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第 1章 WWWAワーキンググループ

WWWA (World-Wide Web Architecture) ワー

キンググループは、WWW システムのプロトコル

自体の改良や、キャッシュ以外のシステムを含めて、

WWWアーキテクチャ全体を見直すことを目標とし

た研究グループである。

WWWが普及する過程においては、インターネッ

トにおけるWWW トラフィックの軽減技術として

WWWキャッシュシステムが有効であると考えられ、

大規模な分散WWW キャッシュシステムの構築が

試みられてきた。WIDEプロジェクトでも、WIDE

CacheBoneという大規模分散WWWキャッシュシ

ステムの構築と運用をW4C (WIDE WWW Cache)

ワーキンググループで行なってきた。しかし、既存

のWWWキャッシュシステムでは、WWWにおけ

るアクセスやコンテンツの特性からキャッシュによ

る大きなトラフィックの削減は期待できないことが

W4Cワーキンググループによって報告されている。

また、インターネットのユーザ層が一般に広がるに従

い、トラフィックの削減以外の要求がWWWキャッ

シュシステムに求められるようになっている。

WWWAワーキンググループはこのような要求に

答えるために、WWWキャッシュシステムを含めた

WWWアーキテクチャ全体を対象にして研究活動を

行なっている。

今回の報告書では、以下の内容に関する報告を行

なう。

• キャッシュオブジェクトの複製技術を用いた、
分散WWWキャッシュシステムのためのロバ

ストなハッシュルーティングアルゴリズム

• パケットモニタによるWWWサーバの状態の

解析、推定

第 2章 Duplicated Hash Routing

2.1 Duplicated Hash Routing: A Robust Algo-

rithm for a Distributed WWW Cache Sys-

tem

Hash routing is an algorithm for a distributed

WWW caching system that achieves a high hit

rate by preventing overlaps of objects between

caches. However, one of the drawbacks of hash

routing is its lack of robustness against failure.

Because WWW becomes a vital service on the

Internet, the capabilities of fault tolerance of sys-

tems that provide the WWW service come to be

important. In this paper, we propose a dupli-

cated hash routing algorithm, an extension of hash

routing. Our algorithm introduces minimum re-

dundancy to keep system performance when some

caching nodes are crashed. In addition, we option-

ally allow each node to cache objects requested

by its local clients (local caching), which may

waste cache capacity of the system but it can cut

down the network traffic between caching nodes.

We evaluate various aspects of the system per-

formance such as hit rates, error rates and net-

work traffic by simulations and compare them

with those of other algorithms. The results show

that our algorithm achieves both high fault toler-

ance and high performance with low system over-

head.

2.2 Introduction

Increase of network traffic on the Internet

caused by WWW makes its service delay fairly

large. Many researchers have been working on

this problem and various solutions are proposed.

Caching is one of the solutions that reduce the net-

work traffic on the Internet and its service delay.

In these days, distributedWWW caching systems,

where caching nodes share their cached objects

with each other, are being employed among many

sites. The distributed WWW caching systems are
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put into two categories from a viewpoint of a role

of each caching node: loosely coupled systems and

tightly coupled systems.

In a loosely coupled system, each caching node

caches all the objects requested by its local clients.

A local client of a caching node means a client that

sends requests directly to the node. If the caching

node which receives a request does not have the

requested object in its local cache, it tries to re-

trieve the object from the other nodes by some

method. Internet cache protocol (ICP) [146] is

one of the protocols used in this kind of systems.

In a tightly coupled system, each caching node

is assigned a portion of name space of WWW ob-

jects and caches only the objects whose names

are in the assigned space. All the requests for

a WWW object are forwarded to a single caching

node and cached there. Because these systems

optimize their whole storage capacity, they can

achieve higher hit rates than loosely coupled sys-

tems. There are several systems put into this cat-

egory and some of them are implemented [147,

148, 149, 150].

There are two major disadvantages in a tightly

coupled system. One is its poor scalability. A

tightly coupled system cannot be employed in an

environment with low bandwidth between caching

nodes. Advances in backbone network technol-

ogy will make it possible to operate the tightly

coupled caching system over a distributed area in

the near future. However, even if such a desir-

able situation comes true, a kind of localization

of communication, which reduces network traffic

between caching nodes, is desirable.

The other disadvantage is its lack of robustness.

Because each caching node has to handle requests

from all clients in the system, failure of a single

node inevitably has influence on all the clients.

This drawback can be removed by introducing re-

dundancy to the system.

In this paper, we propose a duplicated hash rout-

ing algorithm, an extension to the simple hash

routing [150]. Hash routing is a simple and ef-

ficient algorithm for tightly coupled caching sys-

tems. By introducing cache redundancy to the

system, our algorithm can keep its high hit rate

even when some caching nodes are in failure. The

redundancy of our system is moderate, i.e., de-

crease of the hit rate and increase of the network

traffic between caching nodes is small. In addi-

tion, we optionally enable local caching at each

caching node to cut down much of the network

traffic.

Section 2.3describes ICP and hash routing, typ-

ical algorithms for distributed WWW caching sys-

tems. In section 2.4, we introduce and give de-

tails of the duplicated hash routing algorithm. We

evaluate its performance and compare it with that

of other algorithms. We describe simulation mod-

els of these systems in section 2.5, and examine

the relationship among various parameters such

as the number of caching nodes, the disk size of

each node, frequency of duplication, network traf-

fic, and hit rates in section 2.6.Finally, we con-

clude this paper with a summary of our results

and a discussion of some open issues.

2.3 Background

A variety of technologies for distributed caching

systems are being developed. We describe some

of them within the scope of our study.

2.3.1 ICP

ICP is implemented in many caching systems as

a protocol based on queries to neighbor caching

nodes. When a caching node receives a request

from its local client and does not have the re-

quested object in its local cache, the caching node

sends ICP queries to all the neighbor proxies. If

one of the neighbors has the object, the caching

node that sent the ICP query retrieves the ob-

ject from the neighbor node and put it in its local

cache. After the object is copied in the local cache,

requests for the object from any local clients of the

caching node can make local hits.

One of the major drawbacks of ICP is its high

communication cost of queries [150, 151, 152, 153].
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図 2.1 Simple hash routing (left: cache miss, right: cache hit)

Caching systems such as Crisp cache [154] and

Summary cache [155] avoid queries per local cache

miss, i.e., they exchange a list of cached objects

periodically in a highly efficient way. However, de-

spite its lack of scalability, ICP is still used widely.

We adopt ICP as a reference algorithm to compare

with other ones.

2.3.2 Hash Routing

Hash routing requires neither a query to a

neighbor nor an exchange of an object list. Fig-

ure 2.1 depicts a basic model of hash routing,

called a simple hash routing. A client sends an

HTTP request to its local caching node. All the

caching nodes in a system share a single hash

function and are assigned a part of name space

of WWW objects without overlaps by the hash

function. Thus the local caching node calculates

a hash value of the request and forwards it to some

node according to the hash value. After the object

is cached at one of the caching nodes, requests for

the object from any clients in the system make

cache hits.

Because an object is cached at only one caching

node, hash routing can achieve a higher hit rate.

On the other hand, it has two drawbacks as we

mentioned in section 2.2.One is its large network

traffic between caching nodes. Because a client

cannot retrieve objects directly from the cache of

its local caching node in most cases, a large num-

ber of object transmissions between caching nodes

occur in the hash routing system. Therefore hash

routing requires the situations that all the caching

nodes are within short distance and connected to

each other by networks with high bandwidth. The

other drawback is its lack of fault tolerance. Be-

cause an object is only cached at one node, all

clients can suffer from errors or cache misses even

when just a single caching node in the system gets

failure.

2.3.3 Robust Hash Routing

There are many possible points of failure in a

distributed WWW caching system. In our study,

we focus on failures at caching nodes. We do

not discuss other points such as networks or ori-

gin servers because a failure on a network can be

counted in a failure of a caching node and a fail-

ure at an origin server has little impact on the

total availability of service compared with that at

a proxy server.

When a failure occurs at a caching node of a

hash routing system, rebuilding its hash function

is a straightforward way to recover. However,

there is a weak point that the fraction of objects

no longer in correct caches can be large [156]. This

leads to performance degradation of the whole sys-

tem during and after failure of a caching node. To

overcome such weakness, robust hashing was pro-

posed [150] and actually implemented [149].

With robust hashing, the URL of a requested

object and the name of each sibling cache together

are used to generate a hash value or score; the

object is then mapped to the sibling cache with

the highest score. This technique keeps all cached

objects valid. However, a certain degree of per-
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図 2.2 Duplicated hash routing (left: cache miss, center: cache hit and copy, right: failure and cache hit at the

secondary cache)

formance degradation is still inevitable.

2.3.4 Proxy Auto Configuration

As a client-side technology to evade failure of a

local caching node, the Proxy Auto Configuration

(PAC) technology is widely used. When PAC is

used, a client receives a list of proxy servers. If

the local proxy is in failure, the client can bypass

it and forward its requests to one of other caching

proxies according to the proxy list. In our study,

we assume all clients use the PAC technology.

In case of hash routing, PAC is not sufficient.

For example, if a remote caching node gets fail-

ure, the objects cached at the node cannot be re-

trieved from the cache. All the requests for such

objects result in error or cache miss depending on

system implementation. In our study, we assume

that such errors are avoided by forwarding the re-

quests to the origin servers directly or to some

other caching nodes.

2.4 Duplicated Hash Routing

The goal of hash routing is to optimize system

cache capacity. The key idea in our algorithm,

duplicated hash routing, is introducing minimum

redundancy to keep its high hit rate when some

of the caching nodes are in failure. Our algorithm

differs from robust hash routing, mentioned in sec-

tion 2.3.3, in the point that our algorithm pre-

pares for system failure and keeps its performance

during the failure period.

As illustrated in figure 2.2, an object is cached

at a single node in the same way as the simple

hash routing algorithm. We call this caching node

a primary cache of this object. When a following

access to the object makes a cache hit at the pri-

mary cache, it duplicates the object to another

cache, which we call a secondary cache of the ob-

ject. If the primary cache gets failure, the request

for the object is forwarded to the secondary cache

and makes a cache hit.

In our system, all the caching nodes share two

hash functions. One is used to decide the primary

cache of an object and the other is to decide the

secondary cache of the object. By this cache re-

dundancy, we can achieve robustness against fail-

ure.

Besides object duplication, we optionally enable

local caching at each node. Local caching can re-

duce network traffic between caching nodes. Here,

we discuss hit duplication and local caching in our

system.

Hit Duplication With duplicated hash rout-

ing, each caching node copies its cached object

to the secondary node. If the object duplica-

tion is performed frequently, the traffic between

caching nodes gets increased significantly. More-

over, these duplications introduce some overlap

between caches; this algorithm wastes system

cache capacity. Because these copies are only for

fault tolerance capability, we have to minimize the

frequency of copying.

At this point, we can consider two types of so-

lutions. One is avoiding the object duplication

when the object is not expired at the secondary

node. With this technique, we can reduce the net-

work traffic caused by the object copies. However,

to know whether the secondary cache has the ob-
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ject, some kind of querying protocol such as ICP is

required, which makes the system design and im-

plementation complicated. The other solution is

taking long intervals between object duplications.

If this technique can suppress the network traf-

fic to a permissible degree without performance

degradation, the querying protocol is not neces-

sary.

Local Caching The hash routing algorithms

remove overlaps of caches among nodes and op-

timize the system cache capacity. In compensa-

tion for its high hit rate, network traffic among

caching nodes is fairly large. Though we assume

the situation that the caching nodes in the system

are connected with each other by high speed net-

works, traffic localization in the system still has

great significance for system performance such as

reduction of service delay. For that reason, we

can optionally allow each caching node to cache

objects requested by its local clients. Of course,

local caching reduces the system cache capacity.

If the hit rate decreases substantially when local

caching is enabled, the benefit of hash routing is

spoiled. Therefore, we have to examine whether

the system has adequate cache capacity before en-

abling local caching.

2.5 Simulation Model

We evaluate the duplicated hash routing algo-

rithm by simulation. In this section, we describe

some topics on the simulation to be considered.

2.5.1 Workload

Web accesses received at a caching proxy show

distribution in conformity with Zipf’s law1 [158,

157]. More precisely, the number of requests f for

an object is expressed as f = C/rk, where r is

the access ranking of the object and C and k are

constants depending on access characteristics of

1 This distribution is called a “Zipf-like” distribution

in [157], because it does not follow strictly the original

Zipf’s law.

the user community. However, Zipf’s law cannot

explain the characteristics of whole web accesses

from various communities.

To simulate a distributed WWW caching sys-

tem, we put a strong assumption that the total set

of requests from all clients in the system follows

Zipf’s law. Although this assumption satisfies the

requirement that the distribution of accesses re-

ceived at each caching node conforms Zipf’s law,

the sufficient condition of this proposition is not

proved yet. Even if this assumption is somewhat

different from actual situations, we can get some

hints on the transition of hit rates or network traf-

fic according to the variation of several parameters

of the system.

In Zipf’s law, k means the scatter of requests

from clients and C means the order of the total

number of requests. In our simulation, we set the

parameter of k at 0.66, which is reported in [159].

From the parameter k and the total number of

requests, we can calculate the parameter C. In

our simulation, we set C at 50,000 and generate

about 35,000,000 requests.

2.5.2 Object Size

The distribution of WWW object size conforms

log-normal distribution [160]. Its probability dis-

tribution function is expressed as follows.

f(x) =
1√
2πσx

exp

(
−(log x− µ)2

2σ2

)

We set the parameters of µ and σ at 7.3 and 1.7

respectively observed in [159] and get the proba-

bility distribution of object size. Using this dis-

tribution, we choose the size of each object within

the limit of 100MB. Too large objects give not a

small influence to cache efficiency especially when

its capacity is relatively small, even though ap-

pearance of such large objects is quite rare. More-

over, download of such a huge object through

WWW is unrealistic.

2.5.3 Replacement Algorithms

Dozens of object replacement algorithms for a
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cache are proposed, and developing better algo-

rithms is still one of hot topics in the field of

WWW caching (for example, see [161, 162, 163] ).

However, a better cache replacement algorithm is

not the main motivation of this study, we adopt a

classical LRU algorithm in our simulation, which

is proved to achieve a moderate hit rate compared

with other algorithms.

2.5.4 Failure Rates

System failure can be characterized by two fac-

tors, mean time between failures (MTBF) and

mean time to recover (MTTR). In our simula-

tion, we take the number of requests received by a

caching node in substitution for passage of time at

the caching node. In other words, our simulation

is request-driven.

We fix the parameters of C and k to produce

about 35,000,000 requests in total and assume

that 2% of these requests meet failure at their

local caching nodes2. We set the mean number

of request receptions between failure at 100,000;

each caching node recovers after a certain number

of request receptions, which is determined ran-

domly from 0 to 200,000. Under this situation,

the occurrence probability of failure at each re-

quest is set at 0.02/100,000 (2× 10−7).

To discuss robustness against system failure, it

is important to use realistic values of parameters.

In our simulation model, at a caching node which

receives 100,000 requests per day from its clients,

MTBF is 50 days and MTTR is one day (and this

node shall be repaired within two days from an oc-

currence of failure). We consider this situation is

typical of many organizations where caching prox-

ies are operated.

2.5.5 Copy Intervals

With the duplicated hash routing algorithm, a

cache hit may cause an object copy. Each caching

node has its threshold of a copy interval. When a

2 However, these requests are forwarded to some other

nodes and do not result in errors by the PAC technol-

ogy.

cache hit occurs, the node checks the time when it

copied the object for the last time. If a longer pe-

riod than the threshold passes after the last copy,

the node tries to copy the object to the secondary

node. A system with capability of querying an

object to the secondary node checks whether the

object is cached at the secondary node; it can du-

plicate the object only when the object is already

expired.

In our simulation, the threshold of an inter-

val between object duplications is decided by the

number of requests the caching node receives from

its local client. By default, object duplication can

occur after d/s receptions of accesses, where d and

s denote the cache size of the node and the mean

size of objects, respectively. Here, we introduce

a copy factor, a factor of the threshold, and ex-

amined the cases that the copy factor is 0.0, 0.25,

0.5, 1.0, 2.0, 4.0, and 8.0. The copy factor of 0.0

means that caching node checks and/or duplicates

the object every time a request makes a cache hit.

The copy factor of 8.0 means that a caching node

duplicates an object after 8.0d/s receptions of re-

quests.

2.5.6 The Number of Nodes and Cache Size

In a simulation of a WWW caching system,

it is important to choose appropriate disk size

against the number of requests processed by a

caching node. In our study, the system receives

about 35,000,000 requests as a whole. This means

that total of about 300GB of data is retrieved by

clients. We set the total system cache capacity at

32GB, 64GB, 96GB, 128GB, and 160GB. We can

examine both situations with poor and rich cache

capacity.

Cache capacity of each node is decided by this

total capacity. For example, the capacity of a sin-

gle cache is set at 4GB when the system capacity

is 64GB and the number of nodes in the system

is 16.
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図 2.3 Hit rates of robust hash routing (HR), dupli-

cated hash routing (DHR), duplicated hash

routing with local caching (DHR with LC), in-

ternet cache protocol (ICP), and stand alone

caching (SA) with 64GB of cache capacity

2.6 Results

We simulated caching systems, stand alone

caching, ICP-based caching, robust hash routing

and our duplicated hash routing. We discuss the

performance of these algorithms in terms of hit

rates, cache capacity, and network traffic. Robust

hash routing and duplicated hash routing are ex-

amined in both cases with local caching enabled

and disabled. In case of ICP and stand alone

caching, local caching is always enabled.

2.6.1 Hit Rates

Figure 2.3 depicts total hit rates with the robust

hash routing algorithm, the duplicated hash rout-

ing algorithm, the internet cache protocol, and

the stand alone caching. As this chart shows, dis-

tributed caching systems can achieve higher hit

rates.

The algorithm that gets the highest hit rate is

robust hash routing. Because overlaps of caches

between nodes are removed with robust hash rout-

ing, the hit rate is kept high even if the scale of

the system grows. Duplicated hash routing also

attains a hit rate as high as robust hash routing

does. This implies that the decrease of system

cache capacity caused by cache duplications has

almost no influence on the hit rate of the system.
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図 2.4 Hit rates on failure (with 64GB of cache ca-

pacity)
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図 2.5 Hit rate on failure and copy factor of dupli-

cated hash routing (n is the number of nodes

and cache capacity is 64GB)

However, when we enable local caching, the hit

rate decreases about 10%. This means that we

cannot ignore the decrease of system cache capac-

ity caused by local caching. Here, we have to re-

call the suitability of system cache capacity to the

number of requests. The high hit rate of the hash

routing algorithm indicates that this capacity is

large enough to produce ideal results. We will

discuss the cache capacity later in section 2.6.2.

Contrary to our expectation, the difference in

hit rates of ICP and hash routing is small. How-

ever, this high remote hit rate is obtained at the

expense of large traffic between caching nodes, as

we will mention later in section 2.6.3.

In case of failure at a caching node, both ro-

bust hash routing and duplicated hash routing

can continue their services to their clients. The
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objects which are to be cached at the failed node

are cached at some other nodes decided by their

scores or the secondary hash function. In contrast

to robust hash routing, duplicated hash routing

can prepare cached objects at secondary nodes for

system failure. In other words, as for failure, ro-

bust hash routing always makes a cold start. We

extract requests for objects which are to be cached

at failed nodes and examine the hit rates of them.

As figure 2.4 shows, our algorithm keeps high hit

rate even in case of failure. When local caching

is enabled, however, the hit rate degrades consid-

erably. Local caching decreases system cache ca-

pacity and that gives more influence on these hit

rates than on the total hit rates. We will discuss

this topic later in section 2.6.2.

We also examine a relationship between hit

rates in case of failure and copy factors, and the

result is depicted in figure 2.5. Though we ex-

pected that the hit rate decreased rapidly as we

increased the copy factor, this result indicates that

our expectation is fortunately not true. The im-

pact of the copy factor on the hit rate is turned

to be fairly small.

2.6.2 Cache Capacity

In the previous section, we mentioned that local

caching wasted the cache capacity of the system.

This means that we can keep the high hit rate if we

add extra cache capacity to the system. We sim-

ulated the systems with robust hash routing and

duplicated hash routing in case with and without

local caching.

Figure 2.6 shows the hit rates of two algorithms

without local caching. From this result, we can see

that 64GB of system cache capacity is enough to

this request sequence. When we set the capacity

at 32GB, the hit rate gets evidently lower than

the others. However, the hit rates with more than

64GB of cache capacity are almost the same.

Figure 2.7 represent the cases we enable local

caching. With low cache capacity, local caching

makes hit rates low. However, with larger cache

capacity, we can prevent the decline of hit rates
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図 2.6 Hit rates with local caching disabled (upper:

robust hash routing, lower: duplicated hash

routing)

caused by local caching. From the result, we can

see that almost the same hit rate as the case with-

out local caching can be achieved with 128GB of

cache capacity in both hash routing systems and

duplicated hash routing systems.

Figure 2.8 shows a correlation between the hit

rate in case of failure and the total cache capacity

using our algorithm with local caching enabled.

As we mentioned in section 2.6.1, this hit rate

degrades when local caching is enabled. However,

this graph indicates that a fairly high hit rate can

be achieved with larger cache capacity.

2.6.3 Network Traffic

Figure 2.9 shows the network traffic between

caching nodes. In this result, we count neither the

local traffic between clients and their local caching

nodes nor the traffic between caching nodes and

origin servers, because we focus on intra-system

traffic here.
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表 2.1 Summary of hash routing, duplicated hash routing, duplicated hash routing with local caching, ICP,

and stand alone caching

total hit rate hit rate on fail-

ure

network traffic be-

tween nodes

scalability

HR high medium medium medium

DHR high high medium – large

(improvable)

medium

DHR with LC medium (im-

provable)

medium (im-

provable)

medium (improv-

able)

high

ICP high high depends on the

number of nodes

low

SA low nil nil –
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図 2.7 Hit rates with local caching enabled (upper:

robust hash routing, lower: duplicated hash

routing)

When the number of caching nodes is small,

ICP requires relatively small network traffic be-

tween nodes. However, ICP cannot adapt to a

large scale system, because it uses broadcast to

send queries to all nodes. Even if each query is

small in its size, the total network traffic between

caching nodes gets explosively large as the system
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図 2.8 Hit rates of duplicated hash routing on failure

with local caching
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図 2.9 Network traffic between nodes with hash rout-

ing, duplicated hash routing, duplicated hash

routing with local caching, and ICP (with

64GB of cache capacity)

scale grows up. On the other hand, the increase

rates of network traffic with robust hash routing

and duplicated hash routing are fairly low. The
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図 2.10 Network traffic and copy factor with dupli-

cated hash routing (n is the number of nodes

and cache capacity is 64GB)

difference in the traffic between these two algo-

rithms is caused by object duplication that is a

feature of duplicated hash routing. To make the

network traffic low, it is the best way to trans-

mit an object to the secondary node only when

the object is not cached by the node. However, it

requires a querying protocol and takes some com-

munication cost between caching nodes. Instead

of this querying technique, we take an approach

of employing a large copy factor. In our simu-

lation, we set the copy factor of duplicated hash

routing at 4.0 and it makes the network traffic

between caching nodes fairly low. We will revisit

this topic later.

When we enable local caching in a duplicated

hash routing system, the increase rate of network

traffic gets slightly increased. However, compared

with the duplicated hash routing algorithm with-

out local caching, it significantly reduces the net-

work traffic especially in case with a small number

of caching nodes.

As we mentioned before, we can decrease the

traffic between nodes by increasing the copy fac-

tor. Figure 2.10 shows the relation between

the copy factor and the network traffic between

caching nodes. This graph shows two patterns:

one is a case that each node always duplicates

an object without a query after an interval based

on its copy factor and the other is a case with a

query. In the former case, unnecessary object du-

plications raise the network traffic when the copy

factor is small. In the latter case, we put the

communication cost of sending a query to the sec-

ondary node is the same as that of an ICP query.

From the results, the difference between the two

patterns is neglectable if we set the copy factor

larger than 4.0.

Considering the fact that the copy factor does

not affect on the hit rate so much, as we mentioned

in section 2.6.1, it is unnecessary to send queries to

secondary caches if we set the copy factor at more

than 4.0. If we avoid such queries, we can keep

the system design simple and its implementation

easy.

2.6.4 Summary

We summarize the features such as total hit

rates, hit rates on failure, network traffic between

caching nodes, and system scalability of each algo-

rithm in table 2.1. Our extension to hash routing

gains durability against system failure at a rela-

tively small expense of increased network traffic.

Moreover, this expense can be reduced by local

caching and a large copy factor. ICP also achieves

both high durability and high hit rates. However,

its scalability is highly restricted by its large in-

crease rate of network traffic.

2.7 Conclusion and Open Issues

WWW becomes an indispensable service on the

Internet and the fault tolerance of systems which

provide the WWW service has great importance.

We have proposed the duplicated hash routing al-

gorithm for a distributed WWW caching system,

which has robustness against failure. Our simula-

tion results suggest that our algorithm can achieve

a high hit rate even when some caching nodes are

in failure. In addition, optionally we can enable

local caching at both robust hash routing system

and our duplicated hash routing system. If we

enable local caching, the traffic between caching

nodes is reduced, though the cache capacity of the

system gets lower. Therefore, the total hit rate
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also gets lower when local caching is enabled. This

phenomenon can be prevented as we add extra

cache capacity to the system. If we increase the

cache capacity, we can both keep the high hit rate

achieved by robust hash routing and reduce net-

work traffic between caching nodes substantially.

In duplicated hash routing system, intervals be-

tween object duplications have great importance.

With a relatively long copy interval, we can omit

the object querying mechanism from the system

and design the system to duplicate objects always

after the interval because the increase of network

traffic is small enough.

We can point out lack of discussion about ser-

vice delay in our study. Because one of the major

goals of WWW caching system is reducing the

service delay experienced by end users, an anal-

ysis of service delay is important. However, we

can only mention here that our extension to the

hash routing algorithm adds no extra delay. Ob-

ject duplications are not necessarily synchronized

strictly with requests from clients and can be pri-

oritized low in the system. More precise analysis

of service delay is our future work.

第 3章 An Analysis of WWW Server Sta-

tus by Packet Monitoring

A management of WWW server is still rely-

ing on the expertise and heuristic of administra-

tors, because the comprehensive understandings

of server behavior are missing. The administra-

tors should maintain the WWW server with good

states that they should investigate the WWW

server in real time. Therefore, it is exactly desir-

able to provide a measurement application that

enables the WWW server administrators to mon-

itor WWW servers in the actual operational en-

vironment. We developed a measurement appli-

cation called ENMA (Enhanced Network Mea-

surement Agent) which is specially designed for

WWW server state analysis. Furthermore, we ap-

plied this application to the large scale WWW

server operation to show its implementation and

advantages. In this paper, we analyze the WWW

server states based on precise monitoring of per-

formance indices of WWW system to help the

server management.

3.1 Introduction

The world enters the era of global communica-

tions. The Internet is rapidly growing and has be-

come a significant fundamental infrastructure in

this era. Especially, World-Wide Web (WWW)

is the most important service on the Internet.

Therefore, providing WWW services without any

troubles becomes a more important issue.

To achieve WWW server operation with less

server suspending period, there are many tools

and systems proposed so far. However, they still

require expertise and heuristic to the administra-

tors, because these tools do not provide the com-

prehensive view of the WWW server behavior.

To ease the server administrators, we developed

a set of applications to estimate the WWW server

performance in real time, called ENMA [164]

that stands for Enhanced Network Measurement

Agent. The ENMA can measure several perfor-

mance indices of the WWW server such as a pa-

rameter of TCP connections and the traffic vol-

ume of the WWW server processes, and provide

the more precise view of the server behavior in

graphical forms.

Therefore, this application can be used to know

if the WWW server is overloaded by the excessive

requests. The ENMA also can give hints on which

software module related to the WWW server sys-

tem is not implemented correctly.

We propose the state transition model of the

WWW server behavior. With this model, we de-

velop a new measurement method of server per-

formance, and we give some hints to the server

administrators, which enable them to measure the

WWW server easily.
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3.2 Server Performance Measurement Method

In this section, we describe some performance

measurement method of the WWW server, and

show advantage or drawback of these methods.

3.2.1 Log Analysis

The most popular way of performance analysis

of the WWW server is an analysis of the WWW

server log files to know the total byte transferred

from the server to clients, the number of HTTP re-

quests, and request rates to the server. However,

this analysis cannot provide any hints on server

behavior such as response time, data transfer time

and the number of concurrent connections.

3.2.2 Kernel Level Monitoring

Web Monitor [165] is one example of kernel

level monitoring. Kernel level monitoring reveals

a number of performance indices related to the

WWW server operation such as the total num-

ber of network I/Os in a system call, signals and

file system operations, etc. However, this method

obviously requires modifications of the kernel to

know some performance indices. The modifica-

tion of the kernel is a sophisticated task in gen-

eral so that this method can be considered dif-

ficult for ordinary administrators. Furthermore,

commercial OS and server systems with special

hardware cannot be measured in this method, be-

cause there is no way to make modification on the

kernel. This method also may cause serious per-

formance degradation in the server.

3.2.3 Benchmarks

SPECweb99 [166], WebStone [167] and

httperf [168] are famous benchmark software for

the WWW server. The benchmark can evaluate

their performance and give many hints for admin-

istrators to set up its operational environment.

However, it is quite hard to apply this benchmark

software to the WWW server in the actual oper-

ation, because it is hard to suspend the WWW

service only for the benchmarking. Therefore,

the benchmark does not help administrators to

improve the WWW service in operation.

3.2.4 Network Monitoring

We can know the server performance to ob-

serve packets on the network segment attached the

WWW server. The network monitoring does not

cause any influences on the WWW server and its

internals, however, it is required to have software

to make analysis on the monitored packet. It is

popular to use tcpdump [10] to monitor the pack-

ets. Since this program is a general-purpose mon-

itoring tool, we have to develop a set of programs

to process the output generated by the tcpdump

and to know the HTTP protocol interactions and

packet payloads.

MRTG [169] is also a traffic monitoring tool us-

ing SNMP applied to routers and switches. The

administrator can measure the traffic using the

MRTG on the network attached to the WWW

server. MRTG is suitable for the long-term mon-

itoring such as 1 week or month long, because of

its observation granularity.

3.2.5 Our Strategy

ENMA is an application for the WWW server

performance measurement using packet monitor-

ing developed by our research group.

To ease the server administrator, ENMA can

provide performance indices to help them to man-

age the server: the number of the currently pro-

cessing connections, the number of processed con-

nections per second, the volume of traffic and so

on. ENMA can also supply a function to describe

these performance indices in real time with a vi-

sualization module.

It is desirable that our measurement is moni-

tored for the short-term. Therefore, since the pro-

cessing in the server is saturated, we must report

the server administrator to its trouble.

ENMA can monitor the special HTTP packets

precisely to observe the server behavior. For ex-

ample, ENMA enables the server administrator to

understand the response time in the server con-
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図 3.1 The model of server internal processing flow

cerning the HTTP request of clients. ENMA also

can set up an easy configuration of observation

granularity to observe the server behavior for the

short-term. Furthermore, to mention the server

administrator on performance indices, ENMA can

measure many performance indices: the volume

of traffic, the number of the currently processing

connections, the number of processed connections

per second and the number of arrival connections

per second.

3.3 Performance Indices in the Server System

In this section, we discuss the performance in-

dices to decide the server state.

Section 3.3.1 describes the processing model of

TCP connection at HTTP communication in the

server. Section 3.3.2 discusses about performance

indices based on outside the server.

3.3.1 Connection Processing Flow in the

Server

Figure 3.1 shows general flows to process a TCP

connection in the server. Step one is to allocate

a socket for establishing TCP connection when

SYN packet arrives from clients. Step two is server

program processing the established connection for

receiving the HTTP request and transmitting the

HTTP response to clients.

Consequently, the number of sockets and the

number of server processes are important perfor-

mance indices in the server.

3.3.2 Measurement Outside the Server

In case of measurement from outside the server,

several performance indices ware required: con-

nection processing rate, connection arrival rate

and the number of the currently processing con-

nections. We present these performance indices

as follows.

• Connection processed rate

The connection processed rate is the number

of processed connections per unit time in the

server.

• Connection arrival rate

The connection arrival rate is the number

of arriving connections per unit time from

clients.

• The number of the currently processing con-

nections

The number of the currently processing con-

nections means a set of TCP connections

handled concurrently in the WWW server.

Comparison between the connection process-

ing rate and the connection arrival rate reveals

whether the server is enough to provide WWW

service or not. Measuring the number of the

currently processing connections is enabling the

server administrator to know the processing num-

ber of TCP connections in the server at that time.

3.4 Experiments to Define the Server State

In this section, we present experiment to de-

cide the server behavior based on performance

indices through the benchmark. In this experi-

ment, to get rid of an overhead by disk I/O, we

set up that client generate HTTP request by fixed

URL. We observed the difference of server perfor-

mance when server system is saturated with sev-

eral server configurations using the above perfor-

mance indices. The object of these experiments is

what make up that server becomes saturate state

and measures server state at that time.
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Client dummynet
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図 3.2 Experiment Network Architecture

表 3.1 Configuration Parameter

Part
No. of

sockets

No. of processes

(start/min/max)

request

rate

1 1 1064 5/10/150 80

2 16424 5/10/150 400

2 1 16424 5/10/150 700

2 16424 5/100/150 700

3 1 16424 5/100/256 1000

2 16424 128/100/256 1000

3 16424 256/100/384 1000

3.4.1 Environment

Figure 3.2 shows experiment environment. Five

hosts are used: server, client, monitor, dum-

mynet [170] and visualization.

The client generates HTTP requests to the

server and the monitor observes the packet on the

network to the server. The dummynet inserts the

delay of 100 milliseconds to emulate WAN envi-

ronment. This order of delay is usual in many

actual network. Server, client, monitor, visual-

ization use FreeBSD 3.2 and dummynet use pi-

coBSD. A server program is apache [171] 1.3.9 and

a client program is httperf 0.6.

3.4.2 Results

Table 3.1 shows the configuration parameter of

kernel and service program.

In this experiment 1, we notice the maximum

number of sockets in the server sytem. The ex-

periment 2 is modified to the maximum and min-

imum number of server processes.

In the experiment , we discuss a trade-off both

the number pf server processes and CPU idel cy-

cles.

3.4.3 Experiment 1

This experiment consists of two parts. The part

1 is between 16:34 and 16:44 and uses GENERIC

kernel parameter of FreeBSD and default config-

図 3.3 Shortage of the number of sockets

uration file of apache. The HTTP request rate is

80 request per second in table 3.1. The part 2

is between 16:53 and 16:55 and uses as increase

the number of sockets from 1064 to 16424 in the

kernel and default configuration file of apache.

The HTTP request rate is 400 request per sec-

ond. In the part 1, the connection arrival rate be-

comes stable, however, the connection processed

rate and the currently processing connections be-

come unstable in figure 3.3. However, in the part

2, the connection arrival rate, the connection pro-

cessed rate and the currently processing connec-

tions are stable.

As the result of two parts, the number of sockets

in the kernel is important performance index in
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図 3.4 Shortage of the number of server processes

the server system.

3.4.4 Experiment 2

The experiment 2 also consists of two parts.

The part 1 is between 18:33 and 18:55 and uses

16424 sockets, 150 maximum server processes and

700 request per second. The part 2 is between

19:00 and 19:23 and used 100 minimum server pro-

cesses in table 3.1.

We consider saturated state in the server around

18:40 and 18:45 shown in the part 1 in figure 3.4,

because the connection processed rate appear at

spike form at that time. The currently process-

ing connections are rapidly increased at saturate

state, because the server program executes fork
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図 3.5 Percentage of CPU idle time

system calls at 18:40 and 18:45 so that its execu-

tion cause page faults in the server system. In the

part 2, the minimum number of server processes

of apache is modified. Both the connection arrival

rate and the connection processed rate is stable.

As shown in figure 3.5, the CPU has idle cycles,

because this system may be able to process more

HTTP requests. Then, the administrators should

take care of the parameter of the maximum and

minimum number of server processes.

3.4.5 Experiment 3

This experiment also consists of three parts.

The part 1 is between 20:32 and 20:48 and uses

16424 sockets, 256 maximum server processes, 100

minimum server processes and 1000 request per

second in table 3.1. The part 2 is between 20:52

and 21:07 and uses 16424 sockets, 128 start server

processes and 1000 request per second. The part

3 is between 21:15 and 21:21 and uses 16424 sock-

ets, 384 maximum server processes, 100 minimum

server processes, 256 start server processes and

1000 request per second.

In figure 3.6, the saturated state in the server

occurs from 20:32 to 20:33, from 20:37 to 20:40

and from 20:44 to 20:47 in part 1. The reason of

this saturated state is insufficiency of CPU cycles

shown figure 3.7.

The saturate state also appears in the work-

load 2. Therefore, if the request rate increases

frequently, modifying the parameters in the server
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図 3.6 Shortage of system ability

system does not help so much. Then, administra-

tors must think to replace a new system.

On the other hand, The number of concurrent

connections rapidly increases at 21:21 in figure 3.6

in workload 3, because system panic cause.

3.4.6 Consideration

As above results, in case of operating the apache

server system, we can show the following recom-

mendation.

• The server state transfers stable to unstable

modifying the number of sockets as shown

in experiment 1.

• The server state also transfers stable to un-

stable modifying the number of maximum
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図 3.7 Percentage of CPU idle time

and minimum server processes as shown in

experiment 2.

• Between to maintain maximum performance

of the server and to be the stable server

system is trade-off. It is between the num-

ber of server processes and processing ability

of CPU when the request rate increases as

shown in experiment 3.

Consequently, we conclude the important per-

formance indices to estimate the server state: the

maximum number of sockets, the number of server

processes, processing ability of CPU.

3.5 The Definition of Server State and Manage-

ment Method

In this section, we describe management

method corresponding to the server state based

on performance indices. We can divide the server

state in three states.

1. Running State

We define the running state as that the server

responds to the HTTP request from clients

without some troubles. The server adminis-

trator should maintain the WWW server in

this state.

2. Saturate State

The saturate state is defined as that some

TCP connections are not processed correctly

in the server. A server administrator should

avoid for the server to remain in this state.
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図 3.8 State Transition in the Server

We can divide the saturate state more pre-

cisely in three states based on the previous

experiments as follows

• Shortage of sockets

• Shortage of server processes

• Shortage of system ability

3. Stop State

The stop state is defined as the server system

halting. We can divide the stop state in two

state as follows.

• Restart

• Crash

Figure 3.8 shows state transition model based

on the experiments.

The experiment 1 reveals the state transition

(1) from the running state to the shortage of

sockets in figure 3.8. If the WWW server en-

ters the shortage of sockets, the server adminis-

trator should increase maximum sockets in the

server system. For example, we suggest the ad-

ministrator to increase maxuser that is one of the

parameter in general BSD Unix system.

The experiment 2 shows the state transition (2)

from the running state to the shortage of server

process in figure 3.8. If the WWW server enters

the shortage of server process, the server admin-

istrator should increase the maximum and min-

imum number of server processes. For example,

we recommend the administrator to increaseMax-

Client andMaxSpareServers parameters in apache

server system.

WWW
Server Collector

Graph GeneratorENMA1

Reporter

Switching Hub

Control Line

Up Link

Port Mirror

ENMA2

Reporter

Hub

図 3.9 Network Architecture of Target System

The experiment 3 shows the state transition (3)

from the running state to the shortage of system

ability in figure 3.8. If the WWW server enters

the shortage of system ability, the server admin-

istrator should find out a bottleneck in the server

system. If the processing ability of CPU is not

sufficient, it should be exchanged to a faster one.

If the amount of memory is not enough, the server

administrator should install more memory.

The state transition (4) from the running, the

shortage of sockets, the shortage of process and

the shortage of system ability to the restart is

performed by the server administrator. After the

restart, the server state returns the running state.

In these experiments, we can see the state tran-

sition (5) only once from the running to the crash.

Another state transitions may exist, because find-

ing these state transition is future work.

3.6 An Example of Observation in an Actual

Server

To estimate the WWW server performance, we

applied the ENMA to observe the WWW server in

actual operation. The target WWW server is the

server of ”The 81th National High-school Baseball

Games on the Internet”.

3.6.1 Environment

Figure 3.9 shows the network architecture of the

target system. The application and the system

specification of the target system are shown in

table 3.2. The ENMA can measure the perfor-

mance indices in the server through port mirroring

of the attached server. We provided two ENMA
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表 3.2 The System Environment of Observation

WWW

server

ENMA

host 1

ENMA

host 2

OS SunOS 5.6 SunOS 5.6 FreeBSD 3.2

CPU

Ultra

SPARC II

300MHz (x2)

Ultra

SPARC II

300MHz (x2)

PentiumII

400MHz

Memory 512MBytes 256MBytes 128MBytes

Appli-

cation

Apache

1.3.6

ENMA

(19990823)

ENMA

(19990823)

図 3.10 Restart the WWW server

hosts per one server to avoid an obstruction in the

ENMA host by some trouble. Each ENMA hosts

send the real time data to analysis host using con-

trol line and the analysis host generates graphs of

current states in the WWW server.

3.6.2 Case Studies

3.6.3 Restart the WWW Server

Figure 3.10 illustrates graphs when the server

program restarts.

The number of the currently processing con-

nections appears increasing rapidly and the num-

ber of processed connections is reduced to zero at

10:40 August 17 in figure 3.10.

We consider that the server administrator

図 3.11 Server System Saturated

restarted the server by some reasons at that time.

3.6.4 Server System Saturated

Figure 3.11 shows the state of the server system

saturated.

The number of the currently processing connec-

tions appears increasing rapidly and the number

of processed connections is reduced at 17:02 Au-

gust 18 in figure 3.11.

When the number of connection timeouts ob-

served by ENMA raises rapidly, the number of

the currently processing connections decreases at

17:15. At 17:02, the server administrator judged

the shortage of the amount of system memory by

system messages and restart the system at 17:45

after increasing the swap space.

In this saturate state, the administrator de-

cided the server system to be the shortage of sys-

tem ability through the system messages. How-

ever, they should investigate the parameter in the

server system. Therefore, the number of maxi-

mum server process was 1536 and the percentage

of the CPU idle time was between 40 and 50. In

this condition, we judge the reason of the shortage
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of the amount of memory through the too many

number of maximum process.

Therefore, the server administrator must set up

the maximum and minimum number of server pro-

cesses corresponding to system ability.

3.7 Future Works

3.7.1 The Alert Method to the Administrator

We need to design the method to alert an ad-

ministrator when the troubles are occurring in the

WWW server. For example, ENMA mails the

troubles to the administrator when the WWW

server is in the saturate state.

3.7.2 Building a system that gets server inter-

nal state

To knowing the server internal state, we should

get the socket activity ratio, the number of server

processes, consumption of memory, percentage of

CPU idle time and so on. In our experiments,

we use vmstat program. However, this program

is not enough to get these performance indices.

Therefore, we must implement a new system to

be able to obtain these performance indices.

3.8 Conclusion

World-Wide Web (WWW) is the most impor-

tant service in the Internet. To maintain the

WWW service, it is quite important to run the

server with less suspended period of its service.

However, server management method still require

expertise and heuristic to the administrators, be-

cause measurement tools do not provide the com-

prehensive view of the WWW server behavior. In

order to ease the administrators, we developed an

application, called ENMA, to monitor several per-

formance indices of the WWW server in the ac-

tual operation in real time. We derive the server

state through our laboratory work using ENMA.

We also analyze the server status based on some

performance indices.
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