
第VII部

IP Version6





W I D E P R O J E C T

7

第 7 部
IP Version6

この章では、IPv6、IPsec、Mobile IPv6に関する

研究に取り組んでいる IPv6分科会が 2000年度に活

動した内容について報告する。

まず、KAMEプロジェクトの成果として、各 BSD

へのマージの状況について述べる。次に、2000年度

に立ち上がった USAGIプロジェクトの概要を説明

する。

さらに、IPv6分科会で取り組んだ 2つの実験に触

れた後、3つのイベントに関して報告する。

最後に下記に示す Intenet-Draftを添付する。

• IPv6 multihoming support at site exit routers

• Possible abuse against IPv6 transition tech-

nologies

• An analysis of IPv6 anycast

• Requirements for IPv6 dialup PPP operation

• Guidelines for IPv6 local experiments

• Socket API for IPv6 flow label field

• An IPv6/IPv4 multicast translator based on

IGMP/MLD Proxying (IMP)

• A RADIUS attribute for IPv6 dialup PPP

with static address assignment

• An Extension of Format for IPv6 Scoped Ad-

dresses

• IPv6 SMTP operational requirements

• Socket API for IPv6 traffic class field

• An IPv6-to-IPv4 transport relay translator

第 1章 KAMEのマージ状況

KAMEの実装は、4つの BSDすべてに取り込ま

れ、以下のように正式にリリースされた。

現在では、2月に 1回の stableリリースは意義が

薄れたため廃止し、毎週 snap リリースを提供して

いる。

BSD/OS 4.2 2000年 11月 29日

FreeBSD 4.0 (4.2) 2000年 3月 14日

NetBSD 1.5 2000年 12月 6日

OpenBSD 2.8 2000年 12月 1日

第 2章 USAGIプロジェクト

オープンソースの OSとして世界最大のユーザ数

を抱えている Linux に、IPv6 の機能が提供される

ことは意義が大きい。

Linuxにも IPv6が実装されているが、他のOSと

比べると、品質が優れているとは言えない。これは、

TAHIプロジェクトの試験によっても明らかである。

そこで、WIDEプロジェクトと、それに参加して

いる慶應義塾大学、東京大学、横河電機、さらに日本

の Linux IPv6ユーザ・グループである Linux IPv6

Users JPが中心となって、2000年 10月に USAGI

(UniverSAl playGround for Ipv6) プロジェクトを

開始した。

USAGIプロジェクトの目的は、BSD系 UNIXを

対象としている KAMEプロジェクトに習い、高品

質の IPv6コードをオープンソースとして Linuxに

提供することである。また、Linux 環境で IPv6 を

普及、発展させていくことも目指す。

現時点での参加企業ならびに参加大学は、

• IIJ

• NTTソフトウェア

• 九州大学
• 慶應義塾大学
• 東京大学
• 東芝
• 日立製作所
• 三菱電機情報ネットワーク
• 横河電機
• 総務省 通信総合研究所

121

●
第
7
部

IP
V
ersio

n
6



W
I

D
E

P
R

O
J

E
C

T
2

0
0

0
a

n
n

u
a

l
r

e
p

o
r

t
●第 7部 IP Version6

であり、実装メンバーは 10名である。

2.1成果物

最初の officialバージョンを 2000年 11月にリリー

スし、その後 2週間に 1度の割合で snapshotをリ

リースしている。

この snapshotでは、カーネル、glibc、および基本

コマンド群に対するパッチと、Debian GNU/Linux

向けのバイナリ・パッケージを配布している。まと

まった機能が実装された時点で提供される officialリ

リースでは、それに加えて、Rad Hat Linux、Turbo

Linux (日本語版)、ならびに Kondara MNU/Linux

のバイナリ・パッケージを提供している。

2.2連絡先

USAGI プロジェクトのホームページは、以下の

通り。

http://www.linux-ipv6.org/

USAGIプロジェクトのメーリングリストには、以

下の 3つがある。

usagi-core@linux-ipv6.org

USAGI プロジェクトの開発メンバーのメーリ

ングリスト。開発メンバーに用事のある場合は、

個人宛ではなく、ここにメールすること。

usagi-announce@linux-ipv6.org

Snapshotのリリースなどをアナウンスするため

のメーリングリスト。英語でアナウンスされる。

usagi-users@linux-ipv6.org

USAGI プロジェクトの成果物を利用して

いるユーザのためのメーリングリスト。usagi-

announceへのアナウンスメールは、こちらにも転

送される。公用語は英語。

第 3章 各種実験

KAMEプロジェクトでは、重要な課題のいくつか

に対して実験を実施している。

3.1リナンバー実験

IPv6では、ホストにアドレス自動設定の機能が標

準で装備されている。また、アドレス自動設定に関

する情報は、特殊なサーバからではなく、ルータか

ら受け取る。

これは、サイト全体のアドレス付け換えを、ルー

タのアドレス付け換えの問題に置き換えられること

を意味している。さらに、ルータのアドレス付け換

えを自動化するルータ・リナンバリング・プロトコ

ルが提案されている。

ルータ・リナンバリング・プロトコルは、標準化

され RFC[29]となっているが運用経験はほとんどな

い。そこで、以下のような目標を掲げて実験を遂行

した。

• ルータ・リナンバリング・プロトコルがうまく
動作するかの検証

• どのタイミングで何をすればよいかの明確化
• 経験のフィードバック (ガイドラインの作成など)

実験では、4 セグメントからなるサイトを構築し

た。ルータ・リナンバリング・プロトコルの実装は

KAMEオリジナル。マルチキャスト経路制御プロト

コル PIM-DM (Dense Mode) は、オレゴン大学の

実装に基づくKAMEオリジナルの実装を使用した。

結論としては、少なくとも経路集約が少なく、出

口にフィルターがないサイトでは、良好に動作する

ことを確認した。ここで、良好に動作するとは、以

下の項目を含む。

• ルータのアドレス付け換えは OK

• ホストのアドレス付け換えも OK

• SMTP/Webサーバも再起動なしに動く

今後の課題としては、以下のことが挙げられる。

• アドレスに依存している設定ファイルの切り出し
• DNSへの登録の自動化

• DNSデータベースエントリの寿命とリナンバ周

期の関係

122



W I D E P R O J E C T

7

3.2 MIPv6相互接続実験

MIPv6 (Mobile IPv6)の実装として、KAMEベー

スのものが 3つ、Linuxベースのものが 1つ出てき

たので、2001年 1月 23日と 2001年 2月 19日に相

互接続実験の機会を作った。

相互接続実験には、KAMEベースの Ericssonの

コードを除く以下の実装が参加した。

NEC

移動ノード、固定ノード、ホーム・エージェント

SFC

移動ノード、固定ノード、ホーム・エージェント

ヘルシンキ大学 (USAGI)

移動ノード、固定ノード、ホーム・エージェント

KAME

固定ノード (共通部分)

MIP6では、移動ノードとホーム・エージェント

間では IPsecによる認証が必須である。また、移動

ノードと固定ノード間では、認証は必須ではないが、

認証が利用できれば経路を最適に制御できる。

結果を以下にまとめる。

第 1回相互接続実験

• 認証 (IPsec)を使わない場合は、おおむねうまく

いく。ただし、移動ノードとホーム・エージェン

ト間の通信は、規格にそっていないことになる。

• 認証 (IPsec)を使った場合は、これから。

第 2回相互接続実験

• 認証 (IPsec) を使わない場合は、重大な問題は

なし。

• 認証 (IPsec) を使った場合も接続に成功。ただ

し認証 (IPsec)の設定に難あり。

相互接続実験は、3つあるKAMEベースのスタッ

クを今後どのようにしていくのかを考える機会でも

あった。テストの結果を踏まえ、マージ等の検討を

進めることが今後の課題である。

また、2001 年 3 月 1 日から 3 月 8 日にかけて

Connectathonが開催され、NEC、SFC、TAHIが

参加した。

第 4章 イベント

最後にWIDE/KAMEプロジェクトが中心となっ

て開催した IPv6 のイベントを以下に示す。

4.1 N+I 2000 Tokyo

N+I 2000 Tokyo が、2000 年 6 月 7 日から 9 日

にかけて幕張メッセで開催された。基調講演で、村

井先生が IPv6時代の到来を強調したこともあって、

IPv6が注目を集めた。

各出展社ブースには IPv6 の接続性が提供されて

いた。このような試みは、世界をまわる N+I の中

でも、東京が初めて。また IPv6のために 135Mの

対外線が大手町 (NSPIXP6) まで確保されていた。

KAMEの coreメンバーの一部は、ShowNet NOC

メンバーとして参加。ShowNetでは GR 2000が利

用された。

公衆端末はすべて IPv6 に対応していた。その内

Windows 2000を搭載した PCには、マイクロソフ

トから N+I用に特別に提供して頂いた IPv6対応の

Internet Explorerを組み込んだ。

マイクロソフトがスポンサーとなり、「IPv6 Show-

Case」という IPv6専用のブースも用意された。この

ブースには、WIDE Project、TAHI Project、Kon-

dara Projectが協力。

参加企業/団体は、下記の通り。

• IIJ

• ウェーブテック・ワンデル・ゴルターマン
• NEC

• Cisco

• デジタルファクトリ
• 日本 HP

• 日立
• 富士通
• マイクロソフト
• 松下電送システム
• ヤマハ

展示としては、バックボーンルータを設置したルー

123

●
第
7
部

IP
V
ersio

n
6



W
I

D
E

P
R

O
J

E
C

T
2

0
0

0
a

n
n

u
a

l
r

e
p

o
r

t
●第 7部 IP Version6

タラックが 2本、SOHOルータが 3つ、BSD、Linux、

Windows 2000 などのホストを用意。

松下電送システムは、IEEE1394テレビのプロト

タイプを展示しており、実際にビデオストリームを

IPv6を使って流した。また、KAME (FreeBSD)と

Kondara Linux の間では、Quakeで対戦。

また、IPv6 ShowCaseでは、1時間毎に IPv6の技

術者による発表があり、各企業の製品の特徴や IPv6

に関する戦略を説明した。これらの発表は大変な好

評を博し、隣のブースに迷惑な程観客を集めた。

2001年も IPv6 ShowCaseを開催することが決定

している。

4.2 INET 2000

INETに先立つこと 1週間、慶應義塾大学湘南藤沢

キャンパスで、NTW (Network Training Workshop)

が開催された。発展途上国の方を招いて、インター

ネットを構築する技術を集中的に講義した。

WIDE/KAME Projectは、6つのコースの内 2つ

対して、IPv6を教える時間を頂いた。萩野と山本が

講師となり、7月 11日と 13日にそれぞれのコース

で教えた。資料は、下記 URLを参照。

http://playground.iijlab.net/material/

kazu-ntw-presen/

INET 2000は、2000年 7月 19日から 21日にか

けて横浜パシフィコで開催された。無論、すべての

ネットワークが IPv6 に対応していた。特筆すべき

は、無線ネットワーク (IEEE 802.11)。会議場や展

示会場のみならず、インターコンチネンタルホテル

でも利用可能だった。

N+Iと同様に、展示会場では IPv6 ShowCaseを

設営した。今回は

• マイクロソフト
• 日立
• NEC

がスポンサーとなり、新たに

• SUN

• YDC

• NTT Communications

• 富士通研究所

が参加した。

N+Iと違ったデモとしては、グループ通信が挙げら

れる。NTT Communications、は従来のマルチキャ

ストを使って、パロアルトと会場を結び、IETF の

ipngwg の 2 人の議長に参加して頂いた。また、富

士通研究所は Xcastという新しいグループ通信の仕

組みを使って、ビデオ中継やゲームをデモしていた。

4.3 Global IPv6 Summit in Japan

Global IPv6 Summit in Japan を 2000 年 12 月

18日から 19日に開催した。これは、IPv6 Forumが

主催するGlobal IPv6 Summitの名を借りて、IPv6

に携わる人たちがボランティアベースで運営したイ

ベント。Internet Week 2000の一部として開催。会

場は、グランキューブ大阪 (大阪国際会議場)。

プログラムの概要を以下に示す。

• 村井先生の基調講演
• 日本の IPv6に関するビジネス・レポート

• アジア諸国への IPv6の普及状況

• パネル：「IPv6がビジネスをどう変えるか」

• Steve Deering、Alain Durand氏の基調講演

• 海外の IPv6に関するビジネス・レポート

• パネル：「IPv6への移行ストーリー」

最終的な、参加者数 652 人 (懇親会 267 人) であ

り、Internet Week 2000の中では最大のイベントと

なった。

詳細は、以下 URLを参照。

http://www.jp.ipv6forum.com/

第 5章 IPv6 multihoming support at site exit

routers

5.1 Problem

IPv6 specifications try to decrease the number

of backbone routes, to cope with possible mem-

ory overflow problem in the backbone routers.

To achieve this, the IPv6 addressing architec-

ture [35] only allows the use of aggregatable ad-

dresses. Also, IPv6 network administration rules

[39] do not allow non-aggregatable routing an-

124



W I D E P R O J E C T

7

nouncements to the backbone.

In IPv4, a multihomed site uses either of the

following technique to achieve better reachability:

• Obtain a portable IPv4 address prefix,

and announce it from multiple upstream

providers.

• Obtain single IPv4 address prefix from ISP

A, and announce it from multiple upstream

providers the site is connected to.

The above two methodologies are not available

in IPv6, but on the other hand IPv6 sites and

hosts may obtain multiple simultaneous address

prefixes to achieve the same result.

The document provides a way to configure site

exit routers and ISP routers, so that the site can

achieve better reachability from multihomed con-

nectivity, without violating IPv6 rules. Since the

technique uses already-defined routing protocol

(BGP or RIPng) and tunnelling of IPv6 packets,

the document introduces no new protocol stan-

dard.

The document is largely based on RFC2260 [13]

by Tony Bates.

5.2 Goals and non-goals

The goal of this document is to achieve better

packet delivery from a site to the outside, or from

the outside to the site, even when some of the site

exit links are down.

Non goals are:

• Choose the “best” exit link as possible. Note

that there can be no common definition of

“best” exit link.

• Achieve load-balancing between multiple exit

links.

5.3 Basic mechanisms

We use technique described in RFC2260 sec-

tion 5.2 onto our configuration. To summarize,

for IPv4-only networks, RFC2260 says that:

• We assume that our site is connected to 2

ISPs, ISP-A and ISP-B.

• We are assigned IP address prefix, Pref-A and

Pref-B, from ISP-A and ISP-B respectively.

Hosts near ISP-A will get an address from

Pref-A, and vice versa.

• In the site, we locally exchanage routes for

Pref-A and Pref-B, so that hosts in the site

can communicate with each other without us-

ing external link.

• ISP-A and our site is connected by “primary

link” between ISP router ISP-BR-A and our

router E-BR-A. ISP B and our site is con-

nected by primary link between ISP router

ISP-BR-B and our router E-BR-B.

• Establish a secondary link, between ISP-BR-

A and E-BR-B, and ISP-BR-B and E-BR-A,

respectively. Secondary link usually is IP-

over-IP tunnel. It is important to have sec-

ondary link on top of different medium than

primary link, so that one of them survives link

failure. For example, secondary link between

ISP-BR-A and E-BR-B should go through

different medium than primary link between

ISP-BR-A and E-BR- A. If secondary link is

an IPv4-over-IPv4 tunnel, tunnel endpoint at

E-BR-A needs to be an address in Pref-A, not

in Pref-B (tunnelled packet needs to travel

from ISP-BR-B to E-BR-A, over the primary

link between ISP-BR-A and E-BR-A).

• For inbound packets, E-BR-A will advertise

125

●
第
7
部

IP
V
ersio

n
6



W
I

D
E

P
R

O
J

E
C

T
2

0
0

0
a

n
n

u
a

l
r

e
p

o
r

t
●第 7部 IP Version6

(1) Pref-A toward ISP-BR-A with strong pref-

erence over primary link, and (2) Pref-B to-

ward ISP- BR-B with weak preference over

secondary link. Similarly, E-BR-B will adver-

tise (1) Pref-B toward ISP-BR-B with strong

preference over

primary link, and (2) Pref-A toward ISP-BR-

A with weak preference over secondary link. Note

that we always announce Pref-A to ISP-BR-A, and

Pref-B to ISP- BR-B.

• For outbound packets, ISP-BR-A will adver-

tise (1) default route (or specific routes) to-

ward E-BR-A with strong preference over pri-

mary link, and (2) default route (or specific

routes) toward E-BR-B with weak preference

over secondary link. Similarly, ISP-BR-B will

advertise (1) default route (or specific routes)

toward E-BR-B with strong preference over

primary link, and (2) default route (or specific

routes) toward E-BR-A with weak preference

over secondary link.

Under this configuration, both inbound and out-

bound packet can survive link failure on either

side. Routing information with weak preference

will be available as backup, for both inbound and

outbound cases.

5.4 Extensions for IPv6

RFC2260 is written for IPv4 and BGP. With

IPv6 and BGP4+, or IPv6 and RIPng, similar re-

sult can be achieved, without violating IPv6 ad-

dressing/routing rules.

IPv6 rule conformance

In RFC2260, we announce Pref-A toward ISP-

BR-A only, and Pref-B toward ISP-BR-B only.

Therefore, there will be no extra routing an-

nouncement to the outside of the site. This con-

forms to the aggregation requirement in IPv6 doc-

uments. Also, RFC2260 does not require portable

addresses.

Address assignment to the nodes

In IPv4, it is usually assumed that a node will be

assigned single IPv4 address. Therefore, RFC2260

assumed that addresses from Pref-A will be as-

signed to nodes near E-BR-A, and vice versa (sec-

ond bullet in the previous section).

With IPv6, multiple IPv6 addresses can be as-

signed to a node. So we can assign (1) one address

from Pref-A, (2) one address from Pref-B, or (3)

two addresses from both address prefixes, to a sin-

gle node in the site.

This will allow more flexibility in node config-

uration. However, this may make source address

selection on a node more complex. Source address

selection itself is out of scope of the document.

Configuration of links

With IPv6, primary link can be IPv6 native

connectivity, RFC1933 [53] IPv6-over-IPv4 config-

ured tunnel, 6to4 [23], IPv6-over-IPv4 encapsula-

tion, or some others.

If tunnel-based connectivity is used in some of

primary links, administrators may want to avoid

IPv6-over-IPv6 tunnels for secondary links. For

example, if:

• primary links to ISP-A and ISP-B are

RFC1933 IPv6-over-IPv4 tunnels, and

• ISP-A, ISP-B and the site have IPv4 connec-

tivity with each other,

it makes no sense to configure a secondary link

by IPv6-over-IPv6 tunnel, since it will actually

be IPv6-over-IPv6-over-IPv4 tunnel. In this case,

IPv6-over-IPv4 tunnel should be used for sec-

ondary link. IPv6-over-IPv4 configuration has a

big advantage against IPv6-over- IPv6-over-IPv4

configuration, as secondary link will be able to

have the same path MTU than the primary link.

Using RFC2260 with IPv6 and BGP4+

RFC2260 approach on top of IPv6 will work fine

as documented in RFC2260. There will be no ex-

126



W I D E P R O J E C T

7

tra twists necessary.

Using RFC2260 with IPv6 and RIPng

It is possible to run RFC2260-like configuration

with RIPng [Malkin, 1997] , with careful control

of metric. Routers in the figure needs to increase

RIPng metric on secondary link, to make primary

link a preferred path.

If we denote the RIPng metric for route an-

nouncement, from router R1 toward router R2,

as metric (R1, R2), the invariants that must hold

are:

• metric(E-BR-A, ISP-BR-A) < metric(E-BR-

B, ISP-BR-A)

• metric(E-BR-B, ISP-BR-B) < metric(E-BR-

A, ISP-BR-B)

• metric(ISP-BR-A, E-BR-A) < metric(ISP-

BR-A, E-BR-B)

• metric(ISP-BR-B, E-BR-B) < metric(ISP-

BR-B, E-BR-A)

Note that smaller metric means stronger route

in RIPng.

5.5 Issues with ingress filters in ISP

If the upstream ISP imposes ingress filters [47]

to outbound traffic, story becomes much more

complex. A packet with source address taken from

Pref-A must go out from ISP-BR-A. Similarly,

a packet with source address taken from Pref-B

must go out from ISP-BR-B. Since none of the

routers in the site network will route packets based

on source address, packets can easily be routed to

incorrect border router.

One possible way is to negotiate with both ISPs,

to allow both Pref-B and Pref-A to be used as

source address. This approach does not work if

upstream ISP of ISP-A imposes ingress filtering.

Since there will be multiple levels of ISP on top

of ISP-A, it will be hard to understand which up-

stream ISP imposes the filter. In reality, this prob-

lem will be very rare, as ingress filter is not suit-

able for use in large ISPs where smaller ISPs are

connected beneath.

Another possibility is to use source-based rout-

ing at E-BR-A and E-BR-B. Here we assume that

IPv6-over-IPv6 tunnel is used for secondary links.

When an outbound packet arrives to E-BR-A with

source address in Pref-B, E-BR-A will forward it

to secondary link (tunnel to ISP-BR-B) based on

source-based routing decision. The packet will

look like this:

• Outer IPv6 header: source = address of E-

BR-A in Pref-A, dest = ISP-BR-B

• Inner IPv6 header: source = address in Pref-

B, dest = final dest

Tunneled packet will travel across ISP-BR-A

toward ISP-BR-B. The packet can go through

ingress filter at ISP-BR-A, since it has outer IPv6

source address in Pref-A. Packet will reach ISP-

BR-B and decapsulated before ingress filter is ap-

plied. Decapsulated packet can go through ingress

filter at ISP-BR-B, since it now has source address

in Pref-B (from inner IPv6 header). Notice the

following facts when configuring this:

• Not every router implements source-based

routing.

• The interaction between normal routing and

source-based routing at E-BR-A (and/or E-

BR-B) varies by router implementations.

• At ISP-BR-B (and/or ISP-BR-A), the inter-

action between tunnel egress processing and

filtering rules varies by router implementa-

tions and filter configurations.

5.6 Observations

The document discussed the cases where a site

has two upstream ISPs. The document can easily

be extended to the cases where there are 3 or more

upstream ISPs.

If you have many upstream providers, you would

not make all ISPs backup each other, as it requires

O(N2) tunnels for N ISPs. Rather, it is better to

make N/2 pairs of ISPs, and let each pair of ISP

127

●
第
7
部

IP
V
ersio

n
6



W
I

D
E

P
R

O
J

E
C

T
2

0
0

0
a

n
n

u
a

l
r

e
p

o
r

t
●第 7部 IP Version6

backup each other. It is important to pick pairs

which are unlikely to be down simultaneously. In

this way, number of tunnels will be O(N).

Suppose that the site is very large and it has

ISP links in very distant locations, such as in US

and in Japan. In such case, it is wiser to use this

technique only among ISP links in US, and only

among ISP links in Japan. If you use this tech-

nique between ISP link A in US and ISP link B

in Japan, the secondary link make packets travel

very long path, for example, from host in the site

in US, to E-BR-B in Japan, to ISP-BR-B (again

in Japan), and then to the final destination in US.

This may not make sense for actual use, due to

excessive delay.

Similarly, in a large site, addresses must be as-

signed to end nodes with great care, to minimize

delays due to extra path packets may travel. It

may be wiser to avoid assigning an address in a

prefix assigned from Japanese ISP, to an end node

in US.

If one of primary link is down for a long time,

administrators may want to control source address

selection on end hosts so that secondary link is less

likely to be used. This can be achieved by mark-

ing unwanted prefix as deprecated. Suppose the

primary link toward ISP-A has been down. You

will issue router advertisement [Thomson, 1998;

Narten, 1998] packets from routers, with preferred

lifetime set to 0 in prefix information option for

Pref-A. End hosts will consider addresses in Pref-

A as deprecated, and will not use any of them as

source address for future connections. If an end

host in the site makes new connection to outside,

the host will use an address in Pref-B as source ad-

dress, and reply packet to the end host will travel

primary link from ISP-BR-B toward E-BR-B.

Some of non-goals (such as “best” exit link se-

lection) can be achieved by combining technique

described in this document, with some other tech-

niques. One example of the technique would be

the source/destination address selection heuristics

on the end nodes.

5.7 Security considerations

The configuration described in the document in-

troduces no new security problem.

If primary links toward ISP-A and ISP-B

have different security characteristics (like en-

crypted link and non-encrypted link), administra-

tors needs to be careful setting up secondary links

tunneled on them. Packets may travel unwanted

path, if secondary links are configured without

care.

第 6章 Possible abuse against IPv6 transition

technologies

6.1 Abuse of IPv4 compatible address

Problem

To implement automatic tunnelling described

in RFC1933 [53], IPv4 compatible addresses (like

::123.4.5.6) are used. From IPv6 stack point of

view, an IPv4 compatible address is considered to

be a normal unicast address. If an IPv6 packet

has IPv4 compatible addresses in the header, the

packet will be encapsulated automatically into an

IPv4 packet, with IPv4 address taken from low-

ermost 4 bytes of the IPv4 compatible addresses.

Since there is no good way to check if embedded

IPv4 address is sane, improper IPv4 packet can

be generated as a result. Malicious party can

abuse it, by injecting IPv6 packets to an IPv4/v6

dual stack node with certain IPv6 source address,

to cause transmission of unexpected IPv4 packets.

Consider the following scenario:

• You have an IPv6 transport-capable DNS

server, running on top of IPv4/v6 dual stack

node. The node is on IPv4 subnet 10.1.1.0/24.

• Malicious party transmits an IPv6 UDP

packet to port 53 (DNS), with source address

::10.1.1.255. It does not make difference if it is

encapsulated into an IPv4 packet, or is trans-

128



W I D E P R O J E C T

7

mitted as a native IPv6 packet.

• IPv6 transport-capable DNS server will trans-

mit an IPv6 packet as a reply, copying the

original source address into the destination

address. Note that the IPv6 DNS server will

treat IPv6 compatible address as normal IPv6

unicast address.

• The reply packet will automatically be encap-

sulated into IPv4 packet, based on RFC1933

automatic tunnelling. As a result, IPv4

packet toward 10.1.1.255 will be transmitted.

This is the subnet broadcast address for your

IPv4 subnet, and will (improperly) reach ev-

ery node on the IPv4 subnet.

Possible solutions

For the following sections, possible soluitions are

presented in the order of preference (the author

recommends to implement solutions that appear

earlier). Note that some of the following are par-

tial solution to the problem. Some of the solutions

may overwrap, or be able to coexist, with other

solutions. Solutions marked with (*) are already

incorporated into [53] which is an updated ver-

sion of RFC1933. Note that, however, solutions

incorporated into [Gilligan, 2000] do not make a

complete protection against malicious parties.

• Disable automatic tunnelling support.

• Reject IPv6 packets with IPv4 compatible ad-

dress in IPv6 header fields. Note that we may

need to check extension headers as well.

• Perform ingress filter against IPv6 packet and

tunnelled IPv6 packet. Ingress filter should

let the packets with IPv4 compatible source

address through, only if the source address

embeds an IPv4 address belongs to the orga-

nization. The approach is a partial solution

for avoiding possible transmission of malicious

packet, from the organization to the outside.

(*)

• Whenever possible, check if the addresses on

the packet meet the topology you have. For

example, if the IPv4 address block for your

site is 43.0.0.0/8, and you have a packet from

IPv4-wise outside with encapsulated IPv6

source matches ::43.0.0.0/104, it is likely that

someone is doing something nasty. This may

not be possible to make

the filter complete, so consider it as a partial

solution. (*)

• Require use of IPv4 IPsec, namely authen-

tication header [Kent, 1998] , for encapsu-

lated packet. Even with IPv4 IPsec, reject the

packet if the IPv6 compatible address in the

IPv6 header does not embed the IPv4 address

in the IPv4 header. We cannot blindly trust

the inner IPv6 packet based on the existence

of IPv4 IPsec association, since the inner IPv6

packet may be originated by other nodes and

forwarded by the authenticated peer. The so-

lution may be impractical, since it only solves

very small part of the problem with too many

requirements.

• Reject inbound/outgoing IPv6 packets, if it

has certain IPv4 compatible address in IPv6

header fields. Note that we may need to check

extension headers as well. The author recom-

mends to check any IPv4 compatible address

that is mapped from/to IPv4 address not suit-

able as IPv4 peer. They include 0.0.0.0/8,

127.0.0.0/8, 224.0.0.0/4, 255.255.255.255/32,

and subnet broadcast addresses. Since the

check can never be perfect (we cannot check

for subnet broadcast address in remote site,

for example) the direction is not recommend.

(*)

6.2 Abuse of 6to4 address

6to4 [23] is another proposal for IPv6-over-

IPv4 packet encapsulation, and is very similar to

RFC1933 automatic tunneling mentioned in the

previous section. 6to4 address embeds IPv4 ad-

dress in the middle (2nd byte to 5th byte). If an

IPv6 packet has a 6to4 address as destination ad-

129

●
第
7
部

IP
V
ersio

n
6



W
I

D
E

P
R

O
J

E
C

T
2

0
0

0
a

n
n

u
a

l
r

e
p

o
r

t
●第 7部 IP Version6

dress, it will be encapsulated into IPv4 packet with

the embedded IPv4 address as IPv4 destination.

IPv6 packets with 6to4 address have the same

problems as those with IPv4 compatible address.

See the previous section for the details of the prob-

lems, and possible solutions.

The latest 6to4 draft [23] do incoporate some

of the solutions presented in the previous section,

however, they do not make a complete protection

against malicious parties.

6.3 Abuse of IPv4 mapped address

Problems

IPv6 basic socket API [53] defines the use of

IPv4 mapped address with AF INET6 sockets.

IPv4 mapped address is used to handle inbound

IPv4 traffic toward AF INET6 sockets, and out-

bound IPv4 traffic from AF INET6 sockets. In-

bound case has higher probability of abuse, while

outbound case contributes to the abuse as well.

Here we briefly describe the kernel behavior in in-

bound case. When we have an AF INET6 socket

bound to IPv6 unspecified address (::), IPv4 traf-

fic, as well as IPv6 traffic, will be captured by the

socket. The kernel will present the address of the

IPv4 peer to the userland program by using IPv4

mapped address. For example, if an IPv4 traffic

from 10.1.1.1 is captured by an AF INET6 socket,

the userland program will think that the peer is

at ::ffff:10.1.1.1. The userland program can ma-

nipulate IPv4 mapped address just like it would

do against normal IPv6 unicast address.

We have three problems with the specification.

First, IPv4 mapped address support complicates

IPv4 access control mechanisms. For example,

if you would like to reject accesses from IPv4

clients to a certain transport layer service, it is

not enough to reject accesses to AF INET socket.

You will need to check AF INET6 socket for ac-

cesses from IPv4 clients (seen as accesses from

IPv4 mapped address) as well.

Secondly, malicious party may be able to use

IPv6 packets with IPv4 mapped address, to bypass

access control. Consider the following scenario:

• Attacker throws unencapsulated IPv6 pack-

ets, with ::ffff:127.0.0.1 as source address.

• The access control code in the server thinks

that this is from localhost, and grants ac-

cesses.

Lastly, malicious party can make servers gener-

ate unexpected IPv4 traffic. This can be accom-

plished by sending IPv6 packet with IPv4 mapped

address as a source (similar to abuse of IPv4 com-

patible address), or by presenting IPv4 mapped

address to servers (like FTP bounce attack [6]

from IPv6 to IPv4). The problem is slightly differ-

ent from the problems with IPv4 compatible ad-

dresses and 6to4 addresses, since it does not make

use of tunnels. It makes use of certain behavior of

userland applications.

The confusion came from the dual use of IPv4

mapped address, for node- internal representation

for remote IPv4 destination/source, and for real

IPv6 destination/source.

Possible solutions

• In IPv6 addressing architecutre document

[Hinden, 1998] , disallow the use of IPv4

mapped addresses on the wire. The change

will conflict with SIIT [116] , which is the only

protocol which tries to use IPv4 mapped ad-

dress on IPv6 native packet. The dual use

of IPv4 mapped address (as a host-internal

representation of IPv4 destinations, and as a

real IPv6 address) is the prime source of the

problem.

• Reject IPv6 packets, if it has IPv4 mapped

address in IPv6 header fields. Note that we

may need to check extension headers such as

routing headers, as well. IPv4 mapped ad-

dress is internal representation in a node, so

doing this will raise no conflicts with existing

protocols. We recommend to check the con-

dition in IPv6 input

130



W I D E P R O J E C T

7

packet processing, and transport layer process-

ing (TCP input and UDP input) to be sure.

• Reject DNS replies, or other host name

database replies, which contain IPv4 mapped

address. Again, IPv4 mapped address is inter-

nal represntation in a node and should never

appear on external host name databases.

• Do not route inbound IPv4 traffic to

AF INET6 sockets. When an application

would like to accept IPv4 traffic, it should

explicitly open AF INET sockets. You may

want to run two applications instead, one

for an AF INET socket, and another for an

AF INET6 socket. Or you may want to make

the functionality optional, off by default, and

let the userland applications explicitly en-

able it. This greatly simplifies access con-

trol issues. This approach conflicts with what

IPv6 basic API document says, however, it

should raise no problem with properly-written

IPv6 applications. It only affects server pro-

grams, ported by assuming the behavior of

AF INET6 listening socket against IPv4 traf-

fic.

• When implementing TCP or UDP stack, ex-

plicitly record the wire packet format (IPv4

or IPv6) into connection table. It is unwise to

guess the wire packet format, by existence of

IPv6 mapped address in the address pair.

• We should separately fix problems like FTP

bounce attack.

• Applications should always check if the con-

nection to AF INET6 socket is from an IPv4

node (IPv4 mapped address), or IPv6 node.

It should then treat the connection as from

IPv4 node (not from IPv6 node with special

adderss), or reject the connection. This is,

however, dangerous to assume that every ap-

plication implementers are aware of the issue.

The solution is not recommended (this is not

a solution actually).

6.4 Attacks by combining different address

formats

Malicious party can use different address for-

mats simultaneously, in a single packet. For ex-

ample, suppose you have implemented checks for

abuse against IPv4 compatible address in auto-

matic tunnel egress module. Bad guys may try

to send a native IPv6 packet with 6to4 destina-

tion address with IPv4 compatible source address,

to bypass security checks against IPv4 compatible

address in tunnel decapsulation module. Your im-

plementation will not be able to detect it, since the

packet will not visit egress module for automatic

tunnels.

Analyze code path with great care, and reject

any packets that does not look sane.

6.5 Attacks using source address-based au-

thentication

Problems

IPv6-to-IPv4 translators [116, 156, 59] usually

relay, or rewrite, IPv6 packet into IPv4 packet.

The IPv4 source address in the IPv4 packet will

not represent the ultimate source node (IPv6

node). Usually the IPv4 source address represents

translator box instead. If we use the IPv4 source

address for authentication at the destination IPv4

node, all traffic relayed/translated by the transla-

tor box will mistakenly be considered as authentic.

The problem applies to IPv4-to-IPv6 translators

as well. The problem is similar to proxied services,

like HTTP proxy.

Possible solutions

• Do not use translators, for protocols that use

IP source address as authentication credental

(for example, rlogin [92] ).

• translators must implement some sort of ac-

cess control, to reject any IPv6 traffic from

malicious IPv6 nodes.

• Do not use source address based authentica-

131

●
第
7
部

IP
V
ersio

n
6



W
I

D
E

P
R

O
J

E
C

T
2

0
0

0
a

n
n

u
a

l
r

e
p

o
r

t
●第 7部 IP Version6

tion. IP source address should not be used

as an authentication credental from the first

place, since it is very easy for malicious par-

ties to spoof IP source address.

6.6 Conclusions

IPv6 transition technologies have been pro-

posed, however, some of them looks immune

against abuse. The document presented possi-

ble ways of abuse, and possible solutions against

them. The presented solutions should be reflected

to the revision of specifications referenced.

For coming protocols, the author would like to

propose a set of guilelines for IPv6 transition tech-

nologies:

• Tunnels must explicitly be configured. Man-

ual configuration, or automatic configuration

with proper authentication, should be okay.

• Do not embed IPv4 addresses into IPv6 ad-

dresses, for tunnels or other cases. It leaves

room for abuse, since we cannot practically

check if embedded IPv4 address is sane.

• Do not define an IPv6 address format that

does not appear on the wire. It complicates

access control issues.

The author hopes to see more deployment of na-

tive IPv6 networks, where tunnelling technologies

become unnecessary.

6.7 Security considerations

The document talks about security issues in ex-

isting IPv6 related protocol specifications. Possi-

ble solutions are provided.

第 7章 An analysis of IPv6 anycast

7.1 IPv6 anycast

“Anycast” is a communication model for IP, just

like unicast and multicast are. RFC1546 [125] doc-

uments IPv4 anycast, and it defines the term “any-

cast.”

Anycast can be understood best by comparing

with unicast and multicast. IP unicast allows a

source node to transmit IP datagrams to a single

destination node. The destination node is identi-

fied by an unicast address. IP multicast allows a

source node to transmit IP datagrams to a group

of destination nodes. The destination nodes are

identfied by a multicast group, and we use a mul-

ticast address to identify the multicast group.

IP anycast allows a source node to transmit IP

datagrams to a single destination node, out of

a group of destination nodes. IP datagram will

reach the closest destination node in the set of

destination nodes, based on routing measure of

distance. The source node does not need to care

about how to pick the closest destination node,

as the routing system will figure it out (in other

words, the source node has no control over the se-

lection). The set of destionation nodes is identified

by an anycast address.

Anycast was adopted by IPv6 specification

suite. RFC2373 [35] defines the IPv6 anycast ad-

dress, and its constraints in the usage. The fol-

lowing sections try to analyze RFC2373 rules, and

understand limitations with them. At the end of

the draft we compile a couple of suggestions to

exisitng proposals, for extending the usage of the

IPv6 anycast.

7.2 Limitations/properties in the current

proposals

Identifying anycast destination

For anycast addresses, RFC2373 uses the same

address format as unicast addresses. Therefore,

without other specific configurations, a sender

cannot usually identify if the node is sending a

packet to anycast destination, or unicast destina-

tion. This is different from experimental IPv4 any-

cast [125] , where anycast address is distinguish-

able from unicast addresses.

132



W I D E P R O J E C T

7

Nondeterministic packet delivery

If multiple packets carry an anycast address in

IPv6 destionation address header, these packets

may not reach the same destination node, depend-

ing on stability of the routing table. The property

leads to a couple of interesting symptoms.

If we can assume that the routing table is sta-

ble enough during a protocol exchange, multiple

packets (with anycast address in destination) will

reach the same destination node just fine. How-

ever, there is no guarantee.

If routing table is not stable enough, or you

would like to take a more strict approach, a client

can only send one packet with anycast address in

the destination address field. For example, con-

sider the following packet exchange. The following

exchange can lead us to failure, as we are not sure

if the 1st and 2nd anycast packet have reached the

same destination.

query: client unicast (Cu) -> server anycast (Sa)

reply: server unicast (Su) -> client unicast (Cu)

query: client unicast (Cu) -> server anycast (Sa)

It may reach a different server!

reply: server unicast (Su) -> client unicast (Cu)

Because of the non-determinism, if we take a

strict approach, we can use no more than 1 packet

with anycast destination address, in a set of pro-

tocol exchange. If we use more than 2 packets,

1st and 2nd packet may reach different server and

may cause unexpected results. If the protocol

is completely stateless, and we can consider the

first roundtrip and second roundtrip separate, it

is okay. For stateful protocols, it is suggested to

use anycast for the first packet in the exchange,

to discover unicast address of the (nearest) server.

After we have discovered the unicast address of the

server, we should use the server’s unicast address

for the protocol exchange.

Also because of non-determinism, if we are to

assign an IPv6 anycast address to servers, those

servers must provide uniform services. For exam-

ple, if server A and server B provide different qual-

ity of service, and people wants to differentiate be-

tween A and B, we cannot use single IPv6 anycast

address to identify both A and B.

Note that, the property is not a bad thing; the

property lets us use anycast addresses for load bal-

ancing. Also, packets will automatically be de-

livered to the nearest node with anycast address

assigned.

Here are situations where multiple packets with

anycast destination address can lead us to prob-

lems:

• Fragmented IPv6 packets. Fragments may

reach multiple different destinations, and will

prevent reassembly.

Because the sending node cannot differentiate

between anycast addresses and unicast addresses,

it is hard for the sending node to control the use

of fragmentation.

Anycast address assignment to hosts

RFC2373 suggests to assign anycast addresses

to a node, only when the node is a router. This is

to avoid injecting host routes for anycast address,

into the IPv6 routing system. If no hosts have any-

cast address on them, it is easier for us to route an

IP datagram to anycast destination. We just need

to follow existing routing entries, and we will even-

tually hit a router that has the anycast address.

If we follow RFC2373 restriction strictly, we could

only place anycast addresses onto routers.

Anycast address in source address

Under RFC2373, anycast address IPv6 anycast

address can not be put into IPv6 source address.

This is basically because an IPv6 anycast address

does not identify single source node.

IPsec

IPsec and IKE identify nodes by using

source/destination address pairs. Due to the com-

bination of issues presented above, it is very hard

to use IPsec on packets with anycast address in

source address, destination address, or both.

Even with manual keying, IPsec trust model

133

●
第
7
部

IP
V
ersio

n
6



W
I

D
E

P
R

O
J

E
C

T
2

0
0

0
a

n
n

u
a

l
r

e
p

o
r

t
●第 7部 IP Version6

with anycast address is confusing. As IPsec uses

IPv6 destination address to identify which IPsec

key to be used, we need to use the same IPsec key

for all of the anycast destinations that share an

anycast address.

Dynamic IPsec key exchange (like IKE) is al-

most impossible. First of all, to run IKE session

between two nodes, the two nodes need to be able

to communicate with each other. With nondeter-

ministic packet delivery provided by anycast, it is

not quite easy. Even if we could circumvent the

issue with IKE, we have exactly the same problem

as manual keying case for actual communication.

7.3 Possible improvements and protocol

changes

Assigning anycast address to hosts (non-

router nodes)

Under RFC2373 rule, we can only assign any-

cast addresses to routers, not to hosts. The re-

striction was put into the RFC because it was felt

insecure to permit hosts to inject host routes to

anycast address.

If we try to ease the restriction and assign any-

cast addresses to IPv6 hosts (non-routers), we

would need to inject host routes for the anycast

addresses, with prefix length set to /128, into the

IPv6 routing system. We will inject host routes

from each of the nodes with anycast addresses,

to make packets routed to a topologically-closest

node. Or, we may be able to inject host routes

from routers adjacent to the servers (not from the

servers themselvers).

Here are possible ways to allow anycast ad-

dresses to be assigned to hosts. We would need to

diagnose each of the following proposals carefully,

as they have different pros and cons. The most

serious issue would be the security issue with ser-

vice blackhole attack (malicious party can black-

hole packets toward anycast addresses, by making

false advertisement).

• Let the host with anycast address to partici-

pate into routing information exchange. The

host does not need to fully participate; it only

needs to announce the anycast address to the

routing system. To

secure routing exchange, administrators need

to configure secret information that protects the

routing exchange to the host, as well as other

routers.

• Develop a protocol for a router, to discover

hosts with anycast address on the same link.

The router will then advertise the anycast ad-

dress to the routing system. This could be

done by an extension to IPv6 Neighbor Dis-

covery or an extension to IPv6 Multicast Lis-

tener Discovery [56].

The impact of host routes depends on the scope

of the anycast address usage. For example, if we

use site-local anycast address to identify a set of

servers, the propagation of host route is limited

inside the site. If the site administration policy

permits it, and the site routers can handle the ad-

ditional routing entries, the additional host routes

are okay. So, we can safely assign anycast address

to non-router nodes (hosts), and inject host route

for the anycast address, into the site IPv6 rout-

ing system. It is still questionable to inject host

routes into worldwide IPv6 routing system, as it

has problems in terms of scalability. Also, because

of IPv6 route aggregation rules [Rockell, 2000] it is

normally impossible to propagate IPv6 host routes

worldwide.

Anycast address in destination address

With anycast, it is hard to identify a single node

out of nodes that share an anycast address. Sup-

pose a client C would like to communicate a spe-

cific server with anycast address, Si. Si shares the

same anyast address with other servers, S1 to Sn.

It is hard for C to selectively communicate with

Si.

One possible workaround is to use IPv6 routing

134



W I D E P R O J E C T

7

header. By specifying an unicast address of Si as

an intermediate hop, C can deliver the packet to

Si, not to other Sn.

Note that we now have lost the robustness pro-

vided by the use of anycast address. If Si goes

down, the communication between C and Si will

be lost. C cannot enjoy the failure resistance pro-

vided by redundant servers, S1 to Sn. Designers

should carefully diagnose if any state is managed

by C and/or Si, and decide if it is a good idea to

use the workaround presented here.

Anycast address in source address

Under RFC2373 rule, anycast address cannot

be put into source address. Here is a possible

workaround, however, it could not win a consensus

in the past ipngwg meetings:

• When we try to use anycast address in the

source address, use an (non- anycast) unicast

address as the IPv6 source address, and at-

tach home address option with anycast ad-

dress. In ipngwg discussions, however, there

seem to be a consensus that the home address

option should have the same semantics as the

source address in the IPv6 header, so we can-

not put anycast address into the home address

option.

7.4 Upper layer protocol issus

Use of UDP with anycast

Many of the UDP-based protocols use source

and destination address pair to identify the traffic.

One example would be DNS over UDP; most of the

DNS client implementation checks if the source

address of the reply is the same as the destination

address of the query, in the fear of the fabricated

reply from bad guy.

query: client unicast (Cu) -> server unicast (Su*)

reply: server unicast (Su*) -> client unicast (Cu)

addresses marked with (*) must be equal.

If we use server’s anycast address as the destina-

tion of the query, we cannot meet the requirement

due to RFC2373 restriction (anycast address can-

not be used as the source address of packets). Ef-

fectively, client will consider the reply is fabricated

(hijack attempt), and drops the packet.

query: client unicast (Cu) -> server anycast (Sa)

reply: server unicast (Su) -> client unicast (Cu)

Note that, however, bad guys can still inject

fabricated results to the client, even if the client

checks the source address of the reply. The check

does not improve security of the exchange at all.

So, regarding to this issue, we conclude as follows:

• To use anycast address on the UDP proto-

col exchange, client side should not check the

source address of the incoming packet. Packet

pairs must be identified by using UDP port

numbers or upper-layer protocol mechanisms

(like cookies). The source address check itself

has no real protection.

• If you need to secure UDP protocol exchange,

it is suggested to verify the authenticity of

the reply, by using upper-layer security mech-

anisms like DNSSEC (note that we cannot use

IPsec with anycast).

Use of TCP with anycast

We cannot simply use anycast for TCP ex-

changes, as we identify a TCP connection by using

address/port pair for the source/destination node.

It is desired to implement some of the following, to

enable the use of IPv6 anycast in TCP. Note, how-

ever, security requirement is rather complicated

for the following protocol modifications.

• Define a TCP option which lets us to switch

peer’s address from IPv6 anycast address, to

IPv6 unicast address. There are couple of pro-

posals in the past.

• Define an additional connection setup proto-

col that resolves IPv6 unicast address from

IPv6 anycast address. We first resolve IPv6

unicast address using the new protocol, and

135

●
第
7
部

IP
V
ersio

n
6



W
I

D
E

P
R

O
J

E
C

T
2

0
0

0
a

n
n

u
a

l
r

e
p

o
r

t
●第 7部 IP Version6

then, make a TCP connection using the

IPv6 unicast address. IPv6 node information

query/reply [30] could be used for this.

7.5 Summary

The draft tried to diagnose the limitation in

currntly-specified IPv6 anycast, and explored cou-

ple of ways to extend its use. Some of the proposed

changes affects IPv6 anycast in general, some are

useful in certain use of IPv6 anycast. To take ad-

vantage of anycast addresses, protocol designers

would need to diagnose their requirements to any-

cast address, and introduce some of the tricks de-

scribed in the draft.

Use of IPsec with anycast address still needs a

great amount of analysis.

7.6 Security consideration

The document should introduce no new security

issues.

For secure anycast operation, we may need to

enable security mechanisms in other protocols.

For example, if we were to inject /128 routes from

end hosts by using a routing protocol, we may

need to configure the routing protocol to exchange

routes securely, to prevent malicious parties from

injecting bogus routes. With anycast, it is very

important to prevent malicious parties from in-

jecting bogus routes, as it allows them to effec-

tively suck all traffic torward anycast address.

第 8章 Requirements for IPv6 dialup PPP oper-

ation

8.1 Problem domain

With the deployment of IPv6 [65] , it becomes

more apparent that we have different operational

requirements in IPv6 dialup PPP operation, from

IPv4 dialup PPP operation. For example, it would

be desirable to see static address allocation, rather

than dynamic address allocation, whenever possi-

ble. With IPv4 this has been impossible due to

address space shortage, and IPCP [107] dynamic

address allocation has been used. With IPv6 it is

possible to perform static address allocation from

ISPs to downstream customers, as there’s enough

address to spare.

The document tries to summarize possible de-

sign choices in IPv6 dialup PPP operation. Actual

operational practices should be documented sepa-

rately.

8.2 Design choices

The usage pattern

• Static clients. Computers located in home

and offices do not usually change its config-

urations, nor upstream ISPs. It would be de-

sirable to make a static address allocation in

this case.

• Roaming clients. Roaming clients, like trav-

elling users with notebook PC, have different

requirement from static clients. It is not usu-

ally possible to make a static address alloca-

tion, as travelling users may connet to multi-

ple ISPs from different countries.

Address space

It is desired to assign /48 address space, regard-

less from usage pattern or size of the downstream

site. It is to make future renumbering in down-

stream site easier on ISP change. /128 assignment

MUST NOT be made, as it will advocate IPv6-to-

IPv6 NAT.

Address allocation

• Static address allocation. ISPs will allocate

a static address space (/48) to a downstream

customer, on contract time. There will be no

protocol involved in address allocation - allo-

cation will be informed by paper.

• Static address allocation, with some automa-

tion. It may be possible to define a com-

136



W I D E P R O J E C T

7

mon protocol for configuring customer-side

router(s) from the upstream ISP, eliminating

necessity of paper-based allocation and con-

figuration labor in the customer site. Note

that router renumbering protocol is not al-

ways suitable for this. Router renumbering

protocol assumes that the routers and control

node to be in the same administrative domain.

• Dynamic address allocation.

Where to assign address

• Assign address to ppp interface. The form as-

signs /128 to the customer computer, or /64

onto the PPP link. The form of address as-

signment should not be used, as it advocates

IPv6-to-IPv6 NAT. In the following diagram,

“Lx” denotes link-local address, and “Gx” de-

notes global address.

• Assign address to the interface behind the cus-

tomer router. The form assigns /64 to the

network segment behind customer router.

In the cases where the customer has only a single

computer, it is possible to have virtual network

segment behind the customer computer.

Note that, however, /64 assignment will make

it harder for customer site to evolve in the future.

/64 assignment is not recommended.

• Assign address to the cloud behind the cus-

tomer router (/48). In this case, the upstream

ISP has no idea about the topology in the cus-

tomer site. Actually, it is not necessary for

the upstream ISP to know about the address

usage in the customer site. Static address as-

signment is highly recommended in this case,

as it is painful to renumber the whole /48

cloud every time we reconnect the dialup PPP

link between the ISP and the customer site.

Routing

• Static routing. ISPs will configure static

route, pointing to the customer site, for the

address space assigned to the customer site.

Customer router (or customer computer) will

install default route, pointing to the ISP

router via PPP link.

• Simple dynamic routing. ISPs can exchange

routes by using simple dynamic routing proto-

cols like RIPng. This allows the customer site

to adapt to PPP link status better. This also

makes it easier to detect PPP link disconnec-

tion. If the ISP announces non-default routes

to the downstream customer, it may help

downstream to configure multihomed connec-

tivity (connection to multiple upstream ISPs)

[57] ISPs may want to filter out bogus routing

announcements from the downstream.

137

●
第
7
部

IP
V
ersio

n
6



W
I

D
E

P
R

O
J

E
C

T
2

0
0

0
a

n
n

u
a

l
r

e
p

o
r

t
●第 7部 IP Version6

第 9章 Guidelines for IPv6 local experiments

9.1 Problem space

There are potential IPv6 users who would like to

perform experiments locally, in their IPv6 network

disjoint from the worldwide IPv6 network at large

(or 6bone).

Site-local address [35] could be used where ap-

propriate. However, site-local address has several

operational differences from global address (like

below), and it is harder for novice users to con-

figure site-local address right than global address.

Also, due to the differences, some of the things

the user learnt from local experiments may not be

directly relevant when they get connected to the

worldwide IPv6 network - it reduces usefulness of

their local experiments.

• Site-local addresses are “scoped” address,

while global addresses are not.

• Configuration must correctly identify site bor-

der routers. This is an additional require-

ment.

• There are proposals on scoped routing ex-

ist [Deering, 2000] , however, implementation

status is still rather disappointing.

For experiments over single link, link-local ad-

dress could be used. However, again, link-local

address is a scoped address, and has radical op-

erational differences from global IPv6 (or IPv4)

address.

9.2 Recommendations

First of all, do not cook up IPv6 prefix on your

own. You cannot pick random prefix number, that

can jeopadize the whole point of experiment.

Next, it is recommended to use global addresses

for early stage of experiments. As presented in

the previous section, scoped (site- local/link-local)

IPv6 addresses have different operational charac-

teritics from global IPv6 addresses, or global IPv4

address. In the later stage of experients, you may

want to play with scoped addresses, and try to

understand how they behave.

In the following text of the draft, we list possible

routes a disconnected IPv6 network may want to

take. Once the site gets connected to worldwide

IPv6 network at large, the site MUST be renum-

bered to the addresses assigned by the (real) up-

stream.

A site with 6bone site/IPv6 ISP nearby

If it is possible, try to contact nearest upstream

6bone site, or upstream ISP, to assign you an IPv6

prefix. By getting IPv6 address space properly,

the site will have less problem when they get con-

neted to the worldwide IPv6 network. The ad-

dress space can (supposedly) be used for future

IPv6 upstream connectivity, if you connect your

site to the upstream which assigned the address

space to you. If you pick a different upstream, the

site MUST be renumbered.

To measure “nearness” between you and the up-

stream IPv6-over-IPv4 tunnel [53] provider (like a

6bone site), use IPv4 hop counts.

A site with global IPv4 connectivity

Whenever the site has a global IPv4 address

with it, the site should use the 6to4 IPv6 ad-

dress prefix [23] derived from the IPv4 address

space, for local experiments. The prefix will be

2002:xxyy:zzuu::/48, where “xxyy:zzuu” is a hex-

adecimal notation of an global IPv4 address that

belongs to the site.

However, such a /48 prefix can never be routed

globally in the world IPv6 network in a normal

sense. When the site wants to get external IPv6

connectivity, it must if possible renumber to a nor-

mal IPv6 prefix from its ISP (or 6bone upstream).

Otherwise it must find a 6to4 relay router to con-

nect it to the IPv6 world. For detailed discus-

sion about how packets from 6to4 site are handled,

please refer to 6to4 document.

138



W I D E P R O J E C T

7

Completely disconnected site

If the site has no permanent global IPv4 address

with it (like dialup customer site), the site has two

choices.

• The site may use site local address space. The

operation needs great care as presented above.

• The site may use the address prefix:

3ffe:0501:ffff::/48. The address prefix was

curved out from WIDE 6bone prefix. The

site MUST be renumbered, before the site

gets connected to the worldwide IPv6 net-

work. The address is provided as the last-

resort solution. The site should first try to

use other ways.

In both cases, the assigned prefix MUST NOT

be advertised to the worldwide IPv6 network, from

anywhere.

Other comments

If there are multiple administrative domains in

the site, the site is responsible for its internal co-

ordination (the draft cannot solve your local poli-

tics).

第10章 Socket API for IPv6 flow label field

10.1 Background

The IPv6 flow label field is a 20bit field in the

IPv6 header. The field has no IPv4 counterpart.

The IPv6 specification [65] supplies suggested us-

age of the field.

The field is intended to identify a “flow”, a set

of packets from a particular source to a particular

destination. The flow label field is set by the orig-

inating IPv6 node, in a pseudorandom manner.

The value will help intermediate routers to iden-

tify “flows”, without looking into payload data or

chasing an extension header chain.

For the flow label field to be useful, the source

node should carefully pick the value, to satisfy the

following constraints:

• The value should be pseudorandom, to help

routers make a hash table with it.

• The value should not be used for multiple dif-

ferent flows at the same time.

• The value should not be reused for some

amonut of time, after a flow is terminated

(otherwise, intermediate routers may mistak-

enly identify flows).

IPv6 specification does not define whether the

field can be rewritten by intermediate routers, or

the field should be kept untouched. It was to let

future QoS protocols make the choice. For exam-

ple, RSVP [Braden, 1997] assumes that the field is

kept untouched until the packet reaches the final

destination. In this document, following the as-

sumption in the RSVP document, we assume that

the field should not be modified by intermediate

routers.

There is no known application which needs to

inspect the flow label field on inbound packet.

Also, there is no known application which wants

to put a specific value to the flow label field.

10.2 Outbound traffic

After the connect(2) system call is issued for

a socket with a specific IPv6 address (non-

unspecified address), the kernel will automatically

fill in the flow label field, with a value selected

for the socket. The value will be selected on con-

nect(2), and will be used for subsequent outgoing

packets from the socket. The kernel is responsi-

ble to pick a suitable (pseudorandom and unique)

value for the flow label field.

If no connect(2) system call was issued for a

socket, the packets from the socket will have an

unspecified flow label value (zero). When multiple

connect(2) system calls were issued for a socket, a

new value must be picked for the flow label field,

every time the connect(2) system call was issued.

139

●
第
7
部

IP
V
ersio

n
6



W
I

D
E

P
R

O
J

E
C

T
2

0
0

0
a

n
n

u
a

l
r

e
p

o
r

t
●第 7部 IP Version6

With getsockname(2), an application can grab

the flow label value picked by the kernel, into the

sin6 flowinfo member. sin6 flowinfo member car-

ries the value in network byteorder. The topmost

12 bits of the sin6 flowinfo member must be set to

0.

Sample code would be as follows:

struct sockaddr_in6 src, dst, altdst;

u_int32_t value;

/* the value for flow label */

int s; /* socket */

socklen_t slen;

slen = sizeof(dst);

dst.sin6_flowinfo = 0; /* must be zero */

connect(s, (struct sockaddr *)&dst, slen);

/* sent with the flow label field filled */

send(s, buf, buflen);

/* obtain the flow label value */

slen = sizeof(src);

getsockname(s, (struct sockaddr *)&src,

&slen);

printf("flowlabel=%x\n",

ntohl(src.sin6_flowinfo &

IPV6_FLOWLABEL_MASK));

If an application wishes to disable the kernel

behavior and wishes to use an unspecified value

(zero) in the flow label field, the application should

issue the following setsockopt(2), prior to the con-

nect(2) system call. The default value for the

socket option is implementation- dependent. A

portable application should inspect the initial set-

ting by using getsockopt(2).

const int off = 0;

const int on = 1;

int s; /* socket */

/* disables automatic flow label */

setsockopt(s, IPPROTO_IPV6,

IPV6_AUTOFLOWLABEL,

&off, sizeof(off));

/* enables automatic flow label */

setsockopt(s, IPPROTO_IPV6,

IPV6_AUTOFLOWLABEL, &on,

sizeof(on));

The kernel should honor the definition of “flow”

when filling in flow label field. For example, let us

consider the suggestion in the IPv6 specification

[65] . In the following cases, the kernel should

make a special consideration. The kernel should

fill the flow label field with an unspecified value

(zero), or pick a new value.

(a) The packet goes to a different IPv6 desti-

nation, from the destination specified previously

with a connect(2) system call. The situation hap-

pens with sendto(2) or sendmsg(2) system calls

with a destination specified.

(b) The packet uses a different IPv6 source ad-

dress than before. It happens when a bind(2) sys-

tem call is issued.

(c) The packet carries different IPv6 extension

headers from we have previously used. The situa-

tion could be detected by the use of IPv6 advanced

API setsockopt(2), or by the presense of ancillary

data items on sendmsg(2).

10.3 Inbound traffic

We define no option to inspect the flow label

field on inbound traffic, at this moment.

Even though we are able to grab the outgoing

flow label value with getsockname(2), the value

should not affect the socket selection against in-

bound traffic.

Note: Even if we are to define some mecha-

nism to inspect the value on inbound packets,

we should not use the sin6 flowinfo member for

this. There are many applications which do con-

nect(2) or sendto(2), with the value returned from

recvfrom(2) or getpeername(2).

10.4 sin6 flowinfo field

The draft defines no valid operation where a

value is passed, from an application to the kernel,

via the sin6 flowinfo member. When the applica-

tion issues system calls to the kernel, the applica-

tion should fill the sin6 flowinfo member with 0,

as suggested in IPv6 basic API.

10.5 Issues

• Interaction with RSVP. Is getsockname(2)

140



W I D E P R O J E C T

7

enough to implement RSVP application?

• Is it necessary for an application to specify

the flow label value manually? In this case,

how should we check if the value is suitable

enough? (how to check the number collision?)

• The document assumes that the granularity

of flows is equal to the granularity of sock-

ets, or connect(2) system calls. As we still do

not have wide consensus about what the word

“flow” means, this could be controversial; for

example, some may want multiple flows for

a TCP session, some may want to consider

multiple TCP sessions as a single flow.

10.6 Security consideration

The document introduces no new security issue.

The presense of a flow label value may help wire-

tappers to identify a flow out of packets on the

wire.

第11章 An IPv6/IPv4 multicast translator based

on IGMP/MLD Proxying (IMP)

11.1 Introduction

It is expected that many IPv4 nodes will remain,

for its success, for a long time after the transi-

tion to IPv6 starts. On the other hand IPv6-only

nodes will appear, for cost reasons or as a result of

exhaustion of the IPv4 address space, before IPv4

nodes disap- pear. Therefore, it is highly desirable

to develop a mechanism which enables direct com-

munication between IPv4 nodes and IPv6 nodes,

in order to advance the transition smoothly. [116]

and [156] have already proposed such mechanisms,

but they are applied only to unicast communica-

tion, not to multicast. So it is necessary to provide

another mechanism for multicast.

This memo describes an entire scheme of multi-

cast communication between IPv4 nodes and IPv6

nodes. The scheme is composed by a mul- ticast

translator and an address mapper who are located

at the site boundary between IPv4 and IPv6. It

is not necessary to modify IPv4 nodes and IPv6

nodes.

This memo uses the words defined in [128], [35],

and [53].

11.2 Components

This section describes components needed for

the mechanism.

The system consists of a multicast translator,

and an address mapper. In order to allow IPv4

nodes and IPv6 nodes to directly communicate

using multicast, they need to be installed on the

site boundary between IPv4 and IPv6. Figure 1

illustrates the network system interconnected by

them.

Fig.1 Network system

Multicast Translator

It locates between an IPv4 land and an IPv6

land, and translates IPv4 multicast packets into

IPv6 multicast packets and vice versa. It consists

of the following three sub-components.

1. Translator

It is a component which translates IPv4 mul-

ticast packets into IPv6 multicast packets and

vice versa. There are several trans- lation

types.

141

●
第
7
部

IP
V
ersio

n
6



W
I

D
E

P
R

O
J

E
C

T
2

0
0

0
a

n
n

u
a

l
r

e
p

o
r

t
●第 7部 IP Version6

Gateway

It terminates data bound for an IPv4 mul-

ticast group at application layer, and relays

the data to an IPv6 multicast group and

vice versa.

Header conversion router

When receiving an IPv4 multicast packet,

it converts the IPv4 header into an IPv6

header, fragments the IPv6 packet if neces-

sary, and then forwards the packet. Like-

wise, when receiving an IPv6 multicast

packet, it converts the IPv6 header into an

IPv4 header, and then forwards the IPv4

packet.

2. IPv4 Multicast Proxy

It joins IPv4 multicast groups as a proxy of

IPv6 receiver nodes. Thereby it receives pack-

ets bound for the IPv4 multicast groups, and

then hands the packets to the translator.

3. IPv6 Multicast Proxy

It joins IPv6 multicast groups as a proxy of

IPv4 receiver nodes. Thereby it receives pack-

ets bound for the IPv6 multicast groups, and

then hands the packets to the translator.

Address mapper

It maintains each unicast address spool for IPv4

and IPv6. The IPv4 spool, for example, consists

of private addresses [133] bound for the multicast

translator. An example of the IPv6 spool is IPv6

address space assigned to virtual IPv6 organiza-

tion on the IPv4 land.

Also, it maintains a mapping table which con-

sists of pairs of an IPv4 address and an IPv6 ad-

dress. When the translator (or the IPv4 Proxy

or the IPv6 Proxy) requests it to assign an IPv6

address corresponding to an IPv4 address, it se-

lects a proper IPv6 address out of the table, and

returns the address to the translator. When there

is not a proper entry for an IPv4 unicast address,

it selects and returns an IPv6 unicast address out

of the spool, and registers a new entry into the ta-

ble. When there is not a proper entry for an IPv4

multicast group address, it registers a new entry,

which con- sists of the IPv4 multicast group ad-

dress and that of IPv6 corresponding to the IPv4

address, into the table. The IPv6 address is a

special type of one proposed in this memo. See

section 4.

When the translator (or the IPv4 Proxy or the

IPv6 Proxy) requests it to assign an IPv4 address

corresponding to an IPv6 address, it works like the

above.

11.3 Interaction Examples

This section explains communication from one

IPv4 multicast sender node to one or more IPv6

multicast receiver nodes, and communica- tion

from one IPv6 multicast sender node to one or

more IPv4 multi- cast receiver nodes, respectively.

Communication from IPv4 to IPv6

The following subsection explains communica-

tion from one IPv4 mul- ticast sender node, called

“sender4,” to one or more IPv6 multicast receiver

nodes, called “receiver6.”

Preceding the communication, the administra-

tor of the multicast translator carries out the setup

to translate IPv4 multicast pack- ets, which are

sent by “sender4”, into IPv6. According to the

direction of the administrator, the IPv4 multicast

proxy joins the IPv4 multicast group as a proxy of

“receiver6”, and then registers a new entry, which

consists of the IPv4 multicast group address and

that of IPv6 corresponding to the IPv4 address,

into the mapping table. The IPv6 address is a

special type of one proposed in this memo, and

takes the structure which is identified by a pre-

fix of ffxx::/96 and holds the IPv4 address in the

low-order 32-bits. See section 4.

The communication is triggered by “sender4.”

“sender4” sends an IPv4 multicast packet.

When the packet arrives at the multicast trans-

lator, the IPv4 mul- ticast proxy receives it and

hands it to the translator. The trans- lator tries

to translate it into an IPv6 packet but does not

142



W I D E P R O J E C T

7

know how to translate the IPv4 source address

and the IPv4 destination address. So the trans-

lator requests the mapper to tell mapping entries

for them. The mapper checks its mapping table

with each of them and finds only a mapping entry

for the IPv4 destination address.

But there is not a mapping entry for the IPv4

source address, so the mapper selects an IPv6 ad-

dress out of the IPv6 spool and regis- ters a new

entry, which consists of the IPv4 address and the

IPv6 address, into the mapping table. And then

the mapper returns the IPv6 destination address

and the IPv6 source address to the trans- lator.

After that the translator translates the packet

to IPv6, fragments it if necessary, and forwards

it. Note: The translation from the IPv4 source

address to the IPv6 source address is unicast one.

Finally it arrives at “receiver6.”

Figure 2 illustrates the interaction communicat-

ing from IPv4 to IPv6.

Fig.2 The interaction communicating

from IPv4 to IPv6.

Communication from IPv6 to IPv4

The following subsection explains communica-

tion from one IPv6 mul- ticast sender node, called

“sender6,” to one or more IPv4 multicast receiver

nodes, called “receiver4.”

Preceding the communication, the administra-

tor of the multicast translator carries out the setup

to translate IPv6 multicast pack- ets, which are

sent by “sender6” to a special type of IPv6 address

proposed in this memo, into IPv4. In the case,

the IPv6 multicast proxy joins the IPv6 multicast

group as a proxy of “receiver4”, and then registers

a new entry, which consists of the IPv6 multicast

group address and that of IPv4 corresponding to

the IPv6 address, into the mapping table. The

IPv4 address is the low-order 32-bits of the IPv6

address.

Subsequent interaction is symmetric to the case

described in Sec- tion 3.1.

Figure 3 illustrates the interaction communicat-

ing from IPv6 to IPv4.

Fig.3 The interaction communicating

from IPv6 to IPv4.

11.4 Addressing for IPv4/IPv6 multicast

communication

The mechanism uses a special type of an IPv6

address which is termed an “IPv4-compatible”

IPv6 multicast group address. The address

is identified by an prefix for IPv6 multicast

(ffxx::/96), and holds an IPv4 multicast group ad-

dress in the low-order 32-bits. Its format is:

143

●
第
7
部

IP
V
ersio

n
6



W
I

D
E

P
R

O
J

E
C

T
2

0
0

0
a

n
n

u
a

l
r

e
p

o
r

t
●第 7部 IP Version6

11.5 Applicability and Limitations

This section considers applicability and limita-

tions.

Applicability

The multicast translator based on the mecha-

nism locates at the site boundary between IPv4

and IPv6, and allows them to communicate di-

rectly. Therefore, the mechanism can be useful

during a long term, until IPv4 nodes disappear

after IPv6-only nodes appear.

It can be applicable to small-scale network sys-

tems, and to the extent of division networks in

intranets where its administrator can operate the

setup easily on demand by receivers.

Limitations

In common with NAT [86], IP conversion needs

to translate IP addresses embedded in application

layer protocols. So it is hard to translate all such

applications completely.

It cannot be applicable to large-scale network

systems like world- wide Internet because it needs

the setup by its administrator. In order to apply

it to large-scale network systems, it needs develop-

ing a new standard protocol between multicast

translators and receivers for carrying out the setup

automatically on demand by receivers.

11.6 Security considerations

Header conversions of AH [95] and ESP [96] may

be cryptographi- cally impossible in header con-

version router approach. It is a big disadvantage.

On the other hand it will be possible to use both

AH and ESP in proxy gateway approach.

第12章 A RADIUS attribute for IPv6 dialup PPP

with static address assignment

12.1 Usage model

In this document we cover the following cases

in IPv6 dialup PPP operation. No other cases are

addressed in the document. Please refer to [58]

for more about requirements in/categorization of

IPv6 dialup PPP operation,

• The downstream customer is a “static client,”

i.e. their computers does not change the geo-

graphical location.

• Address space is statically assigned to

the downstream customer. In this doc-

ument, we assume that we have assigned

3ffe:0501:ffff::/48 to the downstream cus-

tomer.

• The /48 Address space is assigned for the net-

work cloud behind the customer router. It

should be noted that ISP router will have no

idea about the network topology in the cus-

tomer site. In the following diagram, Lx de-

notes an IPv6 link-local address, and Gx de-

notes an IPv6 global address.

• Routing can be statically configured, or

dynamic routing protocol like RIPng [103]

should be used.

• We carry IPv6 packets using IPv6 PPP

[Haskin, 1998]. No IPv6-over-IPv4 tunnelling

is used.

• IPv4 PPP address allocation issue is outside

of the scope of the document. We can safely

ignore it without loss of generality, thanks to

multiprotocol nature of PPP.

12.2 RADIUS attribute for carrying IPv6

address space information

To exchange the information about customer

IPv6 address space between the ISP router and

RADIUS server, we need a common RADIUS at-

tribute for IPv6 address space. The attribute is

144



W I D E P R O J E C T

7

defined as follows:

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
0

Type Length

IPv6 address prefix

IPv6 address prefix (cont'd)

IPv6 address prefix (cont'd)

IPv6 address prefix (cont'd)

MUST BE ZERO Prefixlen

1 2 3

• Type: TBD

• Length: 20

• Prefixlen: IPv6 prefix length for the IPv6 ad-

dress space. Between 0 to 128 (in decimal).

For normal use, 48 (in decimal).

• IPv6 address prefix: Binary representation of

IPv6 address, in network byte order. Bits out-

side of prefix length must be zero.

For example, if we exchange “3ffe:0501:ffff::/48”

with it, the attribute will look like follows:

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
0

Type 20

0x3f

0xff

0x00

0x00

0xfe

0xff

0x00

0x00

0x05

0x00

0x00

0x00

0x01

0x00

0x00

0x00

0x00 48

1 2 3

12.3 Scenario

Contract

The ISP and the downstream customer will sign

a IPv6 dialup PPP contract. The ISP will assign

the downstream customer a global IPv6 address

space. The ISP will inform the downstream cus-

tomer of the following items:

• The phone number which the customer should

dial (the number reaches ISP router), and

• The global IPv6 address space

(3ffe:0501:ffff::/48).

The customer and ISP will exchange PPP au-

thentication information in secrecy.

ISP configuration

The ISP will put the following information into

RADIUS database.

• Account name of the user (which is the key

for looking up RADIUS database),

• PPP authentication information, and

• The global IPv6 address space assigned to the

customer (3ffe:0501:ffff::/48).

Customer site configuration

The customer will configure the customer site

using the address space assigned. Customer in-

stalls default routing entry toward the ISP router.

Establishing a PPP connection

On PPP link establishment, the following events

would happen.

• The customer router calls up the ISP router.

• The customer router authenticates itself to

the ISP router. The ISP router contacts RA-

DIUS server for authentication information,

to check if the user is legitimate.

• If the user is found to be legitimate, the PPP

link will be established between the routers.

IPV6CP [60] is used to avoid duplicated link-

local address on the PPP link.

• The ISP router will grab information on

IPv6 address space from RADIUS database

(NOTE: the ISP router can grab the authenti-

ation information and the IPv6 address space

information, in a single query).

If we use static routing the ISP router is con-

145

●
第
7
部

IP
V
ersio

n
6



W
I

D
E

P
R

O
J

E
C

T
2

0
0

0
a

n
n

u
a

l
r

e
p

o
r

t
●第 7部 IP Version6

figured with a routing entry for the address space,

pointing to the customer router. ISP router adver-

tises the routing information to the ISP backbone,

if necessary.

If we use dynamic routing, instead of configur-

ing a static routing entry, the ISP router is config-

ured to accept legitimate IPv6 routing announce-

ments (that is, 3ffe:0501:ffff::/48) from the cus-

tomer router. The ISP router advertises default

route, and possibly more specific routes, to the

customer router. The customer router will adver-

tise 3ffe:0501:ffff::/48 to the ISP router (NOTE:

the IPv6 address prefix is pre-configured to the

customer router. The customer router knows the

prefix as the ISP gave the information at the con-

tract time).

Tearing down

On PPP link disconnection, the following events

would happen.

• The customer router, or the ISP router,

wishes to disconnect the PPP connection.

• PPP link will be teared down using normal

PPP disconnection procedure.

• The ISP router removes the routing entry for

the global IPv6 address space for the cus-

tomer.

12.4 Discussions

It is possible to use the proposed attribute for

non-dialup IPv6 PPP connections, to ease man-

agement in the ISP side.

It is possible to define the proposed RADIUS at-

tribute as a vendor-type attribute under “Vendor-

Specific” type (26). The authors are not sure

which is the way to go.

第13章 An Extension of Format for IPv6 Scoped

Addresses

13.1 Introduction

There are several types of scoped addresses de-

fined in the “IPv6 Addressing Architecture” [64].

Since uniqueness of a scoped address is guaranteed

only within a corresponding area of the scope, the

semantics for a scoped address is ambiguous on a

scope boundary. For example, when a user spec-

ifies to send a packet from a node to a link-local

address of another node, the user must specify the

link of the destination as well, if the node is at-

tached to more than one link.

This characteristic of scoped addresses may in-

troduce additional cost to scope-aware applica-

tions; a scope-aware application may have to pro-

vide a way to specify an instance of a scope for

each scoped address (e.g. a specific link for a link-

local address) that the application uses. Also, it is

hard for a user to “cut and paste” a scoped address

due to the ambiguity of its scope.

Applications that are supposed to be used in

end hosts like telnet, ftp, and ssh, are not usually

aware of scoped addresses, especially of link-local

addresses. However, an expert user (e.g. a net-

work administrator) sometimes has to give even

link-local addresses to such applications.

Here is a concrete example. Consider a multi-

linked router, called “R1”, that has at least two

point-to-point interfaces. Each of the interfaces

is connected to another router, called “R2” and

“R3”. Also assume that the point-to-point inter-

faces are “unnumbered”, that is, they have link-

local addresses only.

Now suppose that the routing system on R2

hangs up and has to be reinvoked. In this situ-

ation, we may not be able to use a global address

of R2, because this is a routing trouble and we can-

not expect that we have enough routes for global

146



W I D E P R O J E C T

7

reachability to R2.

Hence we have to login R1 first, and then try to

login R2 using link-local addresses. In such a case,

we have to give the link-local address of R2 to, for

example, telnet. Here we assume the address is

fe80::2.

Note that we cannot just type like

% telnet fe80::2

here, since R1 has more than one interface (i.e.

link) and hence the telnet command cannot detect

which link it should try to connect.

Although R1 could spray neighbor solicitations

for fe80::2 on all links that R1 attaches in order to

detect an appropriate link, we cannot completely

rely on the result. This is because R3 might also

assign fe80::2 to its point-to-point interface and

might return a neighbor advertisement faster than

R2. There is currently no mechanism to (auto-

matically) resolve such conflict. Even if we had

one, the administrator of R3 might not accept to

change the link-local address especially when R3

belongs to a different organization from R1’s.

This document defines an extension of the for-

mat for scoped addresses in order to overcome this

inconvenience. Using the extended format with

some appropriate library routines will make scope-

aware applications simpler.

13.2 Proposal

The proposed format for scoped addresses is as

follows:

<scoped_address>%<scope_id>

where <scoped_address> is a literal IPv6 address,

<scope_id> is a string to identify the scope of the

address, and ’%’ is a delimiter character to distin-

guish between <scoped_address> and <scope_id>.

The following subsections describe detail defini-

tions and concrete examples of the format.

Scoped Addresses

The proposed format is applied to all kinds of

unicast and multicast scoped addresses, that is, all

non-global unicast and multicast addresses.

The format should not be used for global ad-

dresses. However, an implementation which han-

dles addresses (e.g. name to address mapping

functions) MAY allow users to use such a nota-

tion (see also Appendix C).

Scope Identifiers

An implementation SHOULD support at least

numerical identifiers as <scope id>, which are

non-negative decimal numbers. Positive identi-

fiers MUST uniquely specifies a single instance of

scope for a given scoped address. An implemen-

tation MAY use zero to have a special meaning,

for example, a meaning that no instance of scope

is specified.

An implementation MAY support other kinds

of strings as <scope id> unless the strings conflict

with the delimiter character. The precise seman-

tics of such additional strings is implementation

dependent.

One possible candidate of such strings would be

interface names, since interfaces uniquely disam-

biguate any type of scopes [55]. In particular, if an

implementation can assume that there is a one-to-

one mapping between links and interfaces (and the

assumption is usually reasonable,) using interface

names as link identifiers would be natural.

An implementation could also use interface

names as <scope id> for larger scopes than links,

but there might be some confusion in such use. For

example, when more than one interface belongs to

a same site, a user would be confused about which

interface should be used. Also, a mapping func-

tion from an address to a name would encounter

a same kind of problem when it prints a scoped

address with an interface name as a scope iden-

tifier. This document does not specify how these

cases should be treated and leaves it implementa-

tion dependent.

It cannot be assumed that a same identifier is

common to all nodes in a scope zone. Hence the

proposed format MUST be used only within a

node and MUST NOT be sent on a wire.

147

●
第
7
部

IP
V
ersio

n
6



W
I

D
E

P
R

O
J

E
C

T
2

0
0

0
a

n
n

u
a

l
r

e
p

o
r

t
●第 7部 IP Version6

Examples

Here are examples. The following addresses

fe80::1234 (whose link identifier is 1)

fec0::5678 (whose site identifier is 2)

ff02::9abc (whose link identifier is 5)

ff08::def0

(whose organization identifier is 10)

would be represented as follows:

fe80::1234%1

fec0::5678%2

ff02::9abc%5

ff08::def0%10

If we use interface names as <scope id>, the

followings could also be represented as follows:

fe80::1234%ne0

fec0::5678%ether2

ff02::9abc%pvc1.3

ff08::def0%interface10

where the interface “ne0” belongs to link 1,

“ether2” belongs to site 2, and so on.

Omitting Scope Identifiers

This document does not intend to invalidate the

original format for scoped addresses, that is, the

format without the scope identifier portion. An

implementation SHOULD rather provide a user

with a “default” instance of each scope and allow

the user to omit scope identifiers.

Also, when an implementation can assume that

there is no ambiguity of any type of scopes on a

node, it MAY even omit the whole functionality

to handle the proposed format. An end host with

a single interface would be an example of such a

case.

13.3 Combinations of Delimiter Characters

There are other kinds of delimiter characters de-

fined for IPv6 addresses. In this section, we de-

scribe how they should be combined with the pro-

posed format for scoped addresses.

The IPv6 addressing architecture [64] also de-

fines the syntax of IPv6 prefixes. If the ad-

dress portion of a prefix is scoped one and the

scope should be disambiguated, the address por-

tion SHOULD be in the proposed format. For

example, the prefix fec0:0:0:1::/64 on a site whose

identifier is 2 should be represented as follows:

fec0:0:0:1::%2/64

There is the preferred format for literal IPv6 ad-

dresses in URL’s [63]. When a user types the pre-

ferred format for an IPv6 scoped address and the

scope should be explicitly specified, the address

part in brackets SHOULD be in the proposed for-

mat. Thus, for instance, the user should type as

follows:

http://[fec0:0:0:2::1234%10]:80/index.html

13.4 Related Issues

In this document, it is assumed that an identi-

fier of a scope is not necessarily common in a scope

zone. However, it would be useful if a common no-

tation is introduced (e.g. an organization name for

a site). In such a case, the proposed format could

be commonly used to designate a single interface

(or a set of interfaces for a multicast address) in a

scope zone.

When the network configuration of a node

changes, the change may affect <scope id>. Sup-

pose that the case where numerical identifiers are

sequentially used as <scope id>. When a network

interface card is newly inserted in the node, some

identifiers may have to be renumbered accordingly.

This would be inconvenient, especially when ad-

dresses with the numerical identifiers are stored in

non-volatile storage and reused after rebooting.

13.5 Security Considerations

The use of this approach to represent IPv6

scoped addresses does not introduce any known

new security concerns, since the use is restricted

within a single node.

13.6 Appendix A. Interaction with API

The proposed format would be useful with some

library functions defined in the “Basic Socket

API” [148], the functions which translate a node-

name to an address, or vice versa.

148



W I D E P R O J E C T

7

For example, if getaddrinfo() parses a lit-

eral IPv6 address in the proposed format and

fills an identifier according to ¡scopde id¿ in the

sin6 scope id field of a sockaddr in6 structure,

then an application would be able to just call

getaddrinfo() and would not have to care about

scopes.

Also, if getnameinfo() returns IPv6 scoped ad-

dresses in the proposed format, a user or an ap-

plication would be able to reuse the result by a

simple “cut and paste” method.

Note that the ipng working group is now re-

vising the basic socket API in order to support

scoped addresses appropriately. When the revised

version is available, it should be preferred to the

description of this section.

13.7 Appendix B. Implementation Experi-

ences

The WIDE KAME IPv6 stack implements the

extension to the getaddrinfo() and the getname-

info() functions described in Appendix A of this

document. The source code is available as free

software, bundled in the KAME IPv6 stack kit.

The current implementation assumes that there

is one-to-one mapping between links and in-

terfaces, and hence it uses interface names as

<scope id> for links.

For instance, the implementation shows its rout-

ing table as follows:

Internet6:

Destination Gateway Flags Intface

default fe80::fe32:93d1%ef0 UG ef0

This means that the default router is

fe80::fe32:93d1 on the link identified by the

interface “ef0”. A user can “cut and paste” the

result in order to telnet to the default router like

this:

% telnet fe80::fe32:93d1%ef0

even on a multi-linked node.

As another example, we show how the imple-

mentation can be used for the problem described

in Section 1.

We first confirm the link-local address assigned

to the point-to-point interface of R2:

(on R1)% ping ff02::1

PING(56=40+8+8 bytes) fe80::1 --> ff02::1

16 bytes from fe80::1%lo0, icmp_seq=0 hlim=64 time=0.474 ms

16 bytes from fe80::2%pvc0, icmp_seq=0 hlim=64 time=0.374 ms(DUP!)

...

(we assume here that the name of the point-to-point interface

on R1 toward R2 is "pvc0" and that the link-local address on

the interface is "fe80::1".)

So the address should be fe80::2. Then we can

login R2 using the address by the telnet command

without ambiguity:

% telnet fe80::2%pvc0

Though the implementation supports the ex-

tended format for all type of scoped addresses,

our current experience is limited to link-local ad-

dresses. For other type of scopes, we need more

experience.

13.8 Appendix C. A Comprehensive De-

scription of KAME’s getXXXinfo

Functions

The following tables describe the behavior of

the KAME’s implementation we mentioned in Ap-

pendix B using concrete examples. Note that

those tables are not intended to be standard spec-

ifications of the extensions but are references for

other implementors.

Those tables summarize what value the

getXXXinfo functions return against various argu-

ments. For each of two functions we first explain

typical cases and then show non-typical ones.

The tables for getaddrinfo() have four columns.

The first two are arguments for the function, and

the last two are the results. The tables for get-

nameinfo() also have four columns. The first three

are arguments, and the last one is the results.

Columns “Hostname” contain strings that are

numeric or non-numeric IPv6 hostnames.

Columns “NI NUMERICHOST” show if the

NI NUMERICHOST is set to flags for the cor-

responding getXXXinfo function. The value “1”

means the flag is set, and “0” means the flag is

clear. “-” means that the field is not related to

the result.

Columns “sin6 addr” contain IPv6 binary ad-

149

●
第
7
部

IP
V
ersio

n
6



W
I

D
E

P
R

O
J

E
C

T
2

0
0

0
a

n
n

u
a

l
r

e
p

o
r

t
●第 7部 IP Version6

dresses in the textual format, which mean the

values of the sin6 addr field of the corresponding

sockaddr in6 structure.

Columns “sin6 scope id” contain numeric num-

bers, which mean the values of the sin6 scope id

field of the corresponding sockaddr in6 structure.

If necessary, we use an additional column titled

“N/B” to note something special.

If an entry of a result column has the value “Er-

ror,” it means the corresponding function fails.

In the examples, we assume the followings: -

The hostname “foo.kame.net” has a AAAA DNS

record “3ffe:501::1”. We also assume the reverse

map is configured correctly. - There is no FQDN

representation for scoped addresses. - The nu-

meric link identifier for the interface “ne0” is 5.

- We have an interface belonging to a site whose

numeric identifier is 10. - The numeric identifier

“20” is invalid for any type of scopes. - We use

the string “none” as an invalid non-numeric scope

identifier.

Typical cases for getaddrinfo():

Hostname NI NUMERICHOST sin6 addr sin6 scope id

"foo.kame.net" 0 3ffe:501::1 0

"3ffe:501::1" - 3ffe:501::1 0

"fec0::1"fe80::1"fe80::1

Typical cases for getnameinfo():

sin6 addr sin6 scope id NI NUMERICHOST Hostname N/B

3ffe:501::1 0 0 "foo.kame.net"

3ffe:501::1 0 1 "3ffe:501::1"

fec0::1 10 - "fec0::1%10"

fe80::1 5 - "fe80::1%ne0" (*1)

(*1) Regardless of the NI NUMERICHOST flag,

we always show an interface name as the

<scope id> portion for a link-local address

if the identifier is valid.

Non-typical cases for getaddrinfo():

Hostname NI NUMERICHOST sin6 addr

sin6 scope id N/B

"foo.kame.net" 1 Error

"foo.kame.net%20" - Error (*2)

"foo.kame.net%none" - Error (*2)

"3ffe:501::1%none" - Error

"3ffe:501::1%0" - 3ffe:501::1 0 (*3)

"3ffe:501::1%20" - 3ffe:501::1 20 (*3)

"fec0::1%none" - Error

"fec0::1" - fec0::1 0 (*4)

"fec0::1%0" - fec0::1 0 (*5)

"fec0::1%20" - fec0::1 20 (*6)

"fe80::1%none" - Error

"fe80::1" - fe80::1 0 (*4)

"fe80::1%0" - fe80::1 0 (*5)

"fe80::1%20" - fe80::1 20 (*6)

(*2) <scope id> against an FQDN is invalid.

(*3) We do not expect that <scope id> is speci-

fied for a global address, but we don’t regard

it as invalid.

(*4) We usually expect that a scoped address

is specified with <scope id>, but if no

identifier is specified we just set 0 to the

sin6 scope id field.

(*5) Explicitly specifying 0 as <scope id> is not

meaningful, but we just treat the value as

opaque.

(*6) The <scope id> portion is opaque to getad-

drinfo() even if it is invalid. It is kernel’s

responsibility to raise errors, if there is any

connection attempt that the kernel cannot

handle.

Non-typical cases for getnameinfo():

sin6 addr sin6 scope id NI NUMERICHOST

Hostname N/B

3ffe:501::1 20 1 "3ffe:501::1%20" (*7)

3ffe:501::1 20 0 "foo.kame.net" (*8)

fec0::1 20 - "fec0::1%20"

fec0::1 0 - "fec0::1" (*9)

fe80::1 20 - "fe80::1%20"

fe80::1 0 - "fe80::1" (*9)

(*7) We do not expect that a global IPv6 address

has a non-zero scope identifier. But if it is

the case, we just treat it as opaque.

(*8) Despite the above, if the

NI NUMERICHOST is clear, we resolve the

address to a hostname and print the name

without scope information. We might have

to reconsider this behavior.

(*9) We usually expect that a scoped address has

a non-zero scope identifier. But if the identi-

fier is 0, we simply print the address portion

150



W I D E P R O J E C T

7

without scope information.

第14章 IPv6 SMTP operational requirements

14.1 Summary of IPv4 MX operation

For reference purpose, the section outlines how

mail message delivery is performed in IPv4-only

environment [125].

In IPv4 SMTP operation, we register MX

records like below, for “sample.org.” domain:

sample.org. IN MX 1 mx1.sample.org.

IN MX 10 mx10.sample.org.

mx1.sample.org. IN A 1.0.0.1

mx10.sample.org. IN A 1.0.0.2

When an MTA delivers a message to a particular

destination (say it is to foo@sample.org), the MTA

would send DNS queries to lookup DNS database

in the following order:

• Lookup MX record for “sample.org.”

• If an MX record is returned, try to lookup A

record on the righthand side of the MX record.

• If a CNAME record is returned, try to chase

the CNAME chain. Eventually we will reach

some A record.

• If MX lookup failed with NO DATA, it means

that there is no MX record but there can

be other record for “sample.org.” Lookup A

record for “sample.org.”.

• If MX lookup failed with

HOST NOT FOUND, it means that there is

no record at all for “sample.org.” This means

a delivery failure.

14.2 MX records and IPv6 SMTP operation

The following sections talk about how to make

IPv4 SMTP and IPv6 SMTP coexist, under dual-

stack environment during the transition period be-

tween IPv4 to IPv6. In the future, when we have

completely migrated to IPv6-only network, we can

forget about IPv4/v6 SMTP interaction.

As IPv6 DNS lookup RFCs [Thomson, 1995;

Crawford, 2000] use IN class for both IPv4 and

IPv6, we will use IN MX records for both IPv4

and IPv6.

For simplicity, the document lists DNS records

for IPv6 address as AAAA records, not as A6 records

[30]. In reality, we can use a chain of A6 records,

instead of AAAA records.

There are couple of technologies defined for IPv4

and IPv6 transition. The document concentrates

on issues with dual stack environment. Transla-

tors do not need special consideration from SMTP

point of view; If we have SMTP traffic from IPv6

MTA to IPv4 MTA over an IPv6-to-IPv4 trans-

lator, the traffic will be considered as a normal

IPv4 SMTP traffic, from the IPv4 MTA point of

view. We may, however, need some consideration

on translators for protocols like IDENT [149] .

14.3 SMTP sender algorithm in dual stack

environment

When we lookup MX records for the domain

in IPv4/v6 dual stack environment, we will see

records like below:

sample.org. IN MX 1 mx1.sample.org.

IN MX 10 mx10.sample.org.

mx1.sample.org. IN A 1.0.0.1

; IPv4/v6 dual stack

IN AAAA 3ffe:501:ffff::1

mx10.sample.org. IN AAAA 3ffe:501:ffff::2

; IPv6 only

For single MX record, we have many possibility

for the final lookup result, including: (a) single,

or multiple A records for IPv4 destination, (b) sin-

gle, or multiple AAAA records for IPv6 destination,

(c) mixture of A and AAAA records. As we can

define multiple MX records with different prefer-

ence value, we also need to go through multiple

addresses based on multiple MXes. We need to

cope with domains without MX records, and fail-

ure recovery cases too.

The algorithm for a SMTP sender would be like

this.

151

●
第
7
部

IP
V
ersio

n
6



W
I

D
E

P
R

O
J

E
C

T
2

0
0

0
a

n
n

u
a

l
r

e
p

o
r

t
●第 7部 IP Version6

1. Lookup MX record for the destination do-

main. If a CNAME record is returned, go

back to step (1) with the queried result. If

MX records are returned, go to step (2) with

the result. If NO DATA is returned, go

to step (3) as there is no MX record. If

HOST NOT FOUND is returned, there is no

domain, raise permanent email delivery fail-

ure (finish).

2. We have multiple MX records with us. Loop

steps from (3) to (8), based on MX preference

values, in ascending order.

3. If the source MTA has IPv4 capability, lookup

A record. Keep the resulting address till step

(5).

4. If the source MTA has IPv6 capability, lookup

AAAA record.

5. Reorder queried result based on

implementation-dependent preference be-

tween A and AAAA records.

6. Loop steps from (7) to (8), for all the ad-

dresses (or part of the list of addresses) we

have. If no reachable destination is found, and

if we are going through a list of MX records,

go back to (3) and try the next MX record.

If we do not have a list of MX records, or we

have reached the end of the list of MX records,

raise temporary delivery failure (finish).

7. Try to make a TCP connection to the destina-

tion. If it fails, try the next address we have.

If it succeeds, go to step (8).

8. Try a SMTP protocol negotiation. If SMTP

protocol negotiation fails with TEMPFAIL

(4xx), go back to (3) and try the next MX

record. If it succeeds, SMTP delivery was suc-

cessful (finish).

14.4 MX configuration in receipient domain

Ensuring reachability for both protocol ver-

sions

If a site has IPv4/v6 dual stack reachability, the

site SHOULD configure both A and AAAA records

onto its MX hosts. It will help both IPv4 and

IPv6 senders to reach the site efficienlty.

Reachability between primary and sec-

ondary MX

When we configure MX records onto DNS

database in dual-stack environment, we need to

be careful about reachability between MX hosts.

Suppose we try to gather all inbound email to pri-

mary MX host, mx1.sample.org.

sample.org. IN MX 1 mx1.sample.org.

IN MX 10 mx10.sample.org.

IN MX 100 mx100.sample.org.

If mx1.sample.org is an IPv6 only node and the

rest are IPv4 only node, we have no reachability

between primary MX host and the rest. Once an

email reaches one of secondary MX host, the email

will never reach the primary MX.

; the configuration is troublesome.

; no secondary MX can reach mx1.sample.org.

sample.org. IN MX 1 mx1.sample.org.

; IPv6 only

IN MX 10 mx10.sample.org.

; IPv4 only

IN MX 100 mx100.sample.org.

; IPv4 only

The easiest possible configuration is to configure

the primary MX host as an IPv4/v6 dual stack

node. By doing so, secondaries will have no prob-

lem reaching the primary MX host.

; the configuration works just fine.

; emails reaches from secondary MX

; to primary with no trouble.

sample.org. IN MX 1 mx1.sample.org.

; IPv4/v6 dual stack

IN MX 10 mx10.sample.org.

; IPv4 only

IN MX 100 mx100.sample.org.

; IPv6 only

There are many other ways to ensure the reach-

ability between secondary MX and primary MX.

For example, we could configure secondary MX to

route emails statically, without considering DNS

MX configuration. Or we could estalish alterna-

152



W I D E P R O J E C T

7

tive email routing path (i.e. UUCP, or via IPv4/v6

translator) between secondary MX and the pri-

mary MX.

14.5 Open issues

• How to interpret scoped address on MTAs.

As we relay emails between MTAs, interpre-

tation of scoped address can be different be-

tween MTAs, as intermediate MTAs may be

in different scope zone as the originator.

If we get scoped IPv6 address as a result of DNS

lookups, how MTAs should behave? If we consider

scoped address in “route-addr” specification [31]

like

<itojun@kame.net@oshokuji.org@itojun.org>

it gets more trickier.

14.6 Security consideration

The document should have no new security

problem.

第15章 Socket API for IPv6 traffic class field

15.1 Background

The IPv6 traffic class field is a 8bit field in the

IPv6 header. The field serves just like the IPv4

type of service (TOS) field. There are two types

of proposed use of the field: (1) topmost 6 bits

for the differentiated services (diffserv) field [113] ,

and (2) lowermost 2 bits for explicit congestion no-

tification (ECN) [131]. Those two proposals plan

to rewrite the field at intermediate routers.

There is a certain set of applications which need

to manipulate and inspect the traffic class field.

Here are some examples.

• ECN implementations outside of the kernel

(like UDP ECN).

• A diffserv-aware application, which tries

to mark low-priority traffic (such as non-

important packets in a video traffic) on its

own. In this case, the application does not

need to inspect the field on outbound traffic.

• Debugging tools for differentiated services.

15.2 Inbound traffic

When an application is interested in inspecting

the traffic class field on packets, the application

should set the IPV6 RECVTCLASS socket option

to 1:

/* enable */

const int on = 1;

setsockopt(fd, IPPROTO_IPV6,

IPV6_RECVTCLASS, &on,

sizeof(on));

Subsequent incoming traffic will be accompa-

nied with an ancillary data item that carries an

unsigned octet value. The ancillary data item will

be tagged with the level IPPROTO IPV6 and type

IPV6 TCLASS. An application can obatain the

value of the traffic class field by the following op-

eration, after the recvmsg(2) system call:

struct cmsghdr *cm;

u_int8_t tclass;

if (cm->cmsg_len

== CMSG_LEN(sizeof(u_int8_t)) &&

cm->cmsg_level == IPPROTO_IPV6 &&

cm->cmsg_type == IPV6_TCLASS)

tclass = *(u_int8_t *)CMSG_DATA(cm);

else

tclass = 0x00;

/* could not obtain traffic class value */

By setting the socket option to 0, the behavior

is disabled:

/* disable */

const int off = 0;

setsockopt(fd, IPPROTO_IPV6,

IPV6_RECVTCLASS, &off,

sizeof(off));

For TCP sockets, an ancillary data item will

be present only when the traffic class value is

changed. See section 4.1 (TCP Implications) of

153

●
第
7
部

IP
V
ersio

n
6



W
I

D
E

P
R

O
J

E
C

T
2

0
0

0
a

n
n

u
a

l
r

e
p

o
r

t
●第 7部 IP Version6

[148] for details.

15.3 Outbound traffic

To control the value of the traffic class field for

a single packet transmission, you can use an an-

cillary data item, just like presented above, with a

sendmsg(2) system call. The level of the ancillary

data item must be IPPROTO IPV6, and the type

must be IPV6 TCLASS.

int s; /* socket */

u_int8_t tclass;

struct sockaddr_in6 *dst;

struct msghdr m;

struct cmsghdr *cm;

struct iovec iov[2];

u_char cmsgbuf[256];

/* must be > CMSG_SPACE(sizeof(tclass)) */

/* set the data buffer to send */

memset(m, 0, sizeof(m));

memset(iov, 0, sizeof(iov));

m.msg_name = (caddr_t)dst;

m.msg_namelen = sizeof(dst);

iov[0].iov_base = buf;

iov[0].iov_len = len;

m.msg_iov = iov;

m.msg_iovlen = 1;

/* set ancillary data for

the traffic class field */

memset(cmsgbuf, 0, sizeof(cmsgbuf));

cm = (struct cmsghdr *)cmsgbuf;

m.msg_control = cm;

m.msg_controllen

= CMSG_SPACE(sizeof(tclass));

cm->cmsg_len

= CMSG_LEN(sizeof(tclass));

cm->cmsg_level = IPPROTO_IPV6;

cm->cmsg_type = IPV6_TCLASS;

memcpy(CMSG_DATA(cm), &tclass,

sizeof(tclass));

sendmsg(s, &m, 0);

If you want to put specific value to the traf-

fic class field on multiple packets, you can use a

“sticky” option:

u_int8_t tclass;

setsockopt(fd, IPPROTO_IPV6,

IPV6_TCLASS, &tclass,

sizeof(tclass));

15.4 Conflict resolution

There are two entities which may modify the

traffic class field, in the kernel of the originating

node: a kernel IPv6 code with diffserv marking

enabled, and an ECN-capable TCP stack. Those

entities may modify the traffic class field, even if

an application tries to manipulate the value. It

may present a difficult constraint to the API. For

outbound traffic, even if an application specifies

the value to be put into the traffic class field, in-

kernel mechanism(s) may need to modify the field.

The specified value may not be reflected into the

packet on the wire (example: outbound process-

ing in an ECN-capable TCP stack). For inbound

traffic, even if the kernel presents the value on the

field to the application, the value may not be the

same as the value on the packet on the wire, due

to manipulation in the kernel (example: traffic re-

ceived by a diffserv egress node itself).

The following text proposes a suggested behav-

ior. One of the goals of the suggestion is to allow

applications to implement UDP ECN by them-

selves. The behavior may need more discussions:

Outbound traffic

If there is no conflict (for example, the TCP

stack is not ECN- capable), the kernel should

honor the value an application specified, and put

the specified value into the traffic class field as is.

If there is a conflict, the kernel should override

the value specified by the application, for the

part of the field (bits) the kernel is using. For

example, if the kernel has an ECN- capable TCP

stack but does not support diffserv, the kernel

should override ECN bits only.

Inbound traffic

Kernel should present the traffic class value ap-

154



W I D E P R O J E C T

7

peared on the wire as is to applications. Note

that, in some cases, the kernel may want to al-

ter specific bits in the field, before presenting

the value to the userland. For example, if the

kernel implements TCP ECN and would like to

make it transparent to the user programs, the

kernel may want to hide ECN bits.

From diffserv and ECN protocol specifications,

the traffic class field may be rewritten by inter-

mediate routers. So even if the sender specifies a

value, the value may be altered before the packet

reaches the final destination.

15.5 Issues

• Revise conflict resolution rule?

15.6 Security consideration

The API could be used for attempted theft of

service. An attacker may try to inject packets,

with some specific value in traffic class field, into a

diffserv cloud. Refer to RFC2474 [113] section 7.1

for detail. Note that the theft of diffserv service is

possible even without the API.

第16章 An IPv6-to-IPv4 transport relay transla-

tor

16.1 Problem domain

When you deploy an IPv6-only network, you

still want to gain access to IPv4-only network re-

sources outside, such as IPv4-only web servers. To

solve this problem, many IPv6-to-IPv4 translation

technologies are proposed, mainly in the IETF ng-

trans working group. The memo describes a trans-

lator based on the transport relay technique to

solve the same problem.

In this memo, we call this kind of trans-

lator “TRT” (transport relay translator). A

TRT system locates between IPv6-only hosts and

IPv4 hosts and translates TCP,UDP/IPv6 to

TCP,UDP/IPv4, vice versa.

Advantages of TRT are as follows:

• TRT is designed to require no extra modifi-

cation on IPv6-only initiating hosts, nor that

on IPv4-only destination hosts. Some other

translation mechanisms need extra modifica-

tions on IPv6-only initiating hosts, limiting

possibility of deployment.

• The IPv6-to-IPv4 header converters have to

take care of path MTU and fragmentation is-

sues. However, TRT is free from this problem.

Disadvantages of TRT are as follows:

• TRT supports bidirectional traffic only. The

IPv6-to-IPv4 header converters may be able

to support other cases, such as unidirectional

multicast datagrams.

• TRT needs a stateful TRT system between

the communicating peers, just like NAT sys-

tems. While it is possible to place multiple

TRT systems in a site (see Appendix A), a

transport layer connection goes through par-

ticular, a single TRT system. The TRT sys-

tem thus can be considered a single point of

failure, again like NAT systems. Some other

mechanisms, such as SIIT [116], use stateless

translator systems which can avoid a single

point of failure.

The memo assumes that traffic is initiated by an

IPv6-only host destined to an IPv4-only host. The

memo can be extended to handle opposite direc-

tion, if an apprpriate address mapping mechanism

is introduced.

16.2 IPv4-to-IPv4 transport relay

To help understanding of the proposal in the

next section, here we describe the transport relay

in general. The transport relay technique itself is

not new, as it has been used in many of firewall-

related products.

155

●
第
7
部

IP
V
ersio

n
6



W
I

D
E

P
R

O
J

E
C

T
2

0
0

0
a

n
n

u
a

l
r

e
p

o
r

t
●第 7部 IP Version6

TCP relay

TCP relay systems have been used in firewall-

related products. These products are designed to

achieve the follwing goals: (1) disallow forward-

ing of IP packets across a system, and (2) al-

low TCP,UDP traffic to go through the system

indirectly. For example, consider a network con-

structed like the following diagram. “TCP relay

system” in the diagram does not forward IP packet

across the inner network to the outer network, vice

versa. It only relays TCP traffic on a specific port,

from the inner network to the outer network, vice

versa. (Note: The diagram has only two subnets,

one for inner and one for outer. Actually both

sides can be more complex, and there can be as

many subnets and routers as you wish)

When the initiating host (whose IP address is A)

tries to make a TCP connection to the destination

host (X), TCP packets are routed toward the TCP

relay system based on routing decision. The TCP

relay system receives and accepts the packets, even

though the TCP relay system does not own the

destination IP address (X). The TCP relay sys-

tem pretends to having IP address X, and estab-

lishes TCP connection with the initiating host as

X. The TCP relay system then makes a another

TCP connection from Y to X, and relays traffic

from A to X, and the other way around.

Thus, two TCP connections are established in

the picture: from A to B (as X), and from Y to

X, like below:

TCP/IPv4: the initiating host (A)

--> the TCP relay system (as X)

address on IPv4 header: A -> X

TCP/IPv4: the TCP relay system (Y)

--> the destination host (X)

address on IPv4 header: Y -> X

The TCP relay system needs to capture some of

TCP packets that is not destined to its address.

The way to do it is implementation dependent and

outside the scope of this memo.

UDP relay

If you can recognize UDP inbound and out-

bound traffic pair in some way, UDP relay can

be implemented in similar manner as TCP relay.

An implementation can recognize UDP traffic pair

like NAT systems does, by recording address/port

pairs onto an table and managing table entries

with timeouts.

16.3 IPv6-to-IPv4 transport relay translator

We propose a transport relay translator for

IPv6-to-IPv4 protocol translation, TRT. In the

following description, TRT for TCP is described.

TRT for UDP can be implemented in similar man-

ner.

For address mapping, we reserve an IPv6 pre-

fix referred to by C6::/64. C6::/64 should be a

part of IPv6 unicast address space assigned to the

site. Routing information must be configured so

that packets to C6::/64 are routed toward the TRT

system. The following diagram shows the network

configuration. The subnet marked as “dummy

prefix” does not actually exist. Also, now we as-

sume that the initiating host to be IPv6-only, and

the destination host to be IPv4-only.

When the initiating host (whose IPv6 address

is A6) wishes to make a connection to the desti-

nation host (whose IPv4 address is X4), it needs

to make an TCP/IPv6 connection toward C6::X4.

For example, if C4::/64 equals to fec0:0:0:1::/64,

and X4 equals to 10.1.1.1, the destination address

156



W I D E P R O J E C T

7

to be used is fec0:0:0:1::10.1.1.1. The packet is

routed toward the TRT system, and is captured by

it. The TRT system accepts the TCP/IPv6 con-

nection between A6 and C6::X4, and communicate

with the initiating host, using TCP/IPv6. Then,

the TRT system investigates the lowermost 32bit

of the destination address (IPv6 address C6::X4)

to get the real IPv4 destination (IPv4 address X4).

It makes an TCP/IPv4 connection from Y4 to X4,

and forward traffic across the two TCP connec-

tions.

There are two TCP connections. One is

TCP/IPv6 and another is TCP/IPv4, in the pic-

ture: from A6 to B6 (as C6::X4), and Y4 to X4,

like below:

TCP/IPv6: the initiating host (A6)

--> the TRT system (as C6::X4)

address on IPv6 header: A6 -> C6::X4

TCP/IPv4: the TRT system (Y4)

--> the destination host (X4)

address on IPv4 header: Y4 -> X4

16.4 Address mapping

As seen in the previous section, an initiating

host must use a special form of IPv6 address to

connect to an IPv4 destination host. The

special form can be resolved from a hostname

by static address mapping table on the initiating

host (like /etc/hosts in UNIX), special DNS server

implementation, or modified DNS resolver imple-

mentation on initiating host.

16.5 Notes to implementers

TRT for UDP must take care of path MTU is-

sues on the UDP/IPv6 side. This is implemen-

tation dependent and outside of the scope of this

memo. A simple solution would be to always frag-

ment packets from the TRT system to UDP/IPv6

side to IPv6 minimum MTU (1280 octets), to

eliminate the need for path MTU discovery.

Though the TRT system only relays TCP,UDP

traffic, it needs to check ICMPv6 packets destined

to C6::X4 as well, so that it can recognize path

MTU discovery messsages and other notifications

between A6 and C6::X4.

When forwarding TCP traffic, a TRT system

needs to handle urgent data [129] carefully.

To relay NAT-unfriendly protocols [68] a TRT

system may need to modify data content.

Scalability issues must carefully be considered

when you deploy TRT systems to a large IPv6

site. Scalability parameters would be (1) num-

ber of connections the operating system kernel can

accept, (2) number of connections a userland pro-

cess can forward (equals to number of filehandles

per process), and (3) number of transport relaying

processes on a TRT system. Design decision must

be made to use proper number of userland pro-

cesses to support proper number of connections.

To make TRT for TCP more scalable in a large

site, it is possible to have multiple TRT systems

in a site. This can be done by taking the follow-

ing steps: (1) configure multiple TRT systems, (2)

configure different dummy prefix to them, (3) and

let the initiating host pick a dummy prefix ran-

domly for load-balancing. (3) can be implemented

as follows; If you install special DNS server to the

site, you may (3a) configure DNS servers differ-

ently to return different dummy prefixes and tell

initiating hosts of different DNS servers. Or you

can (3b) let DNS server pick a dummy prefix ran-

domly for load-balancing. The load- balancing is

possible because you will not be changing destina-

tion address (hence the TRT system), once a TCP

connection is established.

For address mapping, the authors recommend

use of a special DNS server for large-scale instal-

lation, and static mapping for small-scale instal-

lation. It is not always possible to have special

resolver on the initiating host, and assuming it

would cause deployment problems.

16.6 Security considerations

Malicious party may try to use TRT systems

for anonymizing the source IP address of traffic

to IPv4 destinations. TRT systems should imple-

ment some sorts of access control to avoid such

improper usage.

157

●
第
7
部

IP
V
ersio

n
6



W
I

D
E

P
R

O
J

E
C

T
2

0
0

0
a

n
n

u
a

l
r

e
p

o
r

t
●第 7部 IP Version6

A careless TRT implementation may be subject

to buffer overflow attack, but this kind of issue is

implementation dependent and outside the scope

of this memo.

A transport relay system intercepts TCP con-

nection between two nodes. This may not be a le-

gitimate behavior for an IP node. The draft does

not try to claim it to be legitimate.

158




