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0 50 IPv6 multihoming support at site exit
routers
5.1 Problem

IPv6 specifications try to decrease the number
of backbone routes, to cope with possible mem-
ory overflow problem in the backbone routers.
To achieve this, the IPv6 addressing architec-
ture [35] only allows the use of aggregatable ad-
dresses. Also, IPv6 network administration rules

[39] do not allow non-aggregatable routing an-



nouncements to the backbone.
In IPv4, a multihomed site uses either of the

following technique to achieve better reachability:

e Obtain a portable IPv4 address prefix,
and announce it from multiple upstream
providers.

e Obtain single IPv4 address prefix from ISP
A, and announce it from multiple upstream

providers the site is connected to.

The above two methodologies are not available
in IPv6, but on the other hand IPv6 sites and
hosts may obtain multiple simultaneous address
prefixes to achieve the same result.

The document provides a way to configure site
exit routers and ISP routers, so that the site can
achieve better reachability from multihomed con-
nectivity, without violating IPv6 rules. Since the
technique uses already-defined routing protocol
(BGP or RIPng) and tunnelling of IPv6 packets,
the document introduces no new protocol stan-
dard.

The document is largely based on REC2260 [13]
by Tony Bates.

5.2 Goals and non-goals

The goal of this document is to achieve better
packet delivery from a site to the outside, or from
the outside to the site, even when some of the site
exit links are down.

Non goals are:

e Choose the “best” exit link as possible. Note
that there can be no common definition of
“best” exit link.

e Achieve load-balancing between multiple exit

links.

5.3 Basic mechanisms

We use technique described in RFC2260 sec-

tion 5.2 onto our configuration. To summarize,

for IPv4-only networks, RFC2260 says that:

W I D E

e We assume that our site is connected to 2
ISPs, ISP-A and ISP-B.

o We are assigned IP address prefix, Pref-A and
Pref-B, from ISP-A and ISP-B respectively.
Hosts near ISP-A will get an address from
Pref-A, and vice versa.

e In the site, we locally exchanage routes for
Pref-A and Pref-B, so that hosts in the site
can communicate with each other without us-
ing external link.

e ISP-A and our site is connected by “primary
link” between ISP router ISP-BR-A and our
router E-BR-A. ISP B and our site is con-
nected by primary link between ISP router

ISP-BR-B and our router E-BR-B.

(ISP A) (ISP B)

ISP-BR-A ISP-BR-B
Primary link

E-BR-A E-BR-B

Pref-A <———> Pref-B

e Establish a secondary link, between ISP-BR-
A and E-BR-B, and ISP-BR-B and E-BR-A,
respectively. Secondary link usually is IP-
over-IP tunnel. It is important to have sec-
ondary link on top of different medium than
primary link, so that one of them survives link
failure. For example, secondary link between
ISP-BR-A and E-BR-B should go through
different medium than primary link between
ISP-BR-A and E-BR- A. If secondary link is
an IPv4-over-IPv4 tunnel, tunnel endpoint at
E-BR-A needs to be an address in Pref-A, not
in Pref-B (tunnelled packet needs to travel
from ISP-BR-B to E-BR-A, over the primary
link between ISP-BR-A and E-BR-A).

(ISP A) (I1spB)
ISP-BR-A ISP-BR-B

Secondary link

E-BR-A E-BR-B

e For inbound packets, E-BR-A will advertise
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(1) Pref-A toward ISP-BR-A with strong pref-
erence over primary link, and (2) Pref-B to-
ward ISP- BR-B with weak preference over
secondary link. Similarly, E-BR-B will adver-
tise (1) Pref-B toward ISP-BR-B with strong

preference over

primary link, and (2) Pref-A toward ISP-BR-
A with weak preference over secondary link. Note
that we always announce Pref-A to ISP-BR-A, and
Pref-B to ISP- BR-B.

e For outbound packets, ISP-BR-A will adver-
tise (1) default route (or specific routes) to-
ward E-BR-A with strong preference over pri-
mary link, and (2) default route (or specific
routes) toward E-BR-B with weak preference
over secondary link. Similarly, ISP-BR-B will
advertise (1) default route (or specific routes)
toward E-BR-B with strong preference over
primary link, and (2) default route (or specific
routes) toward E-BR-A with weak preference

over secondary link.

Under this configuration, both inbound and out-
bound packet can survive link failure on either
side. Routing information with weak preference
will be available as backup, for both inbound and

outbound cases.

5.4 Extensions for IPv6
RFC2260 is written for IPv4 and BGP. With
IPv6 and BGP4+, or IPv6 and RIPng, similar re-

sult can be achieved, without violating IPv6 ad-

dressing/routing rules.

IPv6 rule conformance
In RFC2260, we announce Pref-A toward ISP-

BR-A only, and Pref-B toward ISP-BR-B only.
Therefore, there will be no extra routing an-
nouncement to the outside of the site. This con-
forms to the aggregation requirement in IPv6 doc-
uments. Also, RFC2260 does not require portable

addresses.
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Address assignment to the nodes

In IPv4, it is usually assumed that a node will be
assigned single IPv4 address. Therefore, RFC2260
assumed that addresses from Pref-A will be as-
signed to nodes near E-BR-A, and vice versa (sec-
ond bullet in the previous section).

With IPv6, multiple IPv6 addresses can be as-
signed to a node. So we can assign (1) one address
from Pref-A, (2) one address from Pref-B, or (3)
two addresses from both address prefixes, to a sin-
gle node in the site.

This will allow more flexibility in node config-
uration. However, this may make source address
selection on a node more complex. Source address

selection itself is out of scope of the document.

Configuration of links

With IPv6, primary link can be IPv6 native
connectivity, RFC1933 [53] IPv6-over-IPv4 config-
ured tunnel, 6to4 [23], IPv6-over-IPv4 encapsula-
tion, or some others.

If tunnel-based connectivity is used in some of
primary links, administrators may want to avoid
IPv6-over-IPv6 tunnels for secondary links. For

example, if:

e primary links to ISP-A and ISP-B are
RFC1933 IPv6-over-IPv4 tunnels, and

e ISP-A, ISP-B and the site have IPv4 connec-
tivity with each other,

it makes no sense to configure a secondary link
by IPv6-over-IPv6 tunnel, since it will actually
be IPv6-over-IPv6-over-IPv4 tunnel. In this case,
IPv6-over-IPv4 tunnel should be used for sec-
ondary link. IPv6-over-IPv4 configuration has a
big advantage against IPv6-over- IPv6-over-1Pv4
configuration, as secondary link will be able to

have the same path MTU than the primary link.

Using RFC2260 with IPv6 and BGP4+
RFC2260 approach on top of IPv6 will work fine
as documented in RFC2260. There will be no ex-



tra twists necessary.

Using RFC2260 with IPv6 and RIPng

It is possible to run RFC2260-like configuration
with RIPng [Malkin, 1997] , with careful control
of metric. Routers in the figure needs to increase
RIPng metric on secondary link, to make primary
link a preferred path.

If we denote the RIPng metric for route an-
nouncement, from router R1 toward router R2,
as metric (R1, R2), the invariants that must hold

are:

e metric(E-BR-A, ISP-BR-A) < metric(E-BR-
B, ISP-BR-A)

e metric(E-BR-B, ISP-BR-B) < metric(E-BR-
A, ISP-BR-B)

e metric(ISP-BR-A, E-BR-A) < metric(ISP-
BR-A, E-BR-B)

e metric(ISP-BR-B, E-BR-B) < metric(ISP-
BR-B, E-BR-A)

Note that smaller metric means stronger route
in RIPng.
5.5 Issues with ingress filters in ISP

If the upstream ISP imposes ingress filters [47]
to outbound traffic, story becomes much more
complex. A packet with source address taken from
Pref-A must go out from ISP-BR-A. Similarly,
a packet with source address taken from Pref-B
must go out from ISP-BR-B. Since none of the
routers in the site network will route packets based
on source address, packets can easily be routed to
incorrect border router.

One possible way is to negotiate with both ISPs,
to allow both Pref-B and Pref-A to be used as
source address. This approach does not work if
upstream ISP of ISP-A imposes ingress filtering.
Since there will be multiple levels of ISP on top
of ISP-A, it will be hard to understand which up-
stream ISP imposes the filter. In reality, this prob-
lem will be very rare, as ingress filter is not suit-
able for use in large ISPs where smaller ISPs are

connected beneath.

W I D E

Another possibility is to use source-based rout-
ing at E-BR-~A and E-BR-B. Here we assume that
IPv6-over-IPv6 tunnel is used for secondary links.
When an outbound packet arrives to E-BR-A with
source address in Pref-B, E-BR-A will forward it
to secondary link (tunnel to ISP-BR-B) based on
source-based routing decision. The packet will

look like this:

e Outer IPv6 header: source = address of E-
BR-A in Pref-A, dest = ISP-BR-B
e Inner IPv6 header: source = address in Pref-

B, dest = final dest

Tunneled packet will travel across ISP-BR-A
toward ISP-BR-B. The packet can go through
ingress filter at ISP-BR-A, since it has outer IPv6
source address in Pref-A. Packet will reach ISP-
BR-B and decapsulated before ingress filter is ap-
plied. Decapsulated packet can go through ingress
filter at ISP-BR-B, since it now has source address
in Pref-B (from inner IPv6 header). Notice the

following facts when configuring this:

e Not every router implements source-based
routing.

e The interaction between normal routing and
source-based routing at E-BR-A (and/or E-
BR-B) varies by router implementations.

e At ISP-BR-B (and/or ISP-BR-A), the inter-
action between tunnel egress processing and
filtering rules varies by router implementa-

tions and filter configurations.

5.6 Observations

The document discussed the cases where a site
has two upstream ISPs. The document can easily
be extended to the cases where there are 3 or more
upstream ISPs.

If you have many upstream providers, you would
not make all ISPs backup each other, as it requires
O(N?) tunnels for N ISPs. Rather, it is better to
make N/2 pairs of ISPs, and let each pair of ISP
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backup each other. It is important to pick pairs
which are unlikely to be down simultaneously. In
this way, number of tunnels will be O(N).

Suppose that the site is very large and it has
ISP links in very distant locations, such as in US
and in Japan. In such case, it is wiser to use this
technique only among ISP links in US, and only
among ISP links in Japan. If you use this tech-
nique between ISP link A in US and ISP link B
in Japan, the secondary link make packets travel
very long path, for example, from host in the site
in US, to E-BR-B in Japan, to ISP-BR-B (again
in Japan), and then to the final destination in US.
This may not make sense for actual use, due to
excessive delay.

Similarly, in a large site, addresses must be as-
signed to end nodes with great care, to minimize
delays due to extra path packets may travel. It
may be wiser to avoid assigning an address in a
prefix assigned from Japanese ISP, to an end node
in US.

If one of primary link is down for a long time,
administrators may want to control source address
selection on end hosts so that secondary link is less
likely to be used. This can be achieved by mark-
ing unwanted prefix as deprecated. Suppose the
primary link toward ISP-A has been down. You
will issue router advertisement [Thomson, 1998;
Narten, 1998] packets from routers, with preferred
lifetime set to O in prefix information option for
Pref-A. End hosts will consider addresses in Pref-
A as deprecated, and will not use any of them as
source address for future connections. If an end
host in the site makes new connection to outside,
the host will use an address in Pref-B as source ad-
dress, and reply packet to the end host will travel
primary link from ISP-BR-B toward E-BR-B.

Some of non-goals (such as “best” exit link se-
lection) can be achieved by combining technique
described in this document, with some other tech-
niques. One example of the technique would be
the source/destination address selection heuristics

on the end nodes.
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5.7 Security considerations

The configuration described in the document in-
troduces no new security problem.

If primary links toward ISP-A and ISP-B
have different security characteristics (like en-
crypted link and non-encrypted link), administra-
tors needs to be careful setting up secondary links
tunneled on them. Packets may travel unwanted
path, if secondary links are configured without

care.

0 60 Possible abuse against IPv6 transition

technologies

6.1 Abuse of IPv4 compatible address

Problem

To implement automatic tunnelling described
in RFC1933 [53], IPv4 compatible addresses (like
::123.4.5.6) are used. From IPv6 stack point of
view, an IPv4 compatible address is considered to
be a normal unicast address. If an IPv6 packet
has IPv4 compatible addresses in the header, the
packet will be encapsulated automatically into an
IPv4 packet, with IPv4 address taken from low-
ermost 4 bytes of the IPv4 compatible addresses.
Since there is no good way to check if embedded

IPv4 address is sane, improper [Pv4 packet can
be generated as a result. Malicious party can
abuse it, by injecting IPv6 packets to an IPv4/v6
dual stack node with certain IPv6 source address,
to cause transmission of unexpected IPv4 packets.

Consider the following scenario:

e You have an IPv6 transport-capable DNS
server, running on top of IPv4/v6 dual stack
node. The node is on IPv4 subnet 10.1.1.0/24.

e Malicious party transmits an IPv6 UDP
packet to port 53 (DNS), with source address
::10.1.1.255. It does not make difference if it is

encapsulated into an IPv4 packet, or is trans-



mitted as a native IPv6 packet.

e [Pv6 transport-capable DNS server will trans-
mit an IPv6 packet as a reply, copying the
original source address into the destination
address. Note that the IPv6 DNS server will
treat IPv6 compatible address as normal IPv6
unicast address.

e The reply packet will automatically be encap-
sulated into IPv4 packet, based on RFC1933
automatic tunnelling. As a result, IPv4
packet toward 10.1.1.255 will be transmitted.
This is the subnet broadcast address for your
IPv4 subnet, and will (improperly) reach ev-

ery node on the IPv4 subnet.

Possible solutions

For the following sections, possible soluitions are
presented in the order of preference (the author
recommends to implement solutions that appear
earlier). Note that some of the following are par-
tial solution to the problem. Some of the solutions
may overwrap, or be able to coexist, with other
solutions. Solutions marked with (*) are already
incorporated into [53] which is an updated ver-
sion of RFC1933. Note that, however, solutions
incorporated into [Gilligan, 2000] do not make a

complete protection against malicious parties.

e Disable automatic tunnelling support.

e Reject IPv6 packets with [Pv4 compatible ad-
dress in IPv6 header fields. Note that we may
need to check extension headers as well.

e Perform ingress filter against [Pv6 packet and
tunnelled IPv6 packet. Ingress filter should
let the packets with IPv4 compatible source
address through, only if the source address
embeds an IPv4 address belongs to the orga-
nization. The approach is a partial solution
for avoiding possible transmission of malicious
packet, from the organization to the outside.
*)

e Whenever possible, check if the addresses on

the packet meet the topology you have. For

W I D E

example, if the IPv4 address block for your
site is 43.0.0.0/8, and you have a packet from
IPv4-wise outside with encapsulated IPv6
source matches ::43.0.0.0/104, it is likely that
someone is doing something nasty. This may

not be possible to make

the filter complete, so consider it as a partial

solution. (*)

e Require use of IPv4 IPsec, namely authen-
tication header [Kent, 1998] , for encapsu-
lated packet. Even with IPv4 IPsec, reject the
packet if the IPv6 compatible address in the
IPv6 header does not embed the IPv4 address
in the IPv4 header. We cannot blindly trust
the inner IPv6 packet based on the existence
of IPv4 IPsec association, since the inner IPv6
packet may be originated by other nodes and
forwarded by the authenticated peer. The so-
lution may be impractical, since it only solves
very small part of the problem with too many

requirements.

Reject inbound/outgoing IPv6 packets, if it
has certain IPv4 compatible address in IPv6
header fields. Note that we may need to check
extension headers as well. The author recom-
mends to check any IPv4 compatible address
that is mapped from/to IPv4 address not suit-
able as IPv4 peer. They include 0.0.0.0/8,
127.0.0.0/8, 224.0.0.0/4, 255.255.255.255/32,
and subnet broadcast addresses. Since the
check can never be perfect (we cannot check
for subnet broadcast address in remote site,

for example) the direction is not recommend.

™)

6.2 Abuse of 6to4 address
6tod [23] is another proposal for IPvG-over-

IPv4 packet encapsulation, and is very similar to
RFC1933 automatic tunneling mentioned in the
previous section. 6to4 address embeds IPv4 ad-
dress in the middle (2nd byte to 5th byte). If an
IPv6 packet has a 6to4 address as destination ad-
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dress, it will be encapsulated into IPv4 packet with
the embedded IPv4 address as IPv4 destination.

IPv6 packets with 6to4 address have the same
problems as those with IPv4 compatible address.
See the previous section for the details of the prob-
lems, and possible solutions.

The latest 6to4 draft [23] do incoporate some
of the solutions presented in the previous section,
however, they do not make a complete protection

against malicious parties.

6.3 Abuse of IPv4 mapped address

Problems

IPv6 basic socket API [53] defines the use of
IPv4 mapped address with AF_INET6 sockets.
IPv4 mapped address is used to handle inbound
IPv4 traffic toward AF_INETG6 sockets, and out-
bound IPv4 traffic from AF_INET6 sockets. In-
bound case has higher probability of abuse, while
outbound case contributes to the abuse as well.
Here we briefly describe the kernel behavior in in-
bound case. When we have an AF_INET6 socket
bound to IPv6 unspecified address (::), IPv4 traf-
fic, as well as IPv6 traffic, will be captured by the
socket. The kernel will present the address of the
IPv4 peer to the userland program by using IPv4
mapped address. For example, if an IPv4 traffic
from 10.1.1.1 is captured by an AF_INET6 socket,
the userland program will think that the peer is
at =ffff:10.1.1.1. The userland program can ma-
nipulate IPv4 mapped address just like it would
do against normal IPv6 unicast address.

We have three problems with the specification.
First, IPv4 mapped address support complicates
IPv4 access control mechanisms. For example,
if you would like to reject accesses from IPv4
clients to a certain transport layer service, it is
not enough to reject accesses to AF_INET socket.
You will need to check AF_INET6 socket for ac-
cesses from IPv4 clients (seen as accesses from
IPv4 mapped address) as well.

Secondly, malicious party may be able to use

IPv6 packets with IPv4 mapped address, to bypass
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access control. Consider the following scenario:

e Attacker throws unencapsulated IPv6 pack-
ets, with ::ffff:127.0.0.1 as source address.

e The access control code in the server thinks
that this is from localhost, and grants ac-

cesses.

Lastly, malicious party can make servers gener-
ate unexpected IPv4 traffic. This can be accom-
plished by sending IPv6 packet with IPv4 mapped
address as a source (similar to abuse of IPv4 com-
patible address), or by presenting IPv4 mapped
address to servers (like FTP bounce attack [6]
from IPv6 to IPv4). The problem is slightly differ-
ent from the problems with IPv4 compatible ad-
dresses and 6to4 addresses, since it does not make
use of tunnels. It makes use of certain behavior of
userland applications.

The confusion came from the dual use of IPv4
mapped address, for node- internal representation
for remote IPv4 destination/source, and for real

IPv6 destination/source.

Possible solutions

e In [Pv6 addressing architecutre document
[Hinden, 1998] , disallow the use of IPv4
mapped addresses on the wire. The change
will conflict with SIIT [116] , which is the only
protocol which tries to use IPv4 mapped ad-
dress on IPv6 native packet. The dual use

of TPv4 mapped address (as a host-internal

representation of IPv4 destinations, and as a

real IPv6 address) is the prime source of the

problem.

Reject IPv6 packets, if it has [Pv4 mapped
address in IPv6 header fields. Note that we
may need to check extension headers such as
routing headers, as well. IPv4 mapped ad-
dress is internal representation in a node, so
doing this will raise no conflicts with existing

protocols. We recommend to check the con-

dition in IPv6 input



packet processing, and transport layer process-

ing (TCP input and UDP input) to be sure.

e Reject DNS replies, or other host name
database replies, which contain IPv4 mapped
address. Again, IPv4 mapped address is inter-
nal represntation in a node and should never
appear on external host name databases.

e Do not route inbound IPv4 traffic to

AF_INET6 sockets. When an application

would like to accept IPv4 traffic, it should

explicitly open AF_INET sockets. You may
want to run two applications instead, one
for an AF_INET socket, and another for an

AF_INET6 socket. Or you may want to make

the functionality optional, off by default, and

let the userland applications explicitly en-
able it. This greatly simplifies access con-
trol issues. This approach conflicts with what

IPv6 basic API document says, however, it

should raise no problem with properly-written

IPv6 applications. It only affects server pro-

grams, ported by assuming the behavior of

AF_INETS® listening socket against IPv4 traf-

fic.

When implementing TCP or UDP stack, ex-

plicitly record the wire packet format (IPv4
or IPv6) into connection table. It is unwise to
guess the wire packet format, by existence of
IPv6 mapped address in the address pair.

We should separately fix problems like FTP

bounce attack.

Applications should always check if the con-
nection to AF_INET6 socket is from an IPv4
node (IPv4 mapped address), or IPv6 node.
It should then treat the connection as from
IPv4 node (not from IPv6 node with special
adderss), or reject the connection. This is,
however, dangerous to assume that every ap-
plication implementers are aware of the issue.
The solution is not recommended (this is not

a solution actually).
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6.4 Attacks by combining different address

formats

Malicious party can use different address for-
mats simultaneously, in a single packet. For ex-
ample, suppose you have implemented checks for
abuse against IPv4 compatible address in auto-
matic tunnel egress module. Bad guys may try
to send a native IPv6 packet with 6to4 destina-
tion address with IPv4 compatible source address,
to bypass security checks against IPv4 compatible
address in tunnel decapsulation module. Your im-
plementation will not be able to detect it, since the
packet will not visit egress module for automatic
tunnels.

Analyze code path with great care, and reject

any packets that does not look sane.

6.5 Attacks using source address-based au-

thentication

Problems
IPv6-to-IPv4 translators [116, 156, 59] usually

relay, or rewrite, IPv6 packet into IPv4 packet.
The IPv4 source address in the IPv4 packet will
not represent the ultimate source node (IPv6
node). Usually the IPv4 source address represents
translator box instead. If we use the IPv4 source
address for authentication at the destination IPv4
node, all traffic relayed/translated by the transla-
tor box will mistakenly be considered as authentic.

The problem applies to IPv4-to-IPv6 translators
as well. The problem is similar to proxied services,

like HTTP proxy.

Possible solutions

e Do not use translators, for protocols that use
IP source address as authentication credental
(for example, rlogin [92] ).

e translators must implement some sort of ac-
cess control, to reject any IPv6 traffic from
malicious IPv6 nodes.

e Do not use source address based authentica-
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tion. IP source address should not be used
as an authentication credental from the first
place, since it is very easy for malicious par-

ties to spoof IP source address.

6.6 Conclusions

IPv6 transition technologies have been pro-
posed, however, some of them looks immune
against abuse. The document presented possi-
ble ways of abuse, and possible solutions against
them. The presented solutions should be reflected
to the revision of specifications referenced.

For coming protocols, the author would like to

propose a set of guilelines for I[Pv6 transition tech-

nologies:

e Tunnels must explicitly be configured. Man-
ual configuration, or automatic configuration
with proper authentication, should be okay.

e Do not embed IPv4 addresses into IPv6 ad-
dresses, for tunnels or other cases. It leaves
room for abuse, since we cannot practically
check if embedded IPv4 address is sane.

e Do not define an IPv6 address format that
does not appear on the wire. It complicates

access control issues.
The author hopes to see more deployment of na-
tive IPv6 networks, where tunnelling technologies

become unnecessary.

6.7 Security considerations

The document talks about security issues in ex-
isting IPv6 related protocol specifications. Possi-

ble solutions are provided.

0 70 Ananalysis of IPv6 anycast

7.1 IPv6 anycast

“Anycast” is a communication model for IP, just

like unicast and multicast are. RFC1546 [125] doc-
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uments [Pv4 anycast, and it defines the term “any-
cast.”

Anycast can be understood best by comparing
with unicast and multicast. IP unicast allows a
source node to transmit [P datagrams to a single
destination node. The destination node is identi-
fied by an unicast address. IP multicast allows a
source node to transmit IP datagrams to a group
of destination nodes. The destination nodes are
identfied by a multicast group, and we use a mul-
ticast address to identify the multicast group.

IP anycast allows a source node to transmit IP
datagrams to a single destination node, out of
a group of destination nodes. IP datagram will
reach the closest destination node in the set of
destination nodes, based on routing measure of
distance. The source node does not need to care
about how to pick the closest destination node,
as the routing system will figure it out (in other
words, the source node has no control over the se-
lection). The set of destionation nodes is identified
by an anycast address.

Anycast was adopted by IPv6 specification
suite. RFC2373 [35] defines the IPv6 anycast ad-
dress, and its constraints in the usage. The fol-
lowing sections try to analyze RFC2373 rules, and
understand limitations with them. At the end of
the draft we compile a couple of suggestions to
exisitng proposals, for extending the usage of the

IPv6 anycast.

7.2 Limitations/properties in the current

proposals

Identifying anycast destination

For anycast addresses, RFC2373 uses the same
address format as unicast addresses. Therefore,
without other specific configurations, a sender
cannot usually identify if the node is sending a
packet to anycast destination, or unicast destina-
tion. This is different from experimental IPv4 any-
cast [125] , where anycast address is distinguish-

able from unicast addresses.



Nondeterministic packet delivery

If multiple packets carry an anycast address in
IPv6 destionation address header, these packets
may not reach the same destination node, depend-
ing on stability of the routing table. The property
leads to a couple of interesting symptoms.

If we can assume that the routing table is sta-
ble enough during a protocol exchange, multiple
packets (with anycast address in destination) will
reach the same destination node just fine. How-
ever, there is no guarantee.

If routing table is not stable enough, or you
would like to take a more strict approach, a client
can only send one packet with anycast address in
the destination address field. For example, con-
sider the following packet exchange. The following
exchange can lead us to failure, as we are not sure
if the 1st and 2nd anycast packet have reached the
same destination.

query: client unicast (Cu) -> server anycast (Sa)

reply: server unicast (Su) -> client unicast (Cu)

query: client unicast (Cu) -> server anycast (Sa)
It may reach a different server!

reply: server unicast (Su) -> client unicast (Cu)

Because of the non-determinism, if we take a
strict approach, we can use no more than 1 packet
with anycast destination address, in a set of pro-
tocol exchange. If we use more than 2 packets,
1st and 2nd packet may reach different server and
may cause unexpected results. If the protocol
is completely stateless, and we can consider the
first roundtrip and second roundtrip separate, it
is okay. For stateful protocols, it is suggested to
use anycast for the first packet in the exchange,
to discover unicast address of the (nearest) server.
After we have discovered the unicast address of the
server, we should use the server’s unicast address
for the protocol exchange.

Also because of non-determinism, if we are to
assign an IPv6 anycast address to servers, those
servers must provide uniform services. For exam-
ple, if server A and server B provide different qual-
ity of service, and people wants to differentiate be-

tween A and B, we cannot use single IPv6 anycast

W I D E

address to identify both A and B.

Note that, the property is not a bad thing; the
property lets us use anycast addresses for load bal-
ancing. Also, packets will automatically be de-
livered to the nearest node with anycast address
assigned.

Here are situations where multiple packets with
anycast destination address can lead us to prob-

lems:

e Fragmented IPv6 packets. Fragments may
reach multiple different destinations, and will

prevent reassembly.

Because the sending node cannot differentiate
between anycast addresses and unicast addresses,
it is hard for the sending node to control the use

of fragmentation.

Anycast address assignment to hosts
RFC2373 suggests to assign anycast addresses
to a node, only when the node is a router. This is
to avoid injecting host routes for anycast address,
into the IPv6 routing system. If no hosts have any-
cast address on them, it is easier for us to route an
IP datagram to anycast destination. We just need
to follow existing routing entries, and we will even-
tually hit a router that has the anycast address.
If we follow RFC2373 restriction strictly, we could

only place anycast addresses onto routers.

Anycast address in source address

Under RFC2373, anycast address IPv6 anycast
address can not be put into IPv6 source address.
This is basically because an IPv6 anycast address

does not identify single source node.

IPsec
IPsec and IKE identify nodes by using

source/destination address pairs. Due to the com-
bination of issues presented above, it is very hard
to use IPsec on packets with anycast address in
source address, destination address, or both.

Even with manual keying, IPsec trust model
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with anycast address is confusing. As IPsec uses
IPv6 destination address to identify which IPsec
key to be used, we need to use the same [Psec key
for all of the anycast destinations that share an
anycast address.

Dynamic IPsec key exchange (like IKE) is al-
most impossible. First of all, to run IKE session
between two nodes, the two nodes need to be able
to communicate with each other. With nondeter-
ministic packet delivery provided by anycast, it is
not quite easy. Even if we could circumvent the
issue with IKE, we have exactly the same problem
as manual keying case for actual communication.
7.3 Possible

improvements and protocol

changes

Assigning anycast address to hosts (non-
router nodes)

Under RFC2373 rule, we can only assign any-
cast addresses to routers, not to hosts. The re-
striction was put into the RFC because it was felt
insecure to permit hosts to inject host routes to
anycast address.

If we try to ease the restriction and assign any-
cast addresses to IPv6 hosts (non-routers), we
would need to inject host routes for the anycast
addresses, with prefix length set to /128, into the
IPv6 routing system. We will inject host routes
from each of the nodes with anycast addresses,
to make packets routed to a topologically-closest
node. Or, we may be able to inject host routes
from routers adjacent to the servers (not from the
servers themselvers).

Here are possible ways to allow anycast ad-
dresses to be assigned to hosts. We would need to
diagnose each of the following proposals carefully,
as they have different pros and cons. The most
serious issue would be the security issue with ser-
vice blackhole attack (malicious party can black-
hole packets toward anycast addresses, by making

false advertisement).

e Let the host with anycast address to partici-
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pate into routing information exchange. The
host does not need to fully participate; it only
needs to announce the anycast address to the

routing system. To

secure routing exchange, administrators need
to configure secret information that protects the
routing exchange to the host, as well as other

routers.

e Develop a protocol for a router, to discover
hosts with anycast address on the same link.
The router will then advertise the anycast ad-
dress to the routing system. This could be
done by an extension to IPv6 Neighbor Dis-
covery or an extension to IPv6 Multicast Lis-

tener Discovery [56].

The impact of host routes depends on the scope
of the anycast address usage. For example, if we
use site-local anycast address to identify a set of
servers, the propagation of host route is limited
inside the site. If the site administration policy
permits it, and the site routers can handle the ad-
ditional routing entries, the additional host routes
are okay. So, we can safely assign anycast address
to non-router nodes (hosts), and inject host route
for the anycast address, into the site IPv6 rout-
ing system. It is still questionable to inject host
routes into worldwide IPv6 routing system, as it
has problems in terms of scalability. Also, because
of IPv6 route aggregation rules [Rockell, 2000] it is
normally impossible to propagate IPv6 host routes

worldwide.

Anycast address in destination address

With anycast, it is hard to identify a single node
out of nodes that share an anycast address. Sup-
pose a client C would like to communicate a spe-
cific server with anycast address, Si. Si shares the
same anyast address with other servers, S1 to Sn.
It is hard for C to selectively communicate with
Si.

One possible workaround is to use IPv6 routing



header. By specifying an unicast address of Si as
an intermediate hop, C can deliver the packet to
Si, not to other Sn.

Note that we now have lost the robustness pro-
vided by the use of anycast address. If Si goes
down, the communication between C and Si will
be lost. C cannot enjoy the failure resistance pro-
vided by redundant servers, S1 to Sn. Designers
should carefully diagnose if any state is managed
by C and/or Si, and decide if it is a good idea to

use the workaround presented here.

Anycast address in source address

Under RFC2373 rule, anycast address cannot
be put into source address. Here is a possible
workaround, however, it could not win a consensus

in the past ipngwg meetings:

e When we try to use anycast address in the
source address, use an (non- anycast) unicast
address as the IPv6 source address, and at-
tach home address option with anycast ad-
dress. In ipngwg discussions, however, there
seem to be a consensus that the home address
option should have the same semantics as the
source address in the IPv6 header, so we can-
not put anycast address into the home address

option.

7.4 Upper layer protocol issus

Use of UDP with anycast

Many of the UDP-based protocols use source
and destination address pair to identify the traffic.
One example would be DNS over UDP; most of the
DNS client implementation checks if the source
address of the reply is the same as the destination
address of the query, in the fear of the fabricated
reply from bad guy.

query: client unicast (Cu) -> server unicast (Sux)

reply: server unicast (Su*) -> client unicast (Cu)

addresses marked with (*) must be equal.

If we use server’s anycast address as the destina-

W I D E

tion of the query, we cannot meet the requirement
due to RFC2373 restriction (anycast address can-
not be used as the source address of packets). Ef-
fectively, client will consider the reply is fabricated
(hijack attempt), and drops the packet.
query: client unicast (Cu) -> server anycast (Sa)
reply: server unicast (Su) -> client unicast (Cu)
Note that, however, bad guys can still inject
fabricated results to the client, even if the client
checks the source address of the reply. The check
does not improve security of the exchange at all.

So, regarding to this issue, we conclude as follows:

e To use anycast address on the UDP proto-
col exchange, client side should not check the
source address of the incoming packet. Packet
pairs must be identified by using UDP port
numbers or upper-layer protocol mechanisms
(like cookies). The source address check itself
has no real protection.

e If you need to secure UDP protocol exchange,
it is suggested to verify the authenticity of
the reply, by using upper-layer security mech-
anisms like DNSSEC (note that we cannot use

IPsec with anycast).

Use of TCP with anycast

We cannot simply use anycast for TCP ex-
changes, as we identify a TCP connection by using
address/port pair for the source/destination node.
It is desired to implement some of the following, to
enable the use of IPv6 anycast in TCP. Note, how-
ever, security requirement is rather complicated

for the following protocol modifications.

e Define a TCP option which lets us to switch
peer’s address from IPv6 anycast address, to
IPv6 unicast address. There are couple of pro-
posals in the past.

e Define an additional connection setup proto-
col that resolves IPv6 unicast address from
IPv6 anycast address. We first resolve IPv6

unicast address using the new protocol, and

135

PR OIJECT

OwOe

QUOISIOA T




e (1 70 IP Version6

then, make a TCP connection using the
IPv6 unicast address. IPv6 node information

query/reply [30] could be used for this.

7.5 Summary

The draft tried to diagnose the limitation in
currntly-specified IPv6 anycast, and explored cou-
ple of ways to extend its use. Some of the proposed
changes affects IPv6 anycast in general, some are
useful in certain use of IPv6 anycast. To take ad-
vantage of anycast addresses, protocol designers
would need to diagnose their requirements to any-
cast address, and introduce some of the tricks de-
scribed in the draft.

Use of IPsec with anycast address still needs a

great amount of analysis.

7.6 Security consideration

The document should introduce no new security
issues.

For secure anycast operation, we may need to
enable security mechanisms in other protocols.
For example, if we were to inject /128 routes from
end hosts by using a routing protocol, we may
need to configure the routing protocol to exchange
routes securely, to prevent malicious parties from
injecting bogus routes. With anycast, it is very
important to prevent malicious parties from in-
jecting bogus routes, as it allows them to effec-

tively suck all traffic torward anycast address.

0 80 Requirements for IPv6 dialup PPP oper-
ation

8.1 Problem domain
With the deployment of IPv6 [65] , it becomes

more apparent that we have different operational
requirements in IPv6 dialup PPP operation, from
IPv4 dialup PPP operation. For example, it would
be desirable to see static address allocation, rather
than dynamic address allocation, whenever possi-

ble. With IPv4 this has been impossible due to
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address space shortage, and IPCP [107] dynamic
address allocation has been used. With IPv6 it is
possible to perform static address allocation from
ISPs to downstream customers, as there’s enough
address to spare.

The document tries to summarize possible de-
sign choices in IPv6 dialup PPP operation. Actual
operational practices should be documented sepa-

rately.

8.2 Design choices

The usage pattern
e Static clients. Computers located in home

and offices do not usually change its config-
urations, nor upstream ISPs. It would be de-
sirable to make a static address allocation in
this case.

e Roaming clients. Roaming clients, like trav-
elling users with notebook PC, have different
requirement from static clients. It is not usu-
ally possible to make a static address alloca-
tion, as travelling users may connet to multi-

ple ISPs from different countries.

Address space

It is desired to assign /48 address space, regard-
less from usage pattern or size of the downstream
site. It is to make future renumbering in down-
stream site easier on ISP change. /128 assignment
MUST NOT be made, as it will advocate IPv6-to-
IPv6 NAT.

Address allocation

e Static address allocation. ISPs will allocate
a static address space (/48) to a downstream
customer, on contract time. There will be no
protocol involved in address allocation - allo-
cation will be informed by paper.

e Static address allocation, with some automa-

tion. It may be possible to define a com-



mon protocol for configuring customer-side
router(s) from the upstream ISP, eliminating
necessity of paper-based allocation and con-
figuration labor in the customer site. Note
that router renumbering protocol is not al-
ways suitable for this. Router renumbering
protocol assumes that the routers and control
node to be in the same administrative domain.

e Dynamic address allocation.

Where to assign address

e Assign address to ppp interface. The form as-
signs /128 to the customer computer, or /64
onto the PPP link. The form of address as-
signment should not be used, as it advocates
IPv6-to-IPv6 NAT. In the following diagram,
“Lx” denotes link-local address, and “Gx” de-
notes global address.

ISP router
La, Ga
ppp link
Lb, Gb
Customer computer

e Assign address to the interface behind the cus-
tomer router. The form assigns /64 to the
network segment behind customer router.

ISP router
La

ppp link
Lb

Customer router

Gb
Gx/64

In the cases where the customer has only a single
computer, it is possible to have virtual network

segment behind the customer computer.

ISP router
La
ppp link
Lb
Customer computer
Gb

Gx/64 ( VIRTUAL )

W I D E

Note that, however, /64 assignment will make
it harder for customer site to evolve in the future.

/64 assignment is not recommended.

e Assign address to the cloud behind the cus-
tomer router (/48). In this case, the upstream
ISP has no idea about the topology in the cus-
tomer site. Actually, it is not necessary for
the upstream ISP to know about the address
usage in the customer site. Static address as-
signment is highly recommended in this case,
as it is painful to renumber the whole /48
cloud every time we reconnect the dialup PPP

link between the ISP and the customer site.

ISP router
La
ppp link
Lb
Customer router
|ab

((( Gx/48 cloud )))

Routing

e Static routing. ISPs will configure static
route, pointing to the customer site, for the
address space assigned to the customer site.
Customer router (or customer computer) will
install default route, pointing to the ISP
router via PPP link.

e Simple dynamic routing. ISPs can exchange
routes by using simple dynamic routing proto-
cols like RIPng. This allows the customer site
to adapt to PPP link status better. This also
makes it easier to detect PPP link disconnec-
tion. If the ISP announces non-default routes
to the downstream customer, it may help
downstream to configure multihomed connec-
tivity (connection to multiple upstream ISPs)
[57] ISPs may want to filter out bogus routing

announcements from the downstream.
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0 90 Guidelines for IPv6 local experiments

9.1 Problem space

There are potential IPv6 users who would like to
perform experiments locally, in their IPv6 network
disjoint from the worldwide IPv6 network at large
(or 6bone).

Site-local address [35] could be used where ap-
propriate. However, site-local address has several
operational differences from global address (like
below), and it is harder for novice users to con-
figure site-local address right than global address.
Also, due to the differences, some of the things
the user learnt from local experiments may not be
directly relevant when they get connected to the
worldwide IPv6 network - it reduces usefulness of
their local experiments.

e Site-local addresses are “scoped” address,

while global addresses are not.

e Configuration must correctly identify site bor-
der routers. This is an additional require-
ment.

e There are proposals on scoped routing ex-
ist [Deering, 2000] , however, implementation

status is still rather disappointing.

For experiments over single link, link-local ad-
dress could be used. However, again, link-local
address is a scoped address, and has radical op-
erational differences from global IPv6 (or IPv4)

address.

9.2 Recommendations

First of all, do not cook up IPv6 prefix on your
own. You cannot pick random prefix number, that
can jeopadize the whole point of experiment.

Next, it is recommended to use global addresses
for early stage of experiments. As presented in

the previous section, scoped (site- local/link-local)
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IPv6 addresses have different operational charac-
teritics from global IPv6 addresses, or global IPv4
address. In the later stage of experients, you may
want to play with scoped addresses, and try to
understand how they behave.

In the following text of the draft, we list possible
routes a disconnected IPv6 network may want to
take. Once the site gets connected to worldwide
IPv6 network at large, the site MUST be renum-
bered to the addresses assigned by the (real) up-

stream.

A site with 6bone site/IPv6 ISP nearby

If it is possible, try to contact nearest upstream
6bone site, or upstream ISP, to assign you an IPv6
prefix. By getting IPv6 address space properly,
the site will have less problem when they get con-
neted to the worldwide IPv6 network. The ad-
dress space can (supposedly) be used for future
IPv6 upstream connectivity, if you connect your
site to the upstream which assigned the address
space to you. If you pick a different upstream, the
site MUST be renumbered.

To measure “nearness” between you and the up-
stream IPv6-over-IPv4 tunnel [53] provider (like a

6bone site), use IPv4 hop counts.

A site with global IPv4 connectivity

Whenever the site has a global IPv4 address
with it, the site should use the 6to4 IPv6 ad-
dress prefix [23] derived from the IPv4 address
space, for local experiments. The prefix will be
2002:xxyy:zzuu:: /48, where “xxyy:zzuu” is a hex-
adecimal notation of an global IPv4 address that
belongs to the site.

However, such a /48 prefix can never be routed
globally in the world IPv6 network in a normal
sense. When the site wants to get external IPv6
connectivity, it must if possible renumber to a nor-
mal IPv6 prefix from its ISP (or 6bone upstream).
Otherwise it must find a 6to4 relay router to con-
nect it to the IPv6 world. For detailed discus-
sion about how packets from 6to4 site are handled,

please refer to 6to4 document.



Completely disconnected site
If the site has no permanent global IPv4 address
with it (like dialup customer site), the site has two

choices.

e The site may use site local address space. The
operation needs great care as presented above.
e The site may wuse the address prefix:
3ffe:0501:Fff::/48.  The address prefix was
curved out from WIDE 6bone prefix. The
site MUST be renumbered, before the site
gets connected to the worldwide IPv6 net-
work. The address is provided as the last-
resort solution. The site should first try to

use other ways.

In both cases, the assigned prefix MUST NOT
be advertised to the worldwide IPv6 network, from

anywhere.

Other comments

If there are multiple administrative domains in
the site, the site is responsible for its internal co-
ordination (the draft cannot solve your local poli-

tics).

0100 Socket API for IPv6 flow label field

10.1 Background
The IPv6 flow label field is a 20bit field in the
IPv6 header. The field has no IPv4 counterpart.

The IPv6 specification [65] supplies suggested us-
age of the field.

The field is intended to identify a “flow”, a set
of packets from a particular source to a particular
destination. The flow label field is set by the orig-
inating IPv6 node, in a pseudorandom manner.
The value will help intermediate routers to iden-
tify “flows”, without looking into payload data or

chasing an extension header chain.
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For the flow label field to be useful, the source
node should carefully pick the value, to satisfy the

following constraints:

e The value should be pseudorandom, to help
routers make a hash table with it.

e The value should not be used for multiple dif-
ferent flows at the same time.

e The value should not be reused for some
amonut of time, after a flow is terminated
(otherwise, intermediate routers may mistak-

enly identify flows).

[Pv6 specification does not define whether the
field can be rewritten by intermediate routers, or
the field should be kept untouched. It was to let
future QoS protocols make the choice. For exam-
ple, RSVP [Braden, 1997] assumes that the field is
kept untouched until the packet reaches the final
destination. In this document, following the as-
sumption in the RSVP document, we assume that
the field should not be modified by intermediate
routers.

There is no known application which needs to
inspect the flow label field on inbound packet.
Also, there is no known application which wants

to put a specific value to the flow label field.

10.2 Outbound traffic

After the connect(2) system call is issued for

a socket with a specific IPv6 address (non-
unspecified address), the kernel will automatically
fill in the flow label field, with a value selected
for the socket. The value will be selected on con-
nect(2), and will be used for subsequent outgoing
packets from the socket. The kernel is responsi-
ble to pick a suitable (pseudorandom and unique)
value for the flow label field.

If no connect(2) system call was issued for a
socket, the packets from the socket will have an
unspecified flow label value (zero). When multiple
connect(2) system calls were issued for a socket, a
new value must be picked for the flow label field,

every time the connect(2) system call was issued.
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With getsockname(2), an application can grab
the flow label value picked by the kernel, into the
sin6_flowinfo member. sin6_flowinfo member car-
ries the value in network byteorder. The topmost
12 bits of the sin6_flowinfo member must be set to
0.

Sample code would be as follows:

struct sockaddr_in6 src, dst, altdst;
u_int32_t value;

/* the value for flow label */
int s; /* socket *x/

socklen_t slen;

slen = sizeof(dst);
dst.sin6_flowinfo = 0; /* must be zero */

connect (s, (struct sockaddr *)&dst, slen);

/* sent with the flow label field filled */
send(s, buf, buflen);

/* obtain the flow label value */
slen = sizeof(src);
getsockname (s, (struct sockaddr *)&src,
&slen) ;
printf ("flowlabel=%x\n",
ntohl(src.sin6_flowinfo &

IPV6_FLOWLABEL_MASK)) ;

If an application wishes to disable the kernel
behavior and wishes to use an unspecified value
(zero) in the flow label field, the application should
issue the following setsockopt(2), prior to the con-
nect(2) system call. The default value for the
socket option is implementation- dependent. A
portable application should inspect the initial set-
ting by using getsockopt(2).

const int off = 0;

const int on = 1;

int s; /* socket */

/* disables automatic flow label */
setsockopt (s, IPPROTO_IPV6,
IPV6_AUTOFLOWLABEL,
&off, sizeof (off));
/* enables automatic flow label */
setsockopt (s, IPPROTO_IPV6,
IPV6_AUTOFLOWLABEL, &on,

sizeof (on));

The kernel should honor the definition of “flow”

when filling in flow label field. For example, let us
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consider the suggestion in the IPv6 specification
[65] . In the following cases, the kernel should
make a special consideration. The kernel should
fill the flow label field with an unspecified value
(zero), or pick a new value.

(a) The packet goes to a different IPv6 desti-
nation, from the destination specified previously
with a connect(2) system call. The situation hap-
pens with sendto(2) or sendmsg(2) system calls
with a destination specified.

(b) The packet uses a different IPv6 source ad-
dress than before. It happens when a bind(2) sys-
tem call is issued.

(c) The packet carries different IPv6 extension
headers from we have previously used. The situa-
tion could be detected by the use of IPv6 advanced
APIT setsockopt(2), or by the presense of ancillary

data items on sendmsg(2).

10.3 Inbound traffic

We define no option to inspect the flow label
field on inbound traffic, at this moment.

Even though we are able to grab the outgoing
flow label value with getsockname(2), the value
should not affect the socket selection against in-
bound traffic.

Note: Even if we are to define some mecha-
nism to inspect the value on inbound packets,
we should not use the sin6_flowinfo member for
this. There are many applications which do con-
nect(2) or sendto(2), with the value returned from

recvirom(2) or getpeername(2).

10.4 sin6_flowinfo field

The draft defines no valid operation where a

value is passed, from an application to the kernel,
via the sin6_flowinfo member. When the applica-
tion issues system calls to the kernel, the applica-
tion should fill the sin6_flowinfo member with 0,

as suggested in IPv6 basic API.

10.5 Issues

e Interaction with RSVP. Is getsockname(2)



enough to implement RSVP application?

e [s it necessary for an application to specify
the flow label value manually? In this case,
how should we check if the value is suitable
enough? (how to check the number collision?)

e The document assumes that the granularity
of flows is equal to the granularity of sock-
ets, or connect(2) system calls. As we still do
not have wide consensus about what the word
“flow” means, this could be controversial; for
example, some may want multiple flows for
a TCP session, some may want to consider

multiple TCP sessions as a single flow.

10.6 Security consideration

The document introduces no new security issue.
The presense of a flow label value may help wire-
tappers to identify a flow out of packets on the

wire.

0110 An IPv6/IPv4 multicast translator based
on IGMP/MLD Proxying (IMP)

11.1 Introduction

It is expected that many IPv4 nodes will remain,
for its success, for a long time after the transi-
tion to IPv6 starts. On the other hand IPv6-only
nodes will appear, for cost reasons or as a result of
exhaustion of the IPv4 address space, before IPv4
nodes disap- pear. Therefore, it is highly desirable
to develop a mechanism which enables direct com-
munication between IPv4 nodes and IPv6 nodes,
in order to advance the transition smoothly. [116]
and [156] have already proposed such mechanisms,
but they are applied only to unicast communica-
tion, not to multicast. So it is necessary to provide
another mechanism for multicast.

This memo describes an entire scheme of multi-
cast communication between IPv4 nodes and IPv6
nodes. The scheme is composed by a mul- ticast
translator and an address mapper who are located

at the site boundary between IPv4 and IPv6. It
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is not necessary to modify IPv4 nodes and IPv6
nodes.

This memo uses the words defined in [128], [35],
and [53].

11.2 Components

This section describes components needed for
the mechanism.

The system consists of a multicast translator,
and an address mapper. In order to allow IPv4
nodes and IPv6 nodes to directly communicate
using multicast, they need to be installed on the
site boundary between IPv4 and IPv6. Figure 1

illustrates the network system interconnected by

them.
IPv4 IPv6
Multicast Multicast
Sender Sender
Node Node
IPv4 land | Address Mapper | IPv6 land
Multicast Translator
- -
IPv4 IPv6
Multicast Multicast
Proxy Proxy
IPv4 IPv6
Multicast Multicast
Receiver Receiver
Node Node

Fig.1 Network system

Multicast Translator

It locates between an IPv4 land and an IPv6
land, and translates IPv4 multicast packets into
IPv6 multicast packets and vice versa. It consists

of the following three sub-components.

1. Translator
It is a component which translates IPv4 mul-
ticast packets into IPv6 multicast packets and
vice versa. There are several trans- lation

types.
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Gateway
It terminates data bound for an IPv4 mul-
ticast group at application layer, and relays
the data to an IPv6 multicast group and
vice versa.

Header conversion router
When receiving an IPv4 multicast packet,
it converts the IPv4 header into an IPv6
header, fragments the IPv6 packet if neces-
sary, and then forwards the packet. Like-
wise, when receiving an IPv6 multicast
packet, it converts the IPv6 header into an
IPv4 header, and then forwards the IPv4
packet.

2. IPv4 Multicast Proxy
It joins IPv4 multicast groups as a proxy of
IPv6 receiver nodes. Thereby it receives pack-
ets bound for the IPv4 multicast groups, and
then hands the packets to the translator.

3. IPv6 Multicast Proxy
It joins IPv6 multicast groups as a proxy of
IPv4 receiver nodes. Thereby it receives pack-
ets bound for the IPv6 multicast groups, and
then hands the packets to the translator.

Address mapper

It maintains each unicast address spool for IPv4
and IPv6. The IPv4 spool, for example, consists
of private addresses [133] bound for the multicast
translator. An example of the IPv6 spool is IPv6
address space assigned to virtual IPv6 organiza-
tion on the IPv4 land.

Also, it maintains a mapping table which con-
sists of pairs of an IPv4 address and an IPv6 ad-
dress. When the translator (or the IPv4 Proxy
or the IPv6 Proxy) requests it to assign an IPv6
address corresponding to an IPv4 address, it se-
lects a proper IPv6 address out of the table, and
returns the address to the translator. When there
is not a proper entry for an IPv4 unicast address,
it selects and returns an IPv6 unicast address out

of the spool, and registers a new entry into the ta-
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ble. When there is not a proper entry for an IPv4
multicast group address, it registers a new entry,
which con- sists of the IPv4 multicast group ad-
dress and that of IPv6 corresponding to the IPv4
address, into the table. The IPv6 address is a
special type of one proposed in this memo. See
section 4.

When the translator (or the IPv4 Proxy or the
IPv6 Proxy) requests it to assign an IPv4 address
corresponding to an IPv6 address, it works like the

above.

11.3 Interaction Examples

This section explains communication from one
IPv4 multicast sender node to one or more IPv6
multicast receiver nodes, and communica- tion
from one IPv6 multicast sender node to one or

more IPv4 multi- cast receiver nodes, respectively.

Communication from IPv4 to IPv6

The following subsection explains communica-
tion from one IPv4 mul- ticast sender node, called
“sender4,” to one or more IPv6 multicast receiver
nodes, called “receiver6.”

Preceding the communication, the administra-
tor of the multicast translator carries out the setup
to translate IPv4 multicast pack- ets, which are
sent by “sender4”, into IPv6. According to the
direction of the administrator, the IPv4 multicast
proxy joins the IPv4 multicast group as a proxy of
“receiver6”, and then registers a new entry, which
consists of the IPv4 multicast group address and
that of IPv6 corresponding to the IPv4 address,
into the mapping table. The IPv6 address is a
special type of one proposed in this memo, and
takes the structure which is identified by a pre-
fix of ffxx::/96 and holds the IPv4 address in the
low-order 32-bits. See section 4.

The communication is triggered by “sender4.”
“senderd” sends an IPv4 multicast packet.

When the packet arrives at the multicast trans-
lator, the IPv4 mul- ticast proxy receives it and
hands it to the translator. The trans- lator tries

to translate it into an IPv6 packet but does not



know how to translate the IPv4 source address
and the IPv4 destination address. So the trans-
lator requests the mapper to tell mapping entries
for them. The mapper checks its mapping table
with each of them and finds only a mapping entry
for the IPv4 destination address.

But there is not a mapping entry for the IPv4
source address, so the mapper selects an IPv6 ad-
dress out of the IPv6 spool and regis- ters a new
entry, which consists of the IPv4 address and the
IPv6 address, into the mapping table. And then
the mapper returns the IPv6 destination address
and the IPv6 source address to the trans- lator.

After that the translator translates the packet
to IPv6, fragments it if necessary, and forwards
it. Note: The translation from the IPv4 source
address to the IPv6 source address is unicast one.

Finally it arrives at “receiver6.”

Figure 2 illustrates the interaction communicat-

ing from IPv4 to IPv6.

"sender4" "multicast translator" "address  ‘"receiver6"
mapper"
IPv4 translator  IPv6
multicast multicast
proxy proxy

<——| Sends an "IGMP Membership Report" for
joining the IPv4 multicast group.

I I |
Registers a entry for the group into
the mapping table.

)| Sends an IPv4 multicast packet.

Hands it.

Request IPv6 addresses corresponding
to the IPv4 addresses.

Reply with the IPv6 addresses.

<<Translate IPv4 into Ipv6.>>

Forwards an IPv6 multicast packet.
1

Fig.2 The interaction communicating

from IPv4 to IPv6.

Communication from IPv6 to IPv4

The following subsection explains communica-
tion from one IPv6 mul- ticast sender node, called
“sender6,” to one or more IPv4 multicast receiver
nodes, called “receiver4.”

Preceding the communication, the administra-
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tor of the multicast translator carries out the setup
to translate IPv6 multicast pack- ets, which are
sent by “sender6” to a special type of IPv6 address
proposed in this memo, into IPv4. In the case,
the IPv6 multicast proxy joins the IPv6 multicast
group as a proxy of “receiver4”, and then registers
a new entry, which consists of the IPv6 multicast
group address and that of IPv4 corresponding to
the IPv6 address, into the mapping table. The
IPv4 address is the low-order 32-bits of the IPv6
address.

Subsequent interaction is symmetric to the case
described in Sec- tion 3.1.

Figure 3 illustrates the interaction communicat-

ing from IPv6 to IPv4.

"receiver4" "multicast translator" "address  "sender6"
mapper"
IPv4 translator IPv6
multicast multicast
proxy proxy

Sends an "MLD Multicast Listener

Report" for joining the IPv6 multicast group.
_—>
_—>

Registers a entry for the group into

the mapping table.

Sends an IPv6 multicast packet.

Hands it.

Request IPv4 addresses corresponding
to the IPv6 addresses.

Reply with the IPv4 addresses.

<<Translate IPv6 into Ipv4.>>

—

| |
Forwards an IPv4 multicast packet.

Fig.3 The interaction communicating

from IPv6 to IPv4.

11.4 Addressing for IPv4/IPv6 multicast

communication

The mechanism uses a special type of an IPv6
address which is termed an “IPv4-compatible”
The address
is identified by an prefix for IPv6 multicast

IPv6 multicast group address.

(ffxx::/96), and holds an IPv4 multicast group ad-

dress in the low-order 32-bits. Its format is:

96-bits 32-bits

ffxx:0:0:0:0:0 IPv4 multicast

group address
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11.5 Applicability and Limitations

This section considers applicability and limita-

tions.

Applicability

The multicast translator based on the mecha-
nism locates at the site boundary between IPv4
and IPv6, and allows them to communicate di-
rectly. Therefore, the mechanism can be useful
during a long term, until IPv4 nodes disappear
after IPv6-only nodes appear.

It can be applicable to small-scale network sys-
tems, and to the extent of division networks in
intranets where its administrator can operate the

setup easily on demand by receivers.

Limitations

In common with NAT [86], IP conversion needs
to translate IP addresses embedded in application
layer protocols. So it is hard to translate all such
applications completely.

It cannot be applicable to large-scale network
systems like world- wide Internet because it needs
the setup by its administrator. In order to apply
it to large-scale network systems, it needs develop-
ing a new standard protocol between multicast
translators and receivers for carrying out the setup

automatically on demand by receivers.

11.6 Security considerations

Header conversions of AH [95] and ESP [96] may

be cryptographi- cally impossible in header con-
version router approach. It is a big disadvantage.
On the other hand it will be possible to use both
AH and ESP in proxy gateway approach.

0120 A RADIUS attribute for IPv6 dialup PPP

with static address assignment

12.1 Usage model

In this document we cover the following cases
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in IPv6 dialup PPP operation. No other cases are
addressed in the document. Please refer to [58]
for more about requirements in/categorization of

IPv6 dialup PPP operation,

e The downstream customer is a “static client,”
i.e. their computers does not change the geo-
graphical location.

e Address

space is statically assigned to

the downstream customer. In this doc-
ument, we assume that we have assigned
3ffe:0501:fff:: /48 to the downstream cus-
tomer.

e The /48 Address space is assigned for the net-
work cloud behind the customer router. It
should be noted that ISP router will have no
idea about the network topology in the cus-
tomer site. In the following diagram, Lx de-

notes an IPv6 link-local address, and Gx de-

notes an IPv6 global address.

ISP router — RADIUS server

La
ppp link
Lb
Customer router
|ab

(((3ffe:0501:ffff::/48 cloud)))

e Routing can be statically configured, or
dynamic routing protocol like RIPng [103]
should be used.

e We carry IPv6 packets using [IPv6 PPP
[Haskin, 1998]. No IPv6-over-IPv4 tunnelling
is used.

e [Pv4 PPP address allocation issue is outside
of the scope of the document. We can safely
ignore it without loss of generality, thanks to

multiprotocol nature of PPP.

12.2 RADIUS attribute for carrying IPv6

address space information

To exchange the information about customer
IPv6 address space between the ISP router and
RADIUS server, we need a common RADIUS at-
tribute for IPv6 address space. The attribute is



defined as follows:

0 1 2 3
01234567890123456789012345678901

Type Length MUST BE ZERO | Prefixlen

IPv6 address prefix

IPv6 address prefix (cont'd)

IPv6 address prefix (cont'd)

IPv6 address prefix (cont'd)

e Type: TBD

e Length: 20

e Prefixlen: IPv6 prefix length for the IPv6 ad-
dress space. Between 0 to 128 (in decimal).
For normal use, 48 (in decimal).

e [Pv6 address prefix: Binary representation of
IPv6 address, in network byte order. Bits out-

side of prefix length must be zero.

For example, if we exchange “3ffe:0501:ffff:: /48”7
with it, the attribute will look like follows:

0 1 2 3
01234567890123456789012345678901

Type 20 0x00 48
0x3f Oxfe 0x05 0x01
Oxff Oxff 0x00 0x00
0x00 0x00 0x00 0x00
0x00 0x00 0x00 0x00

12.3 Scenario

Contract

The ISP and the downstream customer will sign
a IPv6 dialup PPP contract. The ISP will assign
the downstream customer a global IPv6 address
space. The ISP will inform the downstream cus-

tomer of the following items:

e The phone number which the customer should
dial (the number reaches ISP router), and

e The global IPv6 address space
(3ffe:0501:fFfF:: /48).

The customer and ISP will exchange PPP au-

thentication information in secrecy.
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ISP configuration
The ISP will put the following information into
RADIUS database.

e Account name of the user (which is the key
for looking up RADIUS database),

e PPP authentication information, and

e The global IPv6 address space assigned to the
customer (3ffe:0501:fFfF:: /48).

Customer site configuration
The customer will configure the customer site
using the address space assigned. Customer in-

stalls default routing entry toward the ISP router.

ISP router — RADIUS server
La

default route
Lb
Customer router
|ab
(((3ffe:0501:ffff::/48 cloud)))

Establishing a PPP connection
On PPP link establishment, the following events
would happen.

e The customer router calls up the ISP router.

e The customer router authenticates itself to
the ISP router. The ISP router contacts RA-
DIUS server for authentication information,
to check if the user is legitimate.

e If the user is found to be legitimate, the PPP
link will be established between the routers.
IPV6CP [60] is used to avoid duplicated link-
local address on the PPP link.

e The ISP router will grab information on
IPv6 address space from RADIUS database
(NOTE: the ISP router can grab the authenti-
ation information and the IPv6 address space

information, in a single query).

If we use static routing the ISP router is con-
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figured with a routing entry for the address space,
pointing to the customer router. ISP router adver-
tises the routing information to the ISP backbone,

if necessary.
ISP router — RADIUS server

La
3ffe:0501:ffff::/48

Lb
Customer router
|ab
(((3ffe:0501:ffff::/48 cloud)))

T default route

If we use dynamic routing, instead of configur-
ing a static routing entry, the ISP router is config-
ured to accept legitimate IPv6 routing announce-
ments (that is, 3ffe:0501:Mff::/48) from the cus-
tomer router. The ISP router advertises default
route, and possibly more specific routes, to the
customer router. The customer router will adver-
tise 3ffe:0501:ffff::/48 to the ISP router (NOTE:
the IPv6 address prefix is pre-configured to the
customer router. The customer router knows the
prefix as the ISP gave the information at the con-

tract time).

Tearing down
On PPP link disconnection, the following events

would happen.

e The customer router, or the ISP router,
wishes to disconnect the PPP connection.

e PPP link will be teared down using normal
PPP disconnection procedure.

e The ISP router removes the routing entry for
the global IPv6 address space for the cus-

tomer.

12.4 Discussions

It is possible to use the proposed attribute for
non-dialup IPv6 PPP connections, to ease man-
agement in the ISP side.

It is possible to define the proposed RADIUS at-
tribute as a vendor-type attribute under “Vendor-

Specific” type (26). The authors are not sure
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which is the way to go.

0130 An Extension of Format for IPv6 Scoped
Addresses

13.1 Introduction

There are several types of scoped addresses de-
fined in the “IPv6 Addressing Architecture” [64].
Since uniqueness of a scoped address is guaranteed
only within a corresponding area of the scope, the
semantics for a scoped address is ambiguous on a
scope boundary. For example, when a user spec-
ifies to send a packet from a node to a link-local
address of another node, the user must specify the
link of the destination as well, if the node is at-
tached to more than one link.

This characteristic of scoped addresses may in-
troduce additional cost to scope-aware applica-
tions; a scope-aware application may have to pro-
vide a way to specify an instance of a scope for
each scoped address (e.g. a specific link for a link-
local address) that the application uses. Also, it is
hard for a user to “cut and paste” a scoped address
due to the ambiguity of its scope.

Applications that are supposed to be used in
end hosts like telnet, ftp, and ssh, are not usually
aware of scoped addresses, especially of link-local
addresses. However, an expert user (e.g. a net-
work administrator) sometimes has to give even
link-local addresses to such applications.

Here is a concrete example. Consider a multi-
linked router, called “R1”, that has at least two
point-to-point interfaces. Each of the interfaces
is connected to another router, called “R2” and
“R3”. Also assume that the point-to-point inter-
faces are “unnumbered”, that is, they have link-
local addresses only.

Now suppose that the routing system on R2
hangs up and has to be reinvoked. In this situ-
ation, we may not be able to use a global address
of R2, because this is a routing trouble and we can-

not expect that we have enough routes for global



reachability to R2.

Hence we have to login R1 first, and then try to
login R2 using link-local addresses. In such a case,
we have to give the link-local address of R2 to, for
example, telnet. Here we assume the address is
fe80::2.

Note that we cannot just type like

% telnet fe80::2

here, since R1 has more than one interface (i.e.
link) and hence the telnet command cannot detect
which link it should try to connect.

Although R1 could spray neighbor solicitations
for fe80::2 on all links that R1 attaches in order to
detect an appropriate link, we cannot completely
rely on the result. This is because R3 might also
assign fe80::2 to its point-to-point interface and
might return a neighbor advertisement faster than
R2. There is currently no mechanism to (auto-
matically) resolve such conflict. Even if we had
one, the administrator of R3 might not accept to
change the link-local address especially when R3
belongs to a different organization from R1’s.

This document defines an extension of the for-
mat for scoped addresses in order to overcome this
inconvenience. Using the extended format with
some appropriate library routines will make scope-

aware applications simpler.

13.2 Proposal

The proposed format for scoped addresses is as
follows:

<scoped_address>/,<scope_id>
where <scoped_address> is a literal IPv6 address,
<scope_id> is a string to identify the scope of the
address, and '}’ is a delimiter character to distin-
guish between <scoped_address> and <scope_id>.

The following subsections describe detail defini-

tions and concrete examples of the format.

Scoped Addresses

The proposed format is applied to all kinds of
unicast and multicast scoped addresses, that is, all
non-global unicast and multicast addresses.

The format should not be used for global ad-
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dresses. However, an implementation which han-
dles addresses (e.g. name to address mapping
functions) MAY allow users to use such a nota-

tion (see also Appendix C).

Scope Identifiers

An implementation SHOULD support at least
numerical identifiers as <scope_id>, which are
non-negative decimal numbers. Positive identi-
fiers MUST uniquely specifies a single instance of
scope for a given scoped address. An implemen-
tation MAY use zero to have a special meaning,
for example, a meaning that no instance of scope
is specified.

An implementation MAY support other kinds
of strings as <scope_id> unless the strings conflict
with the delimiter character. The precise seman-
tics of such additional strings is implementation
dependent.

One possible candidate of such strings would be
interface names, since interfaces uniquely disam-
biguate any type of scopes [55]. In particular, if an
implementation can assume that there is a one-to-
one mapping between links and interfaces (and the
assumption is usually reasonable,) using interface
names as link identifiers would be natural.

An implementation could also use interface
names as <scope_id> for larger scopes than links,
but there might be some confusion in such use. For
example, when more than one interface belongs to
a same site, a user would be confused about which
interface should be used. Also, a mapping func-
tion from an address to a name would encounter
a same kind of problem when it prints a scoped
address with an interface name as a scope iden-
tifier. This document does not specify how these
cases should be treated and leaves it implementa-
tion dependent.

It cannot be assumed that a same identifier is
common to all nodes in a scope zone. Hence the
proposed format MUST be used only within a
node and MUST NOT be sent on a wire.
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Examples
Here are examples. The following addresses
fe80::1234 (whose link identifier is 1)
fec0::5678 (whose site identifier is 2)
££02::9abc (whose link identifier is 5)
££08::def0
(whose organization identifier is 10)
would be represented as follows:
fe80::1234%1
fec0::5678%2
££02::9abc¥%b
££08::def0%10
If we use interface names as <scope_id>, the
followings could also be represented as follows:
fe80::1234%ne0
fecO::5678%ether2
££02::9abclpvcl.3
££08::defO%interfacell
where the interface “ne0” belongs to link 1,

“ether2” belongs to site 2, and so on.

Omitting Scope Identifiers

This document does not intend to invalidate the
original format for scoped addresses, that is, the
format without the scope identifier portion. An
implementation SHOULD rather provide a user
with a “default” instance of each scope and allow
the user to omit scope identifiers.

Also, when an implementation can assume that
there is no ambiguity of any type of scopes on a
node, it MAY even omit the whole functionality
to handle the proposed format. An end host with
a single interface would be an example of such a

case.

13.3 Combinations of Delimiter Characters

There are other kinds of delimiter characters de-
fined for IPv6 addresses. In this section, we de-
scribe how they should be combined with the pro-
posed format for scoped addresses.

The IPv6 addressing architecture [64] also de-
fines the syntax of IPv6 prefixes. If the ad-

dress portion of a prefix is scoped one and the
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scope should be disambiguated, the address por-
tion SHOULD be in the proposed format. For
example, the prefix fec0:0:0:1::/64 on a site whose
identifier is 2 should be represented as follows:

fec0:0:0:1::%2/64

There is the preferred format for literal IPv6 ad-
dresses in URL’s [63]. When a user types the pre-
ferred format for an IPv6 scoped address and the
scope should be explicitly specified, the address
part in brackets SHOULD be in the proposed for-
mat. Thus, for instance, the user should type as
follows:

http://[fec0:0:0:2::12347,10] :80/index.html

13.4 Related Issues

In this document, it is assumed that an identi-

fier of a scope is not necessarily common in a scope
zone. However, it would be useful if a common no-
tation is introduced (e.g. an organization name for
a site). In such a case, the proposed format could
be commonly used to designate a single interface
(or a set of interfaces for a multicast address) in a
scope zone.

When the network configuration of a node
changes, the change may affect <scope_id>. Sup-
pose that the case where numerical identifiers are
sequentially used as <scope_id>. When a network
interface card is newly inserted in the node, some
identifiers may have to be renumbered accordingly.
This would be inconvenient, especially when ad-
dresses with the numerical identifiers are stored in

non-volatile storage and reused after rebooting.

13.5 Security Considerations

The use of this approach to represent IPv6
scoped addresses does not introduce any known
new security concerns, since the use is restricted

within a single node.

13.6 Appendix A. Interaction with API

The proposed format would be useful with some
library functions defined in the “Basic Socket
API” [148], the functions which translate a node-

name to an address, or vice versa.



For example, if getaddrinfo() parses a lit-
eral IPv6 address in the proposed format and
fills an identifier according to jscopde_id; in the
sin6_scope_id field of a sockaddr_in6 structure,
then an application would be able to just call
getaddrinfo() and would not have to care about
scopes.

Also, if getnameinfo() returns IPv6 scoped ad-
dresses in the proposed format, a user or an ap-
plication would be able to reuse the result by a
simple “cut and paste” method.

Note that the ipng working group is now re-
vising the basic socket API in order to support
scoped addresses appropriately. When the revised
version is available, it should be preferred to the

description of this section.

13.7 Appendix B. Implementation Experi-

ences
The WIDE KAME IPv6 stack implements the

extension to the getaddrinfo() and the getname-
info() functions described in Appendix A of this
document. The source code is available as free
software, bundled in the KAME IPv6 stack Kkit.

The current implementation assumes that there
is one-to-one mapping between links and in-
terfaces, and hence it uses interface names as
<scope_id> for links.

For instance, the implementation shows its rout-
ing table as follows:

Internet6:

Destination Gateway Flags Intface

default fe80::fe32:93d1%ef0 UG ef0

This means that the default router is
fe80::fe32:93d1 on the link identified by the
interface “ef0”. A user can “cut and paste” the
result in order to telnet to the default router like
this:

% telnet fe80::fe32:93d1%ef0
even on a multi-linked node.

As another example, we show how the imple-
mentation can be used for the problem described
in Section 1.

We first confirm the link-local address assigned

W I D E

to the point-to-point interface of R2:

(on R1)% ping ££02::1

PING(56=40+8+8 bytes) fe80::1 --> ££02::1
16 bytes from £e80::1%100, icmp_seq=0 hlim=64 time=0.474 ms
16 bytes from fe80::2%pvc0, icmp_seq=0 hlim=64 time=0.374 ms(DUP!)

(we assume here that the name of the point-to-point interface
on R1 toward R2 is "pvcO" and that the link-local address on

the interface is "fe80::1".)

So the address should be fe80::2. Then we can
login R2 using the address by the telnet command
without ambiguity:

% telnet fe80::2%pvcO

Though the implementation supports the ex-
tended format for all type of scoped addresses,
our current experience is limited to link-local ad-
dresses. For other type of scopes, we need more

experience.

13.8 Appendix C. A Comprehensive De-
scription of KAME’s getXXXinfo

Functions

The following tables describe the behavior of
the KAME’s implementation we mentioned in Ap-
pendix B using concrete examples. Note that
those tables are not intended to be standard spec-
ifications of the extensions but are references for
other implementors.

Those tables summarize what value the
get XX Xinfo functions return against various argu-
ments. For each of two functions we first explain
typical cases and then show non-typical ones.

The tables for getaddrinfo() have four columns.
The first two are arguments for the function, and
the last two are the results. The tables for get-
nameinfo() also have four columns. The first three
are arguments, and the last one is the results.

Columns “Hostname” contain strings that are
numeric or non-numeric IPv6 hostnames.

Columns “NI_NUMERICHOST” show if the
NI_NUMERICHOST is set to flags for the cor-
responding getXXXinfo function. The value “1”
means the flag is set, and “0” means the flag is

W »

clear. means that the field is not related to
the result.

Columns “sin6_addr” contain IPv6 binary ad-
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dresses in the textual format, which mean the

values of the sin6_addr field of the corresponding

sockaddr_in6 structure.

Columns “sin6_scope_id” contain numeric num-
bers, which mean the values of the sin6_scope_id
field of the corresponding sockaddr_in6 structure.

If necessary, we use an additional column titled
“N/B” to note something special.

If an entry of a result column has the value “Er-
ror,” it means the corresponding function fails.

In the examples, we assume the followings: -
The hostname “foo.kame.net” has a AAAA DNS
record “3ffe:501::1”7. We also assume the reverse
map is configured correctly. - There is no FQDN
representation for scoped addresses. - The nu-
meric link identifier for the interface “ne0” is 5.
- We have an interface belonging to a site whose
numeric identifier is 10. - The numeric identifier
“20” is invalid for any type of scopes. - We use
the string “none” as an invalid non-numeric scope
identifier.

Typical cases for getaddrinfo():

Hostname NI_NUMERICHOST sin6_addr sin6_scope._id

"foo.kame.net" 0 3ffe:501::1 O

"3ffe:501::1" - 3ffe:501::1 O

"fecO0::1"fe80::1"fe80::1

Typical cases for getnameinfo():
sin6_addr sin6.scope.id NI_NUMERICHOST Hostname N/B
3ffe:501::1 0 O "foo.kame.net"
3ffe:501::1 0 1 "3ffe:501::1"
fecO::1 10 - "fec0::1%10"
fe80::1 5 - "fe80::1%ne0" (1)

(*1) Regardless of the NI_NUMERICHOST flag,
we always show an interface name as the
<scope_id> portion for a link-local address
if the identifier is valid.

Non-typical cases for getaddrinfo():

Hostname NI_NUMERICHOST sin6_addr

sin6_scope_id N/B

"foo.kame.net" 1 Error

"foo.kame.net20" - Error (*2)

"foo.kame.net%none" - Error (*2)

"3ffe:501::1%none" - Error

"3ffe:501::1%0" - 3ffe:501::1 0 (*3)

"3ffe:501::1%20" - 3ffe:501::1 20 (*3)
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"fecO::1%none" - Error
"fecO::1" - fec0::1 0 (*4)
"fec0::1%0" - fecO::1 0 (*5)
"fec0::1%20" - fecO::1 20 (*6)
"fe80::1%none" - Error
"fe80::1" - fe80::1 0 (*4)
"fe80::1%0" - fe80::1 0 (*5)
"fe80::1%20" - fe80::1 20 (*6)

(*2) <scope.id> against an FQDN is invalid.

(*3) We do not expect that <scope_id> is speci-
fied for a global address, but we don’t regard
it as invalid.

(*4) We usually expect that a scoped address
is specified with <scope_id>, but if no
identifier is specified we just set 0 to the
sin6_scope_id field.

(*5) Explicitly specifying 0 as <scope_id> is not
meaningful, but we just treat the value as
opaque.

(*6) The <scope_id> portion is opaque to getad-
drinfo() even if it is invalid. It is kernel’s
responsibility to raise errors, if there is any
connection attempt that the kernel cannot
handle.

Non-typical cases for getnameinfo():
sin6_addr sin6_scope_id NI_NUMERICHOST

Hostname N/B

3ffe:501::1 20 1 "3ffe:501::1%20" (*7)

3ffe:501::1 20 0 "foo.kame.net" (*8)

fecO0::1 20 - "fec0::1%20"
fecO0::1 0 - "fecO::1" (*9)
fe80::1 20 - "fe80::1%20"
fe80::1 0 - "fe80::1" (*9)

(*7) We do not expect that a global IPv6 address
has a non-zero scope identifier. But if it is
the case, we just treat it as opaque.

(*8) Despite the
NI_NUMERICHOST is clear, we resolve the

above, if the

address to a hostname and print the name
without scope information. We might have
to reconsider this behavior.

(*9) We usually expect that a scoped address has
a non-zero scope identifier. But if the identi-

fier is 0, we simply print the address portion



without scope information.

0140 IPv6 SMTP operational requirements

14.1 Summary of IPv4 MX operation

For reference purpose, the section outlines how
mail message delivery is performed in IPv4-only
environment [125].

In IPv4 SMTP operation, we register MX
records like below, for “sample.org.” domain:

sample.org. IN MX 1 mxl.sample.org.
IN MX 10 mx10.sample.org.
mx1l.sample.org. IN A 1.0.0.1
mx10.sample.org. IN A 1.0.0.2

When an MTA delivers a message to a particular
destination (say it is to foo@sample.org), the MTA
would send DNS queries to lookup DNS database

in the following order:

e Lookup MX record for “sample.org.”

e If an MX record is returned, try to lookup A
record on the righthand side of the MX record.

e If a CNAME record is returned, try to chase
the CNAME chain. Eventually we will reach
some A record.

e If MX lookup failed with NO_DATA, it means
that there is no MX record but there can
be other record for “sample.org.” Lookup A
record for “sample.org.”.

o If MX lookup failed with
HOST_NOT_FOUND, it means that there is
no record at all for “sample.org.” This means

a delivery failure.

14.2 MX records and IPv6 SMTP operation

The following sections talk about how to make
IPv4 SMTP and IPv6 SMTP coexist, under dual-
stack environment during the transition period be-
tween IPv4 to IPv6. In the future, when we have

completely migrated to IPv6-only network, we can

W I D E

forget about IPv4/v6 SMTP interaction.

As IPv6 DNS lookup RFCs [Thomson, 1995;
Crawford, 2000] use IN class for both IPv4 and
IPv6, we will use IN MX records for both IPv4
and IPv6.

For simplicity, the document lists DNS records
for IPv6 address as AAAA records, not as A6 records
[30]. In reality, we can use a chain of A6 records,
instead of AAAA records.

There are couple of technologies defined for IPv4
and [Pv6 transition. The document concentrates
on issues with dual stack environment. Transla-
tors do not need special consideration from SMTP
point of view; If we have SMTP traffic from IPv6
MTA to IPv4 MTA over an IPv6-to-IPv4 trans-
lator, the traffic will be considered as a normal
IPv4 SMTP traffic, from the IPv4 MTA point of
view. We may, however, need some consideration

on translators for protocols like IDENT [149] .

14.3 SMTP sender algorithm in dual stack

environment

When we lookup MX records for the domain
in IPv4/v6 dual stack environment, we will see
records like below:

sample.org. IN MX 1 mxl.sample.org.

IN MX 10 mx10.sample.org.

mx1.sample.org. IN A 1.0.0.1
; IPv4/v6 dual stack
IN AAAA 3ffe:501:ffff::1
mx10.sample.org. IN AAAA 3ffe:501:ffff::2
; IPv6 only
For single MX record, we have many possibility
for the final lookup result, including: (a) single,
or multiple A records for IPv4 destination, (b) sin-
gle, or multiple AAAA records for IPv6 destination,
(¢) mixture of A and AAAA records. As we can
define multiple MX records with different prefer-
ence value, we also need to go through multiple
addresses based on multiple MXes. We need to
cope with domains without MX records, and fail-
ure recovery cases t00.
The algorithm for a SMTP sender would be like
this.

151

PR OIJECT

OwOe

QUOISIOA T




e (1 70 IP Version6

1. Lookup MX record for the destination do-
If a CNAME record is returned, go
back to step (1) with the queried result. If

main.

MX records are returned, go to step (2) with
If NO_DATA is returned, go
to step (3) as there is no MX record. If
HOST_NOT_FOUND is returned, there is no

the result.

domain, raise permanent email delivery fail-
ure (finish).

2. We have multiple MX records with us. Loop
steps from (3) to (8), based on MX preference
values, in ascending order.

3. If the source MTA has IPv4 capability, lookup
A record. Keep the resulting address till step
(5).

4. If the source MTA has IPv6 capability, lookup
AAAA record.

5. Reorder based on

queried result

implementation-dependent  preference be-
tween A and AAAA records.

6. Loop steps from (7) to (8), for all the ad-
dresses (or part of the list of addresses) we
have. If no reachable destination is found, and
if we are going through a list of MX records,
go back to (3) and try the next MX record.
If we do not have a list of MX records, or we
have reached the end of the list of MX records,
raise temporary delivery failure (finish).

7. Try to make a TCP connection to the destina-
tion. If it fails, try the next address we have.
If it succeeds, go to step (8).

8. Try a SMTP protocol negotiation. If SMTP
protocol negotiation fails with TEMPFAIL
(4xx), go back to (3) and try the next MX
record. If it succeeds, SMTP delivery was suc-

cessful (finish).

14.4 MX configuration in receipient domain

Ensuring reachability for both protocol ver-

sions

If a site has IPv4/v6 dual stack reachability, the
site SHOULD configure both A and AAAA records
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onto its MX hosts. It will help both IPv4 and

IPv6 senders to reach the site efficienlty.

Reachability between primary and sec-
ondary MX

When we configure MX records onto DNS
database in dual-stack environment, we need to
be careful about reachability between MX hosts.
Suppose we try to gather all inbound email to pri-
mary MX host, mx1.sample.org.

sample.org. IN MX 1 mxl.sample.org.
IN MX 10 mx10.sample.org.
IN MX 100 mx100.sample.org.

If mx1.sample.org is an IPv6 only node and the
rest are IPv4 only node, we have no reachability
between primary MX host and the rest. Once an
email reaches one of secondary MX host, the email
will never reach the primary MX.

; the configuration is troublesome.

; no secondary MX can reach mxl.sample.org.

sample.org. IN MX 1 mxl.sample.org.
; IPv6 only
IN MX 10 mx10.sample.org.
; IPv4 omnly
IN MX 100 mx100.sample.org.
; IPv4 omnly

The easiest possible configuration is to configure
the primary MX host as an IPv4/v6 dual stack
node. By doing so, secondaries will have no prob-
lem reaching the primary MX host.

; the configuration works just fine.

; emails reaches from secondary MX

; to primary with no trouble.

sample.org. IN MX 1 mxl.sample.org.
; IPv4/v6 dual stack
IN MX 10 mx10.sample.org.
; IPv4 omnly
IN MX 100 mx100.sample.org.
; IPv6 only

There are many other ways to ensure the reach-
ability between secondary MX and primary MX.
For example, we could configure secondary MX to

route emails statically, without considering DNS

MX configuration. Or we could estalish alterna-



tive email routing path (i.e. UUCP, or via IPv4/v6
translator) between secondary MX and the pri-

mary MX.

14.5 Open issues

e How to interpret scoped address on MTAs.
As we relay emails between MTAs, interpre-
tation of scoped address can be different be-
tween MTASs, as intermediate MTAs may be

in different scope zone as the originator.

If we get scoped IPv6 address as a result of DNS
lookups, how MTAs should behave? If we consider
scoped address in “route-addr” specification [31]
like

<itojun@kame.net@oshokuji.org@itojun.org>

it gets more trickier.

14.6 Security consideration

The document should have no new security

problem.

0150 Socket API for IPv6 traffic class field

15.1 Background

The IPv6 traffic class field is a 8bit field in the
IPv6 header. The field serves just like the IPv4
type of service (TOS) field. There are two types
of proposed use of the field: (1) topmost 6 bits
for the differentiated services (diffserv) field [113] ,
and (2) lowermost 2 bits for explicit congestion no-
tification (ECN) [131]. Those two proposals plan
to rewrite the field at intermediate routers.

There is a certain set of applications which need
to manipulate and inspect the traffic class field.

Here are some examples.

e ECN implementations outside of the kernel
(like UDP ECN).

e A diffserv-aware application, which tries

W I D E

to mark low-priority traffic (such as non-
important packets in a video traffic) on its

own. In this case, the application does not

need to inspect the field on outbound traffic.

e Debugging tools for differentiated services.

15.2 Inbound traffic

PR OIJECT

When an application is interested in inspecting
the traffic class field on packets, the application
should set the IPV6_RECVTCLASS socket option
to 1:

/* enable */

const int on = 1;

setsockopt (fd, IPPROTO_IPV6,
IPV6_RECVTCLASS, &on,
sizeof (on));

Subsequent incoming traffic will be accompa-
nied with an ancillary data item that carries an
unsigned octet value. The ancillary data item will
be tagged with the level IPPROTO_IPV6 and type
IPV6_TCLASS. An application can obatain the
value of the traffic class field by the following op-
eration, after the recvimsg(2) system call:

struct cmsghdr *cm;
u_int8_t tclass;
if (cm->cmsg_len
== CMSG_LEN(sizeof (u_int8_t)) &&
cm->cmsg_level == IPPROTO_IPV6 &&
cm->cmsg_type == IPV6_TCLASS)
tclass = *(u_int8_t *)CMSG_DATA(cm);
else
tclass = 0x00;
/* could not obtain traffic class value */

By setting the socket option to 0, the behavior
is disabled:

/* disable */

const int off = 0;

setsockopt (fd, IPPROTO_IPV6,
IPV6_RECVTCLASS, &off,
sizeof (off));

For TCP sockets, an ancillary data item will
be present only when the traffic class value is

changed. See section 4.1 (TCP Implications) of
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[148] for details.

15.3 Outbound traffic

To control the value of the traffic class field for
a single packet transmission, you can use an an-
cillary data item, just like presented above, with a
sendmsg(2) system call. The level of the ancillary
data item must be IPPROTO_IPV6, and the type
must be IPV6_TCLASS.

int s; /* socket */
u_int8_t tclass;
struct sockaddr_in6 *dst;
struct msghdr m;
struct cmsghdr *cm;
struct iovec iov[2];

u_char cmsgbuf [256];

/* must be > CMSG_SPACE(sizeof (tclass)) x*/

/* set the data buffer to send */
memset(m, 0, sizeof(m));
memset (iov, 0, sizeof(iov));
m.msg_name = (caddr_t)dst;
m.msg_namelen = sizeof (dst);
iov[0] .iov_base = buf;
iov[0].iov_len = len;
m.msg_iov = iov;

m.msg_iovlen = 1;

/* set ancillary data for
the traffic class field */

memset (cmsgbuf, 0, sizeof (cmsgbuf));
cm = (struct cmsghdr *)cmsgbuf;
m.msg_control = cm;
m.msg_controllen

= CMSG_SPACE(sizeof (tclass));
cm->cmsg_len

= CMSG_LEN(sizeof (tclass));
cm->cmsg_level = IPPROTO_IPV6;
cm->cmsg_type = IPV6_TCLASS;
memcpy (CMSG_DATA(cm) , &tclass,

sizeof (tclass));

sendmsg(s, &m, 0);

If you want to put specific value to the traf-
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fic class field on multiple packets, you can use a
“sticky” option:
u_int8_t tclass;
setsockopt (fd, IPPROTO_IPV6,
IPV6_TCLASS, &tclass,

sizeof (tclass));

15.4 Conflict resolution

There are two entities which may modify the
traffic class field, in the kernel of the originating
node: a kernel IPv6 code with diffserv marking
enabled, and an ECN-capable TCP stack. Those
entities may modify the traffic class field, even if
an application tries to manipulate the value. It
may present a difficult constraint to the API. For
outbound traffic, even if an application specifies
the value to be put into the traffic class field, in-
kernel mechanism(s) may need to modify the field.
The specified value may not be reflected into the
packet on the wire (example: outbound process-
ing in an ECN-capable TCP stack). For inbound
traffic, even if the kernel presents the value on the
field to the application, the value may not be the
same as the value on the packet on the wire, due
to manipulation in the kernel (example: traffic re-
ceived by a diffserv egress node itself).

The following text proposes a suggested behav-
ior. One of the goals of the suggestion is to allow
applications to implement UDP ECN by them-

selves. The behavior may need more discussions:

Outbound traffic

If there is no conflict (for example, the TCP
stack is not ECN- capable), the kernel should
honor the value an application specified, and put
the specified value into the traffic class field as is.
If there is a conflict, the kernel should override
the value specified by the application, for the
part of the field (bits) the kernel is using. For
example, if the kernel has an ECN- capable TCP
stack but does not support diffserv, the kernel
should override ECN bits only.

Inbound traffic

Kernel should present the traffic class value ap-



peared on the wire as is to applications. Note
that, in some cases, the kernel may want to al-
ter specific bits in the field, before presenting
the value to the userland. For example, if the
kernel implements TCP ECN and would like to
make it transparent to the user programs, the

kernel may want to hide ECN bits.

From diffserv and ECN protocol specifications,
the traffic class field may be rewritten by inter-
mediate routers. So even if the sender specifies a
value, the value may be altered before the packet

reaches the final destination.

15.5 Issues

e Revise conflict resolution rule?

15.6 Security consideration

The API could be used for attempted theft of

service. An attacker may try to inject packets,
with some specific value in traffic class field, into a
diffserv cloud. Refer to RFC2474 [113] section 7.1
for detail. Note that the theft of diffserv service is
possible even without the API.

0160 An IPv6-to-IPv4 transport relay transla-
tor

16.1 Problem domain

When you deploy an IPv6-only network, you
still want to gain access to IPv4-only network re-
sources outside, such as IPv4-only web servers. To
solve this problem, many [Pv6-to-IPv4 translation
technologies are proposed, mainly in the IETF ng-
trans working group. The memo describes a trans-
lator based on the transport relay technique to
solve the same problem.

In this memo, we call this kind of trans-
lator “TRT” (transport relay translator). A
TRT system locates between IPv6-only hosts and
IPv4 hosts and translates TCP,UDP/IPv6 to

W I D E

TCP,UDP /IPv4, vice versa.
Advantages of TRT are as follows:

e TRT is designed to require no extra modifi-
cation on IPv6-only initiating hosts, nor that
on IPv4-only destination hosts. Some other
translation mechanisms need extra modifica-
tions on IPv6-only initiating hosts, limiting
possibility of deployment.

e The IPv6-to-IPv4 header converters have to
take care of path MTU and fragmentation is-

sues. However, TRT is free from this problem.

Disadvantages of TRT are as follows:

e TRT supports bidirectional traffic only. The
IPv6-to-IPv4 header converters may be able
to support other cases, such as unidirectional
multicast datagrams.

e TRT needs a stateful TRT system between
the communicating peers, just like NAT sys-
tems. While it is possible to place multiple
TRT systems in a site (see Appendix A), a
transport layer connection goes through par-
ticular, a single TRT system. The TRT sys-
tem thus can be considered a single point of
failure, again like NAT systems. Some other
mechanisms, such as SIIT [116], use stateless
translator systems which can avoid a single

point of failure.

The memo assumes that traffic is initiated by an
IPv6-only host destined to an IPv4-only host. The
memo can be extended to handle opposite direc-
tion, if an apprpriate address mapping mechanism

is introduced.

16.2 IPv4-to-IPv4 transport relay

To help understanding of the proposal in the
next section, here we describe the transport relay
in general. The transport relay technique itself is
not new, as it has been used in many of firewall-

related products.
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TCP relay

TCP relay systems have been used in firewall-
related products. These products are designed to
achieve the follwing goals: (1) disallow forward-
ing of IP packets across a system, and (2) al-
low TCP,UDP traffic to go through the system
indirectly. For example, consider a network con-
structed like the following diagram. “TCP relay
system” in the diagram does not forward IP packet
across the inner network to the outer network, vice
versa. It only relays TCP traffic on a specific port,
from the inner network to the outer network, vice
versa. (Note: The diagram has only two subnets,
one for inner and one for outer. Actually both
sides can be more complex, and there can be as
many subnets and routers as you wish)

destination host

X
outer network
Y
TCP relay system
B
inner network
A

initiating host

When the initiating host (whose IP address is A)
tries to make a TCP connection to the destination
host (X), TCP packets are routed toward the TCP
relay system based on routing decision. The TCP
relay system receives and accepts the packets, even
though the TCP relay system does not own the
destination IP address (X). The TCP relay sys-
tem pretends to having IP address X, and estab-
lishes TCP connection with the initiating host as
X. The TCP relay system then makes a another
TCP connection from Y to X, and relays traffic
from A to X, and the other way around.

Thus, two TCP connections are established in
the picture: from A to B (as X), and from Y to
X, like below:

TCP/IPv4: the initiating host (A)
--> the TCP relay system (as X)

address on IPv4 header: A -> X

TCP/IPv4: the TCP relay system (Y)

--> the destination host (X)
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address on IPv4 header: Y -> X
The TCP relay system needs to capture some of
TCP packets that is not destined to its address.
The way to do it is implementation dependent and

outside the scope of this memo.

UDP relay

If you can recognize UDP inbound and out-
bound traffic pair in some way, UDP relay can
be implemented in similar manner as TCP relay.
An implementation can recognize UDP traffic pair
like NAT systems does, by recording address/port
pairs onto an table and managing table entries

with timeouts.

16.3 IPv6-to-IPv4 transport relay translator

We propose a transport relay translator for
IPv6-to-IPv4 protocol translation, TRT. In the
following description, TRT for TCP is described.
TRT for UDP can be implemented in similar man-
ner.

For address mapping, we reserve an IPv6 pre-
fix referred to by C6::/64. C6::/64 should be a
part of IPv6 unicast address space assigned to the
site. Routing information must be configured so
that packets to C6::/64 are routed toward the TRT
system. The following diagram shows the network
configuration. The subnet marked as “dummy
prefix” does not actually exist. Also, now we as-
sume that the initiating host to be IPv6-only, and
the destination host to be IPv4-only.

destination host

X4
outer network
Y4 dummy
TRT system — prefix
B6 (C6::/64)
inner network
A6

initiating host

When the initiating host (whose IPv6 address
is A6) wishes to make a connection to the desti-
nation host (whose IPv4 address is X4), it needs
to make an TCP/IPv6 connection toward C6::X4.
For example, if C4::/64 equals to fec0:0:0:1::/64,
and X4 equals to 10.1.1.1, the destination address



to be used is fec0:0:0:1::10.1.1.1. The packet is
routed toward the TRT system, and is captured by
it. The TRT system accepts the TCP/IPv6 con-
nection between A6 and C6::X4, and communicate
with the initiating host, using TCP/IPv6. Then,
the TRT system investigates the lowermost 32bit
of the destination address (IPv6 address C6::X4)
to get the real IPv4 destination (IPv4 address X4).
It makes an TCP/IPv4 connection from Y4 to X4,
and forward traffic across the two TCP connec-
tions.

There are two TCP connections. One is
TCP/IPv6 and another is TCP/IPv4, in the pic-
ture: from A6 to B6 (as C6::X4), and Y4 to X4,
like below:

TCP/IPv6: the initiating host (A6)
--> the TRT system (as C6::X4)
address on IPv6 header: A6 -> C6::X4
TCP/IPv4: the TRT system (Y4)
--> the destination host (X4)

address on IPv4 header: Y4 -> X4

16.4 Address mapping

As seen in the previous section, an initiating
host must use a special form of IPv6 address to
connect to an IPv4 destination host. The

special form can be resolved from a hostname
by static address mapping table on the initiating
host (like /etc/hosts in UNIX), special DNS server
implementation, or modified DNS resolver imple-

mentation on initiating host.

16.5 Notes to implementers
TRT for UDP must take care of path MTU is-
sues on the UDP/IPv6 side. This is implemen-

tation dependent and outside of the scope of this
memo. A simple solution would be to always frag-
ment packets from the TRT system to UDP/IPv6
side to IPv6 minimum MTU (1280 octets), to
eliminate the need for path MTU discovery.
Though the TRT system only relays TCP,UDP
traffic, it needs to check ICMPv6 packets destined
to C6::X4 as well, so that it can recognize path

MTU discovery messsages and other notifications

W I D E

between A6 and C6::X4.

When forwarding TCP traffic, a TRT system
needs to handle urgent data [129] carefully.

To relay NAT-unfriendly protocols [68] a TRT
system may need to modify data content.

Scalability issues must carefully be considered
when you deploy TRT systems to a large IPv6
site. Scalability parameters would be (1) num-
ber of connections the operating system kernel can
accept, (2) number of connections a userland pro-
cess can forward (equals to number of filehandles
per process), and (3) number of transport relaying
processes on a TRT system. Design decision must
be made to use proper number of userland pro-
cesses to support proper number of connections.

To make TRT for TCP more scalable in a large
site, it is possible to have multiple TRT systems
in a site. This can be done by taking the follow-
ing steps: (1) configure multiple TRT systems, (2)
configure different dummy prefix to them, (3) and
let the initiating host pick a dummy prefix ran-
domly for load-balancing. (3) can be implemented
as follows; If you install special DNS server to the
site, you may (3a) configure DNS servers differ-
ently to return different dummy prefixes and tell
initiating hosts of different DNS servers. Or you
can (3b) let DNS server pick a dummy prefix ran-
domly for load-balancing. The load- balancing is
possible because you will not be changing destina-
tion address (hence the TRT system), once a TCP
connection is established.

For address mapping, the authors recommend
use of a special DNS server for large-scale instal-
lation, and static mapping for small-scale instal-
lation. It is not always possible to have special
resolver on the initiating host, and assuming it

would cause deployment problems.

16.6 Security considerations

Malicious party may try to use TRT systems
for anonymizing the source IP address of traffic
to IPv4 destinations. TRT systems should imple-
ment some sorts of access control to avoid such

improper usage.
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A careless TRT implementation may be subject
to buffer overflow attack, but this kind of issue is
implementation dependent and outside the scope
of this memo.

A transport relay system intercepts TCP con-
nection between two nodes. This may not be a le-
gitimate behavior for an IP node. The draft does

not try to claim it to be legitimate.
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