. An example of the first is the audio &

video multicasting of a working group session from

an IETF meeting to sites all around the world. An

example of the second is a videoconference involv-

ing 3 or 4 parties. For reasons described below,

it seems prudent to use different mechanisms for

these two cases. As the reliable multicast trans-

port group has stated: “it is believed that a ‘one

size fits all’ protocol will be unable to meet the

requirements of all applications.”

Multicast can be used to minimize bandwidth

consumption. Explicit Multicast (Xcast) also can

be used to minimize bandwidth consumption for

“small groups.” But it has an additional advan-

tage as well. Xcast eliminates the per session sig-

naling and per session state information of tra-

ditional multicast schemes and this allows Xcast

to support very large numbers of multicast ses-

sions. And this scalability is important since it

enables important classes of applications such as

IP telephony, videoconferencing, collaborative ap-

plications, networked games etc. where the num-

ber of simultaneous multicast sessions can be very

large and the number of members in a group is

small.

4.2 Overview Xcast

In this document following terminology will be

used:

• Session: in Xcast the term ’multicast ses-

sion’ will be used instead of ’multicast group’

to avoid the strong association of multicast

group with multicast group addresses in tra-

ditional IP multicast.

• Channel: in a session with multiple senders

(e.g. a video conference), the flow sourced

by one sender will be called a channel. So a

session can contain one or more channels.

In the Host Group Model the packet carries a

multicast address as a logical identifier of all group

members. In Xcast, the source node keeps track

of the destinations in the multicast channel that

it wants to send packets to.

The source encodes the list of destinations in

the Xcast header, and then sends the packet to

a router. Each router along the way parses the

header, partitions the destinations based on each

destination’s next hop, and forwards a packet with

an appropriate Xcast header to each of the next

hops.

When there is only one destination left, the

Xcast packet could turn into a normal unicast

packet, which can be unicasted along the remain-

der of the route. This is called X2U (Xcast to

Unicast).

For example, suppose that A is trying to get

packets distributed to B, C & D in Figure 1 below:

Figure 1

182

W I D E P R O J E C T

1
0

This is accomplished as follows: A sends an

Xcast packet with the list of destinations in its

Xcast header to the first router, R1.

Since the Xcast header will be slightly different

for IPv4 and IPv6 we won’t reveal any details on

the encoding of the Xcast header in this section

(see section 9). So, ignoring the details, the packet

that A sends to R1 looks like this:

[src = A — dest = B C D — payload]

When R1 receives this packet, it needs to prop-

erly process the Xcast header. The processing that

a router does on receiving one of these Xcast pack-

ets is as follows:

• Perform a route table lookup to determine the

next hop for each of the destinations listed in

the packet.

• Partition the set of destinations based on their

next hops.

• Replicate the packet so that there’s one copy

of the packet for each of the next hops found

in the previous steps.

• Modify the list of destinations in each of the

copies so that the list in the copy for a given

next hop includes just the destinations that

ought to be routed through that next hop.

• Send the modified copies of the packet on to

the next hops.

• Optimization: If there is only one destination

for a particular next hop, send the packet as

a standard unicast packet to the destination

(X2U), as there is no multicast gain by for-

matting it as an Xcast packet.

So, in the example above, R1 will send a single

packet on to R2 with a destination list of 〈B C D〉
and R2 will send a single packet to R3 with the

same destination list.

When R3 receives the packet, it will, by the al-

gorithm above, send one copy of the packet to des-

tination R5 with an Xcast list of 〈C D〉 and one

ordinary unicast packet addressed to 〈B〉. R4 will

receive a standard unicast packet and forward it

on to 〈B〉. R5 will forward the Xcast packet that

it receives on to R6 which will pass it on to R7.

When the packet reaches R7, R7 will transmit or-

dinary unicast packets addressed to 〈C〉 and 〈D〉
respectively. R8 and R9 will receive standard uni-

cast packets, and forward the packets on to 〈C〉
and 〈D〉 respectively.

It’s important that the Xcast packet that is sent

to a given next hop only includes destinations for

which that next hop is the next hop listed in the

route table. If the list of destinations in the packet

sent to R4, for example, had also included C and

D, R4 would send duplicate packets.

Note that when routing topology changes, the

routing for an Xcast channel will automatically

adapt to the new topology since the path an Xcast

packet takes to a given destination always follows

the ordinary, unicast routing for that destination.

4.3 The cost of the traditional multicast

schemes

Traditional multicast schemes [37, 42, 36] were

designed to handle very large multicast groups.

These work well if one is trying to distribute

broadcast-like channels all around the world but

they have scalability problems when there is a very

large number of groups.

The characteristics of the traditional IP multi-

cast model are determined by its two components:

the Host Group model [37] and a Multicast Rout-

ing Protocol. Both components add to the differ-

ence in nature between unicast and multicast.

In the Host Group model, a group of hosts is

identified by a multicast group address, which is

used both for subscriptions and forwarding. This

model has two main costs:

• Multicast address allocation: The creator of

a multicast group must allocate a multicast

address which is unique in its scope (scope

will often be global). This issue is being ad-

dressed by the Malloc working group, which

is proposing a set of Multicast Address Al-

location Servers (MAAS) and three protocols

(MASC, AAP, MADCAP).

183

●
第
10
部

E
x
p
licit

M
u
ltica

st

W
I

D
E

P
R

O
J

E
C

T
2

0
0

0
a

n
n

u
a

l
r

e
p

o
r

t
●第 10部 Explicit Multicast

• Destination unawareness: When a multicast

packet arrives in a router, the router can de-

termine the next hops for the packet, but

knows nothing about the ultimate destina-

tions of the packet, nor about how many times

the packet will be duplicated later on in the

network. This complicates the security, ac-

counting and policy functions.

In addition to the Host Group model, a rout-

ing algorithm is required to maintain the mem-

ber state and the delivery tree. This can be

done using a (truncated) broadcast algorithm or

a multicast algorithm. Since the former consumes

too much bandwidth by unnecessarily forwarding

packets to some routers, only the multicast algo-

rithms are considered. These multicast routing

protocols have the following costs:

• Connection state: The multicast routing pro-

tocols exchange messages that create state

for each (source, multicast group) in all

the routers that are part of the point-to-

multipoint tree. This can be viewed as sig-

naling that creates multicast connection state,

possibly yielding huge multicast forwarding

tables. Some of these schemes even dissem-

inate this multicast routing information to

places where it isn’t necessarily needed. Other

schemes try to limit the amount of multicast

routing information that needs to be dissem-

inated, processed and stored throughout the

network. These schemes use a “shared distri-

bution tree” that is shared by all the members

of a multicast group and they try to limit the

distribution of multicast routing information

to just those nodes that “really need it.” But

these schemes also have problems. Because

of the shared tree, they use less than optimal

paths in routing packets to their destinations

and they tend to concentrate traffic in small

portions of a network.

• Source advertisement mechanism: Multicast

routing protocols provide a mechanism by

which members get ‘connected’ to the sources

for a certain group without knowing the

sources themselves. In sparse-mode protocols,

this is achieved by having a core node, which

needs to be advertised in the complete do-

main. On the other hand, in dense-mode pro-

tocols this is achieved by a “flood and prune”

mechanism. Both approaches raise additional

scalability issues.

• Interdomain routing: Multicast routing pro-

tocols that rely on a core node additionally

need an interdomain multicast routing proto-

col.

The cost of multicast address allocation, desti-

nation unawareness and the above scalability is-

sues lead to a search for other multicast schemes.

Source-Specific Multicast (SSM) [67] addresses

some of the above drawbacks: in SSM a host joins

a specific source, thus the channel is identified

by the couple (source address, multicast address).

This approach avoids multicast address allocation

as well as the need for an interdomain routing pro-

tocol. The source advertisement is taken out of

the multicast routing protocol and is moved to an

out-of-band mechanism (e.g. web page).

Note that SSM still creates state and signaling

per multicast channel in each on-tree node. Fig-

ure 2 depicts the above costs as a function of the

number of members in the session or channel. All

the costs have a hyperbolic behavior.

Figure 2

The traditional multicast model becomes expen-

sive for its members if the groups are small. Small

184

W I D E P R O J E C T

1
0

groups are typical for conferencing, gaming and

collaborative applications. These applications are

well- served by Xcast.

In practice, traditional multicast routing proto-

cols impose limitations on the number of groups

and the size of the network in which they are de-

ployed. For Xcast these limitations do not exist.

4.4 Motivation

Xcast takes advantage of one of the fundamental

tenets of the Internet “philosophy,” namely that

one should move complexity to the edges of the

network and keep the middle of the network sim-

ple. This is the principle that guided the design of

IP and TCP and it’s the principle that has made

the incredible growth of the Internet possible. For

example, one reason that the Internet has been

able to scale so well is that the routers in the core

of the network deal with large CIDR blocks as op-

posed to individual hosts or individual “connec-

tions.” The routers in the core don’t need to keep

track of the individual TCP connections that are

passing through them. Similarly, the IETF’s diff-

serv effort is based on the idea that the routers

shouldn’t have to keep track of a large number

of individual RSVP flows that might be passing

through them. It’s the authors’ belief that the

routers in the core shouldn’t have to keep track

of a large number of individual multicast flows ei-

ther.

Compared to traditional multicast, Xcast has

the following advantages:

1) Routers do not have to maintain state per

session (or per channel). This makes Xcast very

scalable in terms of the number of sessions that

can be supported since the nodes in the network

do not need to disseminate or store any multicast

routing information for these sessions.

2) No multicast address allocation required.

3) No need for multicast routing protocols (nei-

ther intra- nor interdomain). Xcast packets always

take the “right” path as determined by the ordi-

nary unicast routing protocols.

4) No core node, so no single point of fail-

ure. Unlike the shared tree schemes, Xcast mini-

mizes network latency and maximizes network “ef-

ficiency.”

5) No symmetrical paths required. Traditional

multicast routing protocols create non-shortest-

path trees if the paths are not symmetrical (sym-

metrical = the shortest path from A to B is the

same as the shortest path from B to A). It is ex-

pected that more and more paths in the Inter-

net will be asymmetrical due to traffic engineering

and more policy routing, thus multicast will cause

more and more deviation from optimal network

usage.

6) Automatic reaction to unicast reroutes.

Xcast will react immediately to unicast route

changes. In traditional multicast routing proto-

cols a communication between the unicast and the

multicast routing protocol needs to be established.

In many implementations this is on a polling ba-

sis, yielding a slower reaction to e.g. link failures.

It may also take some time for traditional multi-

cast routing protocols to fix things up if there is a

large number of groups that need to be fixed.

7) Easy security and accounting. In contrast

with the Host Group Model, in Xcast all the

sources know the members of the multicast chan-

nel, which gives the sources the means to e.g. re-

ject certain members or count the traffic going to

certain members quite easily. Not only a source,

but also a border router is able to determine how

many times a packet will be duplicated in its do-

main. It also becomes easier to restrict the number

of senders or the bandwidth per sender.

8) Heterogeneous receivers. Besides the list of

destinations, the packet could (optionally) also

contain a list of DiffServ CodePoints (DSCPs).

While traditional multicast protocols have to cre-

ate separate groups for each service class, Xcast in-

corporates the possibility of having receivers with

different service requirements within one multicast

channel.

9) Xcast packets can make use of traffic engi-

neered unicast paths.

10) Simpler implementation of reliable protocols

185

●
第
10
部

E
x
p
licit

M
u
ltica

st

W
I

D
E

P
R

O
J

E
C

T
2

0
0

0
a

n
n

u
a

l
r

e
p

o
r

t
●第 10部 Explicit Multicast

on top of Xcast, because Xcast can easily address

a subset of the original list of destinations to do a

retransmission.

11) Flexibility (see section 6).

12) Easier transition mechanisms (see section

11).

It should be noted that Xcast has a number of

disadvantages as well:

1) Overhead. Each packet contains all remain-

ing destinations. But, the total amount of data

is still much less than for unicast (payload is only

sent once). A method to compress the list of des-

tination addresses might be useful.

2) More complex header processing. Each desti-

nation in the packet needs a routing table lookup.

So an Xcast packet with n destinations requires

the same number of routing table lookups as n

unicast headers. Additionally, a different header

has to be constructed per next hop. Remark how-

ever that:

a) Since Xcast will typically be used for super-

sparse sessions, there will be a limited number

of branching points, compared to non-branching

points. Only in a branching point new headers

need to be constructed.

b) The header construction can be reduced to a

very simple operation: overwriting a bitmap.

c) Among the non-branching points, a lot of

them will contain only one destination. In these

cases normal unicast forwarding can be applied.

d) By using a hierarchical encoding of the list

of destinations in combination with the aggrega-

tion in the forwarding tables the forwarding can

be accelerated [124].

e) When the packet enters a region of the net-

work where link bandwidth is not an issue any-

more, the packet can be transformed by a Prema-

ture X2U. Premature X2U (see section 11.2) oc-

curs when a router decides to transform the Xcast

packet for one or more destinations into unicast

packets. This avoids more complex processing

downstream.

f) Other mechanisms to reduce the processing

have been described in [77] (tractable list) and

[124](caching), but are not (yet) part of this basic

Xcast specification.

3) Xcast only works with a limited number of

receivers.

4.5 Application

While Xcast is not suitable for multicast ses-

sions with a large number of members, such as

the broadcast of an IETF meeting, it does provide

an important complement to existing multicast

schemes in that it can support very large numbers

of small sessions. So Xcast covers a very important

class of applications: conferencing, multi-player

games, collaborative working, etc. The number

of these sessions will become huge.

Some may argue that it is not worthwhile to

use multicast for sessions with a limited num-

ber of members, and use unicast instead. But in

some cases limited bandwidth in the “last mile”

makes it important to have some form of multi-

cast as the following example illustrates. Assume

n residential users that set up a video conference.

Typically access technologies are asymmetric (e.g.

xDSL, GPRS or cable modem). So, a host with

xDSL has no problem receiving n-1 basic 100kb/s

video channels, but the host is not able to send its

own video data n-1 times at this rate. Because of

the limited and often asymmetric access capacity,

some type of multicast is mandatory.

A simple but important application of Xcast lies

in bridging the access link. The host sends the

Xcast packet with the list of unicast addresses and

the first router performs a Premature X2U.

Since Xcast is not suitable for large groups,

Xcast will not replace the traditional multi-

cast model, but it does offer an alternative for

multipoint-to-multipoint communications when

there can be very large numbers of small sessions.

4.6 Flexibility Xcast

The main goal of multicast is to avoid duplicate

information flowing over the same link. By us-

ing traditional multicast instead of unicast, band-

width consumption decreases while the state and

186

W I D E P R O J E C T

1
0

Figure 3

signaling per session increases. Apart from these

two dimensions, we identify a third one: the

header processing per packet. This three dimen-

sional space is depicted in Figure 3.

One method of delivering identical information

from a source to n destinations is to unicast the

information n times (A in Figure 3). A second

method, the traditional multicast model (B in Fig-

ure 3) sends the information only once to a multi-

cast address. In Xcast the information is sent only

once, but the packet contains a list of destinations

(point C).

The three points A, B and C define a plane

(indicated with dots in Figure 3): a plane of

conservation of misery. All three approaches

have disadvantages. The link bandwidth is

a scarce resource, especially in access net-

works. State&signaling/session encounters limita-

tions when the number of sessions becomes large

and an increased processing/packet is cumber-

some for high link speeds.

A nice property of Xcast is that a router can

make its own tradeoffs. Since all information is

carried in the packet, Xcast allows the router to

move in this plane of conservation of misery (Fig-

ure 3), according to its own needs, which could be,

for example, its location in the network. Routers

could build caches to move from C to B, while

Premature X2U allows a shift from C to A.

4.7 Control plane

Unlike traditional multicast schemes, Xcast

does not specify a “control plane.” There is no

IGMP, and as mentioned above, there are no in-

tradomain or interdomain multicast routing proto-

cols. With Xcast, the means by which multicast

sessions are defined is an application level issue

and applications are not confined to the model in

which hosts use IGMP to join a multicast session.

For example:

• some applications might want to use an

IGMP-like receiver-join model.

• other applications might want to use a model

in which a user places a call to the party or

parties that he or she wants to talk to (simi-

lar to the way that one puts together a con-

ference call today using the button’s on one’s

telephone).

• one might define a session based on the cells

that are close to a moving device in order to

provide for a “smooth handoff” between cells

when the moving device crosses cell bound-

aries.

• in some applications the members of the ses-

sion might be specified as arguments on a

command line.

• one might define an application that uses GPS

to send video from a bank robbery to the 3

police cars that are closest to the bank being

robbed.

Thus, the application developer is not limited to

the receiver-initiated joins of the IGMP model.

There will be multiple ways in which an Xcast

sender determines the addresses of the members

of the channel.

For the purpose of establishing voice and multi-

media conferences over IP networks, several con-

trol planes have already been defined, including

SIP and H.323.

4.7.1 SIP

In SIP, a host takes the initiative to set up a ses-

sion. With the assistance of a SIP server a session

is created. The session state is kept in the hosts.

Data delivery can be achieved by several mecha-

nisms: meshed unicast, bridged or multicast. Note

187

●
第
10
部

E
x
p
licit

M
u
ltica

st

W
I

D
E

P
R

O
J

E
C

T
2

0
0

0
a

n
n

u
a

l
r

e
p

o
r

t
●第 10部 Explicit Multicast

that for the establishment of multicast delivery, a

multicast protocol and communication with Mul-

ticast Address Allocation Servers (MAAS) are still

required.

In “meshed unicast” or “multi-unicasting,” the

application keeps track of the participants’ unicast

addresses and sends a unicast to each of those ad-

dresses. For reasons described in section 3, multi-

unicasting rather than multicast is the prevalent

solution in use today. It’s a simple matter to re-

place multi-unicast code with Xcast code. All that

the developer has to do is replace a loop that sends

a unicast to each of the participants by a single

“xcast send” that sends the data to the partici-

pants. Thus it’s easy to incorporate Xcast into

real conferencing applications.

Both Xcast and SIP address super-sparse mul-

ticast sessions. It turns out that Xcast (a very

flexible data plane mechanism) can be easily inte-

grated with SIP (a very flexible control plane pro-

tocol). When an application decides to use Xcast

forwarding it does not affect its interface to the

SIP agent: it can use the same SIP messages as it

would for multi-unicasting.

4.7.2 Receiver Initiated Join model

In the previous section, it was discussed how

to establish an Xcast session among well known

participants of a multi-party conference. In some

cases, it is useful for participants to be able to join

a session without being invited. For example, the

chairman of a video chat may want to leave the

door of their meeting open for newcomers. The

receiver-initiated join model can be implemented,

if desired, by introducing a server that hosts can

talk to to join a conference.

4.8 Optional information

4.8.1 List of ports

Although an extension to SIP could be arranged

such that all participants in a session use the same

transport (UDP) port number, in the general case

it is possible for each participant to listen on a dif-

ferent port number. To cover this case, the Xcast

packet optionally contains a list of port numbers.

If the list of port numbers is present, the desti-

nation port number in the transport layer header

will be set to zero. On X2U the destination port

number in the transport layer header will be set to

the port number corresponding to the destination

of the unicast packet.

4.8.2 List of DSCPs

The Xcast packet could (optionally) also con-

tain a list of DiffServ CodePoints (DSCPs). While

traditional multicast protocols have to create sep-

arate groups for each service class, Xcast incorpo-

rates the possibility of having receivers with dif-

ferent service requirements within one channel.

The DSCP in the IP header will be set to the

most demanding DSCP of the list of DSCPs. This

DSCP in the IP header will determine e.g. the

scheduler to use.

If two destinations, with the same next-hop,

have ‘non-mergable’ DSCPs, two Xcast packets

will be created. ‘Non-mergable’ meaning that one

can not say that one is more or less stringent than

the other.

4.8.3 Channel Identifier

Optionally a sender can decide to add an extra

number in the Xcast header: the Channel Identi-

fier. If the source does not want to use this option

it MUST set the Channel Identifier to zero. If the

Channel Identifier is non-zero the pair (Source Ad-

dress, Channel Identifier) MUST uniquely identify

the channel (note that this is similar to the (S, G)

pair in SSM). This document does not assign any

other semantics to the Channel Identifier besides

the one above.

This Channel Identifier could be useful for sev-

eral purposes:

1) An identifier of the channel in error, flow con-

trol, etc. messages

2) A key to a caching table [124].

3) It gives an extra de-multiplexing possibility

(beside the port-number)

4) ...

188

W I D E P R O J E C T

1
0

4.9 Encoding

4.9.1 General

The source address field of the IP header con-

tains the address of the Xcast sender. The desti-

nation address field carries the All-Xcast- Routers

address (to be assigned link-local multicast ad-

dress), this is to have a fixed value. Every Xcast

router joins this multicast group. The reasons for

putting a fixed number in the destination field are:

1) The destination address field is part of the IP

pseudo header and the latter is covered by trans-

port layer checksums (e.g. UDP checksum). So

the fixed value avoids a (delta) recalculation of

the checksum.

2) The IPsec AH covers the IP header desti-

nation address hence preventing any modification

to that field. Also, both AH and ESP payloads

cover the whole UDP packet (via authentication

and/or encryption). The UDP checksum cannot

therefore be updated if the IP header destination

address were to change.

3) In Xcast for IPv6 the Routing Extension shall

be used, this header extension is only checked by

a router if the packet is destined to this router.

This is achieved by making all Xcast routers part

of the All Xcast Routers group.

4) Normally Xcast packets are only visible to

Xcast routers. However, if a non-Xcast router re-

ceives an Xcast packet by accident (or by crimi-

nal intent), it will not send ICMP errors since the

Xcast packet carries a multicast address in the des-

tination address field.

Note that some benefits only hold when the mul-

ticast address stays in the destination field until

it reaches the end-node (thus not combinable with

X2U).

4.9.2 IPv4

[3] proposed (for a slightly different purpose)

to carry multiple destinations in the IPv4 option.

But because of the limited flexibility (limited size

of the header), Xcast will follow another approach.

The list of destinations will be encoded in a sepa-

rate header. The Xcast header for IPv4 (in short

Xcast4) is carried between the IPv4 header and

the transport layer header.

[IPv4 header — Xcast4 — transport header —

payload]

Note also that since the Xcast header is added to

the data portion of the packet, if the sender wishes

to avoid IP fragmentation, it must take the size of

the Xcast header into account.

IPv4 header

The Xcast4 header is carried on top of an

IP header. The IP header will carry the pro-

tocol number PROTO Xcast. The source ad-

dress field contains the address of the Xcast

sender. The destination address field carries the

All Xcast Routers address.

Xcast4 header

The Xcast4 header is depicted in Figure 4. It

is composed of two parts: a fixed part (first 12

octets) and two variable length parts that are

specified by the fixed part.

Figure 4

VERSION = Xcast version number. This doc-

ument describes version 1.

A = Anonymity bit: if this bit is set the desti-

nation addresses for which the corresponding bit

in the bitmap is zero must be overwritten by zero.

X = Xcast bit: if this bit is set a router must not

reduce the Xcast packet to unicast packet(s), i.e.

the packet MUST stay an Xcast packet end-to-

end. This bit can be useful when IPsec is applied.

D = DSCP bit: if this bit is set the packet will

contain a DS-byte for each destination.

P = Port bit: if this bit is set the packet will

contain a port number for each destination.

NBR OF DEST = the number of destinations.

189

●
第
10
部

E
x
p
licit

M
u
ltica

st

W
I

D
E

P
R

O
J

E
C

T
2

0
0

0
a

n
n

u
a

l
r

e
p

o
r

t
●第 10部 Explicit Multicast

CHECKSUM = A checksum on the Xcast

header only. This is verified and recomputed at

each point that the Xcast header is processed. The

checksum field is the 16 bit one’s complement of

the one’s complement sum of all the bytes in the

header. For purposes of computing the checksum,

the value of the checksum field is zero. It is not

clear yet whether a checksum is needed (ffs). If

only one destination is wrong it can still be useful

to forward the packet to N-1 correct destinations

and 1 incorrect destination.

PROT ID = specifies the protocol of the follow-

ing header.

LENGTH = length of the Xcast header in 4-

octet words. This field puts an upper boundary

to the number of destinations. This value is also

determined by the NBR OF DEST field and the

D and P bits.

RESV = R = Reserved. It must be zero on

transmission and must be ignored on receipt.

CHANNEL IDENTIFIER = 4 octets Channel

Identifier (see section 8.3).

The first variable part is the ’List of Addresses

and DSCPs’, the second variable part is the ’List

of Port Numbers’. Both are 4-octet aligned. The

second variable part is only present if the P-bit is

set.

Figure 5 gives an example of the variable part

for the case that the P-bit is set and the D-bit is

cleared (in this example N is odd):

Figure 5

BITMAP = every destination has a correspond-

ing bit in the bitmap to indicate whether the des-

tination is still valid on this branch of the tree.

The first bit corresponds to the first destination

in the list. This field is 4-octet aligned (e.g. for

49 destinations there will be a 64-bit bitmap). If

Xcast is applied in combination with IPsec, the

bitmap - since it can change on route - has to be

moved to a new to be defined IPv4 option.

List of Destinations. Each address size is four

octets.

List of Port Numbers. List of two octet des-

tination port number(s), where each port corre-

sponds in placement to the preceding Destination

Address.

IPv6

The Xcast6 header encoding is similar to IPv4,

except that Xcast information is stored in IPv6

extension headers.

[IPv6 header — Xcast6 — transport header —

payload]

IPv6 header

The IPv6 header will carry the NextHeader

value ’Routing Extension’. The source ad-

dress field contains the address of the Xcast

sender. The destination address field carries the

All Xcast Routers address.

Xcast6 header

The Xcast6 header is also composed of a fixed

and two variable parts. The fixed and the first

variable part is carried in a Routing Extension.

The second variable part is carried in a Destina-

tion Extension.

Routing Extension header

The P-bit of Xcast4 is not present because it is

implicit by the presence or absence of the Desti-

nation Extension (Figure 6).

Figure 6

HdrExtLen = The header length is expressed in

190

W I D E P R O J E C T

1
0

8-octets, thus a maximum of 127 destinations can

be listed (this is why NBR OF DEST is 7-bit).

RouteType = Xcast should be assigned by

IANA.

The fourth octet is set to 0.

R = Reserved.

CHANNEL IDENTIFIER = 16 octets Channel

Identifier (see section 8.3).

The other fields are defined in section 9.2.2.

The ’List of Addresses and DSCPs’ is 8-octet

aligned. The size of the bitmap is determined by

the number of destinations and is a multiple of 64

bits.

Destination Extension header

Optionally the Destination Extension (Figure 7)

is present to specify the list of Port Numbers. The

destination header is only evaluated by the desti-

nation node.

Figure 7

Option Type for Ports should be assigned by

IANA. The first three bits MUST be 010 to in-

dicate that the packet must be discarded if the

option is unknown and that the option can not be

changed en-route.

The number of Ports MUST be equal to the

number of destinations specified in the Routing

header.

4.10 Impact on Upper Layer Protocols

Some fields in the Xcast header(s) can be mod-

ified as the packet travels along its delivery path.

This has an impact on:

4.10.1 Checksum calculation in transport

layer headers

In transport layer headers, the target of the

checksum calculation includes the IP pseudo

header, transport header and payload (IPv6

header extensions are not a target).

The transformation of an Xcast packet to a nor-

mal unicast packet - (premature) X2U - replaces

the multicast address in the IP header destina-

tion field by the address of a final destination. If

the Xcast header contains a Port List, the port

number in the transport layer (which should be

zero) also needs to be replaced by the port number

corresponding to the destination. This requires a

recalculation of these checksums. Note that this

does not require a complete recalculation of the

checksum, only a delta calculation, e.g. for IPv4:

Checksum’ = (Checksum + daH + daL +

daH’ + daL’ + dp + dp’)

In which ” ’ ” indicates the new values, “da” the

destination address, “dp” the destination port and

“H” and “L” respectively the higher and lower 16

bit.

4.10.2 IPsec

This is described in [118].

4.11 Gradual Deployment

4.11.1 Tunneling

One way to deploy Xcast in a network that has

routers that have no knowledge of Xcast is to

setup “tunnels” between Xcast peers (MBone ap-

proach). This enables the creation of a virtual net-

work layered on top of an existing network. The

Xcast routers exchange and maintain Xcast rout-

ing information via any standard unicast routing

protocol (e.g. RIP, OSPF, ISIS). The Xcast rout-

ing table that is created is simply a standard uni-

cast routing table that contains the destinations

that have Xcast connectivity, along with their cor-

responding Xcast next hops. In this way, pack-

ets may be forwarded hop-by-hop to other Xcast

routers, or may be “tunneled” through non- Xcast

routers in the network.

For example, suppose that A is trying to get

packets distributed to B, C & D in Figure 8 be-

low, where “X” routers are Xcast-capable, and

“R” routers are not. Figure 9 shows the routing

tables created via the Xcast tunnels:

Router X1 establishes a tunnel to Xcast peer

191

●
第
10
部

E
x
p
licit

M
u
ltica

st

W
I

D
E

P
R

O
J

E
C

T
2

0
0

0
a

n
n

u
a

l
r

e
p

o
r

t
●第 10部 Explicit Multicast

Figure 8

Figure 9

X3. Router X3 establishes a tunnel to Xcast peers

X1 and X7. Router X7 establishes a tunnel to

Xcast peer X3.

The source A will send an Xcast packet to its

default Xcast router, X1, that includes the list of

destinations for the packet. The packet on the link

between X1 and X3 is depicted in Figure 10:

Figure 10

When X3 receives this packet, it processes it as

follows:

• Perform a route table lookup in the Xcast

routing table to determine the Xcast next

hop for each of the destinations listed in the

packet.

• If no Xcast next hop is found, replicate the

packet and send a standard unicast to the des-

tination.

• For those destinations for which an Xcast next

hop is found, partition the destinations based

on their next hops.

• Replicate the packet so that there’s one copy

of the packet for each of the Xcast next hops

found in the previous steps.

• Modify the list of destinations in each of the

copies so that the list in the copy for a given

next hop includes just the destinations that

ought to be routed through that next hop.

• Send the modified copies of the packet on to

the next hops.

• Optimization: If there is only one destina-

tion for a particular Xcast next hop, send the

packet as a standard unicast packet to the des-

tination, as there is no multicast gain by for-

matting it as an Xcast packet.

So, in the example above, X1 will send a single

packet on to X3 with a destination list of 〈B C D〉.
This packet will be received by R2 as a unicast

packet with destination X3, and R2 will forward

it on, having no knowledge of Xcast. When X3 re-

ceives the packet, it will, by the algorithm above,

send one copy of the packet to destination 〈B〉
as an ordinary unicast packet, and 1 copy of the

packet to X7 with a destination list of 〈C D〉. R4,

R5, and R6 will behave as standard routers with

no knowledge of Xcast. When X7 receives the

packet, it will parse the packet and transmit or-

dinary unicast packets addressed to 〈C〉 and 〈D〉
respectively.

4.11.2 Premature X2U

If a router discovers that its downstream neigh-

bor is not Xcast capable, it can perform a Prema-

ture X2U, i.e. send a unicast packet for each desti-

nation in the Xcast header which has this neighbor

as a next hop. Thus duplication is done before the

Xcast packet reached its actual branching point.

A mechanism (protocol/protocol extension) to

discover the Xcast capability of a neighbor is ffs.

Among others, one could think of an extension

to a routing protocol to advertise Xcast capabili-

ties or one could send periodic ‘Xcast pings’ to its

neighbors (send an Xcast packet that contains its

own address as a destination and check whether

192

W I D E P R O J E C T

1
0

the packet returns).

4.11.3 Semi-permeable tunneling (IPv6

only)

This is an optimization of tunneling in the sense

that it does not require (manual) configuration

of tunnels. It is enabled by adding a Hop-by-

Hop Xcast6 header. An IPv6 packet can initi-

ate/trigger additional processing in the on-route

routers by using the IPv6 Hop-by-hop option.

The type of the Xcast6 Hop-by-hop option has

a prefix ‘00’ so that routers that cannot recognize

Xcast6 can treat the Xcast6 datagram as a normal

IPv6 datagram and forward toward the destina-

tion in the IPv6 header.

Packets will be delivered to all members if at

least all participating hosts are upgraded.

When the source A sends an Xcast packet via

semi-permeable tunneling to destinations B, C

and D it will create the packet of Figure 11. One

of the final destinations will be put in the desti-

nation address field of the outer IP header.

Figure 11

Semi-permeable tunneling is a special tunnel-

ing technology that permits intermediate Xcast

routers on a tunnel to check the destinations and

branch if destinations have a different next hop.

Note that with the introduction of an Xcast

IPv4 option, this technique could also be applied

in IPv4 networks.

4.11.4 Special case: deployment without

network support

A special method of deploying Xcast is possible

by upgrading only the hosts. By applying tun-

neling (see section 11.1 and 11.3) with one of the

final destinations as tunnel endpoint, the Xcast

packet will be delivered to all destinations when

all the hosts are Xcast aware. Both normal and

semi-permeable tunneling can be used.

If host B receives this packet, in the above ex-

ample, it will notice the other destinations in the

Xcast header. B will create a new Xcast packet

and will send it to one of the remaining destina-

tions.

In the case of Xcast6 and semi-permeable tun-

neling, Xcast routers can be introduced in the net-

work without the need of configuring tunnels.

The disadvantages of this method are that:

• all hosts in the session need to be upgraded.

• non-optimal routing.

• anonymity issue: hosts can know the identity

of other parties in the session (which is not a

big issue in conferencing, but maybe for some

other application?).

• host has to perform network functions and

needs an upstream link which has the same

bandwidth as its downstream link.

4.12 (Socket) API

In the most simple use of Xcast, the final des-

tinations of an Xcast packet receive an ordinary

unicast UDP packet. This means that hosts can

receive an Xcast packet with a standard, unmod-

ified TCP/IP stack.

Hosts can also transmit Xcast packets with a

standard TCP/IP stack with a small Xcast library

that sends Xcast packets on a raw socket. This has

been used to implement Xcast based applications

on both Unix and Windows platforms without any

kernel changes.

Another possibility is to modify the sockets in-

193

●
第
10
部

E
x
p
licit

M
u
ltica

st

W
I

D
E

P
R

O
J

E
C

T
2

0
0

0
a

n
n

u
a

l
r

e
p

o
r

t
●第 10部 Explicit Multicast

terface slightly. For example, one might add an

“xcast sendto” function that works like “sendto”

but that uses a list of destination addresses in

place of the single address that “sendto” uses.

4.13 Security Considerations

See [118].

194

