
第 5部

経路制御技術

101





第 1章

ART Working Group

This chapter reports Radish, a simple routing table for CIDR, as a result of ART working

group.

1.1 Introduction

The Internet has originally provided class structure for the network layer address which

consisted of a network part and a host part [?]. With given an IP address, it was possible

to determine which bits are corresponding to the network part. The routing was mainly

performed by the network part of the destination address.

The class based address structure, however, limited the diversity of network size into

three categories; huge, large, and small. In the 1980s, it was considered that the IP address

space was large enough and less valuable resource than memory for routing tables in the

routers. In order to prevent routing table growth, typical organizations were recommended

to obtain a class B number even if multiple class C numbers were appropriate. This

address assignment policy resulted in the development of a subnet architecture that made

it possible to scale down the inadequate network size [?]. It should be noted that non-

continuous subnet-masks were permitted so that bridged networks could be migrated into

router-connected networks without address reassignment.

As the Internet has grown, three scale problems have become serious in the early 1990s;

exhaustion of class B space, explosion of routing table size, and exhaustion of the entire IP

address space. In order to slow down the assignment of class B numbers, the assignment

of multiple class C numbers to an organization was started. Since it was hard for new

organizations to obtain plentiful address space, e�ciency of address utilization became

signi�cant. So, many router vendors tend to implement variable length subnet-masks

(VLSM) [?]. In this environment, non-continuous subnet-masks are no longer practical. As

the assignment of multiple class C numbers, of course, accelerated the growth of routing

table, CIDR [?] technology was evolved to aggregate a contiguous address block to a single

route. In order to support CIDR and VLSM, routers must provide e�cient best-match

103



104 1996 年度 WIDE 報告書

lookup into a large routing table.

The 4.3BSD Reno release introduced the reduced radix tree for routing table instead of

the hash-based scheme of previous releases [?]. The reduced radix tree is general enough to

support variable length addresses such as OSI NSAP addresses and is powerful enough to

perform best-match lookup even if non-continuous subnet-masks were allowed. The lookup

and maintenance algorithms are, however, complicated due to support of non-continuous

subnet-masks and it is not 
exible to modify the source codes. It is necessary to redesign

the reduced radix tree structure to make it simple so that we can enhance or make use of

a routing table for advanced research.

WIDE project, a research oriented Internet service provider in Japan, has operated its

network whose routers are dedicate boxes as well as Sun workstations running SunOS 4.x

whose network code is considered to be based on 4.3BSD Tahoe release. So it was essential

for the WIDE Internet to support classless routing on SunOS 4.x operating system. For

this reason, the authors designed and implemented a simple tree structured routing table

that accomplishes best-match lookup. Throughout this report, we refer to the routing

table in the 4.3BSD Reno release as Radix due to its �lename of source code whereas

we call our scheme Radish after its simplicity. Both Radix and Radish are variants of

TRIE(reTRIEval) [?] and Keith Sklower stated that Radix was a variant of PATRICIA

(Practical Algorithm To Retrieve Information Code In Alphanumeric) [?] but such a

classi�cation is not essential in this report. Radish is much simpler than Radix and 1.2

times faster thanks to lookup strategies.

Section 1.2 reviews how Radix carries out best-match lookup and shows how its operation

for tree management is complex in order to support non-continuous subnet-masks. Radish

is explained in section 1.3 from basic concepts to those more advanced. This section also

contains evaluation of several lookup strategies comparing with Radix. We state current

implementation status in section 1.4 and give a conclusion in the last.

Throughout this report, we describe a route in (address, mask) notation as well as address

pre�x notation in address/masklen. For example, (133.5.16.0, 0xffffff00) is equivalent

to 133.5.16.0/24.

1.2 Radix

This section �rst reviews Radix described in [?]. Three examples are given for compre-

hension of its lookup algorithm. Then we insist that both the lookup algorithm and the

tree maintenance procedure of Radix is complicated.



第 5部 経路制御技術 105

表 1.1: Example of routing entries

route mask

0.0.0.0 0x00000000

133.4.0.0 0xffff0000

133.5.0.0 0xffff0000

133.5.16.0 0xffffff00

133.5.23.0 0xffffff00

133.5.0.0

ffff0000

133.5.23.0

ffffff00

133.5.16.0

ffffff00

0

1

end
0.0.0.0

00000000

end

133.4.0.0

ffff0000

19

21

15

00000000

ffff0000

図 1.1: Radix routing table corresponding to Table 1

1.2.1 Radix tree structure

Best-match lookup is to �nd a matched entry in which the number of bit-set in the

mask is the maximum. For example, while a destination of 133.5.16.2 matches (0.0.0.0,

0x00000000), (133.0.0.0, 0xff000000), (133.5.0.0, 0xffff0000), and (133.5.16.0, 0xffffff00),

a route (133.5.16.0, 0xffffff00) is selected since it is most speci�c.

Radix performs best-match lookup on a binary radix tree with one way branching re-

moved. A Radix tree is built with nodes and leaves. Each node represents a bit position to

test and some of the nodes are associated with masks. A leaf has a route with correspond-

ing masks. Let's consider an example of routing entries in Table 1.1. A Radix routing table

corresponding to these entries is illustrated in Figure 1.1. Note that the tree structure is

independent on the order of entry insertion.



106 1996 年度 WIDE 報告書

表 1.2: Reference table for decimal-binary notation

decimal binary

133.5.16.2 10000101.00000101.00010000.00000010

133.5.80.9 10000101.00000101.01010000.00001001

169.11.16.4 10101001.00001011.00010000.00000100

1.2.2 Radix lookup algorithm

The algorithm of best-match lookup for Radix is a repetition of downward search and

backtrack. The �rst downward search starts from the root of Radix tree and seeks a leaf

testing a bit on each node. If the corresponding bit of the given destination key is o�, go

left, otherwise trace right. When we reach a leaf, the destination key is compared with

the route in the leaf. If they are equal, the leaf is the answer. This is, so called, a host

match. If not, the destination key is logically ANDed with one of masks in the leaf, then

compared with the route. If the masked key is equal to the route, the leaf is the answer.

This is a network match or a subnet match. If no matches are found on the leaf, backtrack

begins. Backtracking is to trace parent nodes until we �nd a node that contains one or more

masks. If a node with mask(s) is found, the node becomes a new root. The destination key

is logically ANDed with one of the masks and downward search start to get a leaf. This

downward search is repeated for each mask on the subtree unless the answer is found. If all

downward searches fail to discover the matched route, backtrack starts again. In this way,

Radix's best-match repeats downward search and backtrack until we get to the answer.

1.2.3 Examples of Radix lookup

Let's consider three examples for best-match lookup into the routing table in Figure 1.1.

The �rst example is a subnet match with a destination key of 133.5.16.2(binary-dotted

notation is contained in Table 1.2 for convenience). To begin with, lookup starts from the

root node. Bit 0 is on, so the right link is chosen as the next path. Bit 1 is o�, so the

left child node is selected. Bit 15 is on, bit 19 is on, bit 21 is o�, we thus arrive at the

leaf labeled 133.5.16.0. The destination key is compared to the route but does not match.

Then the destination key is logically ANDed with the mask 0xffffff00 and since the

result 133.5.16.0 equals the route, this entry is the answer.

The second example of a destination key is 133.5.80.9 which performs network match.

Bit 0 is on, bit 1 is o�, bit 15 is on, bit 19 is on, bit 21 is o�, so we reach the leaf labeled

133.5.16.0. Because both the destination key and logically ANDed key with the mask



第 5部 経路制御技術 107

0xffffff00 are not equal to the route, backtrack occurs. Go up to the node 21 but it does

not have masks, so go up again. Since the node 19 has a mask 0xffff0000, the destination

key is logically ANDed with the mask then 133.5.0.0 is chosen as a new destination key.

Considering the node 19 is a new root, downward search starts again. This time bit 19 is

o�, so we get to the leaf labeled 133.5.0.0. The new destination key is equal to the route,

this entry is thus considered as a match.

The last example is a default match where a given destination key is 169.11.16.4. The

�rst downward search reaches the leaf labeled 133.5.16.0 but neither the destination key

and masked key is equal to the route. So, backtrack starts to get the node 19 as a new

node. Given a new destination key of 169.11.0.0, the downward search leads to the leaf

labeled 133.5.0.0. Since the new destination is not equal to the route, backtrack starts

again. We go up to the node 15 but it does not have masks. We then go up to the node

0, and �nd a mask 0x00000000, so it is chosen as a root for the third downward search.

The original destination key is logically ANDed with the mask to get a new destination

key 0.0.0.0. On the third downward search, bit 0 is o�, so we reach the leaf whose route is

0.0.0.0. Since the new destination key is equal to the route, this entry is the answer.

1.2.4 Di�culty of Radix

It should be noted that Radix can handle non-continuous subnet-masks since nodes are

able to hold them. An interesting question is here; What kind of nodes hold mask(s)? The

answer is that a node contains meaningful mask(s) found in its subtree only if the node is

the highest possible ancestor for the mask(s). Look at Figure 1.2 which has two examples

(A) and (B). The top rectangle is a destination key and the second one is a mask whereas

the last is a logically masked key. Arrows indicate a test bit in a given node. If the test

bit is on bit-set of the mask, logical AND operation makes no change for the bit(A). So,

this node need not hold this mask since it never changes the direction of downward search.

In contrast, if the test bit is on bit-unset of the mask, mask operation may cause a change

for the bit test(B). So, this node contains this mask. If all masks are continuous, we can

describe this rule simply. That is, a node has mask(s) whose length is equal or shorter than

its test bit only if the node is the highest possible ancestor for the mask(s). In Figure 1.2,

the node 19 holds mask 0xffff0000 since its length 16 is shorter than 19. And because

nodes whose test bit is 16, 17, or 18 don't exist, the node 19 is the highest possible ancestor.

In addition to the complex search characterized by multiple backtracks, procedures of

maintenance for Radix tree are also complicated. Let's consider the insertion of a (route,

mask) pair into Radix. 4.4BSD Lite manages a Radix tree for masks as well as that of each

protocol families. We �rst insert the given mask to the mask tree to get the bit position B

which makes a branch for the mask in the mask tree. Next we add the route to the Radix



108 1996 年度 WIDE 報告書

(A) (B)

a test bit a test bit

destination

mask

masked destination

図 1.2: What kind of nodes have masks?

tree concerted with its protocol family. If the route already exists in a leaf, we sort the

mask list in the leaf with the new mask in speci�c order. Otherwise, a new leaf and a glue

node is prepared for the (route, mask) pair. Lastly we search the highest possible ancestor

from the leaf according to B. Then mask list is sorted with the new mask in speci�c order

on the found node. In this way, Radix becomes much too complicated in order to support

non-continuous masks that have been obsoleted in the classless routing environment.

1.3 Radish

In order to implement classless routing in the WIDE backbone, the authors designed a

new scheme of best-match lookup called Radish. Radish design goals are as follows:

� simple

� only support continuous masks

� faster lookup than Radix

We evaluate our scheme focusing on lookup speed since insertion or deletion of entries

happens far less frequently than lookups.

Section 1.3.1 explains a basic algorithm to �nd the longest initial substring. Section 1.3.2

and 1.3.3 describes the tree structure of Radish and its original lookup strategy with some

examples. Tree construction of Radish is contained in Section 1.3.4. Then we evaluate our

four lookup strategies in Section 1.3.5, 1.3.6, 1.3.7, and 1.3.8.

1.3.1 The longest initial substring

Eliminating non-continuous mask, we should rede�ne the best-match lookup. Here

we introduce a new term | \initial substring", which refers to a substring for a given



第 5部 経路制御技術 109

a s

b

o

r

t

l

e

e

c

h

o

i

t

p

i

r

e

l

o

y

e

d

u

b

m

i

t

j

e

c

t

m

*

*

*

*

* * *

*

*

*

図 1.3: Longest initial substring search

string which starts from the beginning of the string. For example, \employ" is an ini-

tial substring of \employee" while \ploy" is not. In the environment where all masks are

continuous, the best-match means to �nd the longest binary initial substring. For ex-

ample, given a destination of 133.5.16.2, all entries of (0.0.0.0, 0x00000000), (133.0.0.0,

0xff000000), (133.5.0.0, 0xffff0000), and (133.5.16.0, 0xffffff00) are initial substrings

and (133.5.16.0, 0xffffff00) is the longest one.

Finding the longest alphabetical initial substring is accomplished by an alphabetical

radix tree. Figure 1.3 illustrates an example of alphabetical radix tree for entries fabort

able echo emit empire employ employed sub subject submitg. The asterisk mark means

that the node represents the end of a word. For example, \sub" is in the dictionary while

\subj" is not.

We start searching the longest initial substring from the root with a pointer which points

to a recent candidate. The pointer is null at the beginning. While vertexes exist for a given

search key, we trace the links downward checking whether or not the current vertex has

an entry. If an entry exists, the pointer is modi�ed to indicate the vertex. When the trace

breaks, the vertex indicated by the pointer is the answer.

1.3.2 Radish routing table

The Radish routing table is a binary radix tree to �nd the longest initial substring. To

save memory and to improve lookup performance, the binary tree is reduced. Any vertex

which is not associated with a route and does not have two children is removed from the

tree. Each vertex has (route, mask) pair. A vertex is marked if a route is associate with it.

A mask means which portion of route is valid and indicates a bit to test for branch. Figure



110 1996 年度 WIDE 報告書

133.5.16.0/21

0.0.0.0/0*

133.4.0.0/15

133.5.0.0/16*133.4.0.0/16*

133.5.16.0/24* 133.5.23.0/24*

図 1.4: Radish routing table corresponding to Table 1

1.4 is an example of Radish routing table corresponding to routes shown in Table 1.1. Note

that the tree structure is independent on the order of entry insertion.

The best-match lookup is carried out as a variant algorithm of the longest alphabetical

initial substring described in section 1.3.1. We start searching the longest route from

the root with an pointer. While vertexes exist for a given destination, we trace the link

downward. On each vertex, we make two tests. One is to see if we are on a initial

substring. Since Radish is a reduced tree, we may skip comparisons for bits in the gap

between the mask at the parent and the mask at the vertex. So just one comparison for

the bit (mask � 1) is not su�cient. The comparison should take into account at least all

bits between the mask at the parent and the mask at the vertex. This can be accomplished

by comparison of the whole route and the whole masked destination. If they are same, we

are on a initial substring, and if the vertex is marked, we move the pointer here. If they

are di�erent, we break the search, and the vertex indicated by the pointer is select as the

answer.

After the �rst test, we make the second test for the bit mask to determine which link

we should go down. If the bit is on, go right, otherwise, go left. When the vertex has no

child to visit, the answer is the vertex indicated by the pointer.

1.3.3 Examples of Radish lookup

Let's describe this lookup algorithm using the same examples in section 1.2. First con-

sider a destination of 133.5.16.2. We start lookup from the root whose route is 0.0.0.0 and

mask is 0x00000000. The destination is logically ANDed with the mask to get masked

value of 0.0.0.0. Since the root vertex associates with a route and the masked value equals

to the destination, the pointer is updated.

Then test bit 0 of the given destination and go right to a vertex labeled 133.4.0.0/15.

For this vertex, the masked value and its route are the same but not marked. So we do



第 5部 経路制御技術 111

not move the pointer and test bit 15. Likewise we trace right, left, left, then �nally arrive

the vertex labeled 133.5.16.0/24. During this trip, the pointer moves to 133.5.0.0/16 then

to 133.5.16.0/24. Because vertex 133.5.16.0/24 has no children, we stop searching and get

the answer 133.5.16.0/24.

The second example is 133.5.80.9. We trace right, right, left, arrive at a vertex labeled

133.5.16.0/21. During this trace, the pointer moves to 0.0.0.0/0 then to 133.5.0.0/16. On

the vertex of 133.5.16.0/21, the given destination is logically ANDed to get 133.5.80.0.

Because the masked value is di�erent from the destination associated with the vertex, we

stop the search and conclude that 133.5.0.0/16 indicated by the pointer is the result.

The last example of 169.11.16.4 is very simple. This destination matches the root then

go right. Then 169.11.16.4 is logically ANDed with 0xfe000000 to get 169.10.0.0 which

does not equal to 133.4.0.0. So the search ends and we get the answer 0.0.0.0/0.

1.3.4 Tree construction

Insertion of an entry of (address, mask) pair into the Radish tree is straightforward. For

a given entry, we trace down the tree checking whether new address matches a vertex and

seeing if the length of the new mask is longer than that of the mask at the vertex. These

two tests decide the position of where the entry is inserted. Roughly speaking, insertions

are categorized into three patterns, just marking a pre-exist vertex, inserting it as a leaf

vertex, inserting it with a glue vertex. We do not need to manage an extra radix tree for

masks nor �nd the highest possible ancestor.

Figure 1.5 illustrates examples of insertion for for three patterns. In the case that a

new entry is 133.5.16.0/21, the same vertex exists in Radish tree, so the vertex labeled

133.5.16.0/21 is just marked(A). For a new entry of 133.5.19.0/24, a glue entry labeled

133.5.16.0/22 is prepared and is inserted between 133.5.16.0/21 and 133.5.16.24. Due to

the bit 22, 133.5.19.0/24 becomes the right child of 133.5.16.0/22(B). A new entry of

133.4.1.0/24 is just inserted as the left children of the vertex labeled 133.4.0.0/16(C).

1.3.5 Lookup Strategies and Evaluation

In order to evaluate our lookup scheme, we used DEC HiNote-Ultra IBM-PC compatible

machine equipped with Intel 486/DX4-75 CPU running BSD/OS 2.0. The test program

is implemented as a user-level process rather than con�gured within the operating system

kernel.

In the evaluation, we con�gured with two kinds of routing tables and fed two types of

destination patterns for each strategy. Routing table \JP" is from a snap shot in July

1995 of a real routing table maintained in a router in the WIDE Internet, where oversea



112 1996 年度 WIDE 報告書

133.5.16.0/21

0.0.0.0/0*

133.4.0.0/15

133.5.0.0/16*133.4.0.0/16*

133.5.16.0/24*

133.5.23.0/24*

*(A)

133.5.16.0/22

133.5.19.0/24*
(B)

133.4.1.0/24*

(C)

図 1.5: Tree construction of Radish

destinations were represented by the default route. It has 2855 entries. On the other hand,

Routing table \FULL" is from a snap shot in June 1995 of a real default-free routing table

in the Internet. It has 28524 entries.

In order to provide practical evaluation, we recorded 40583 packets on a router in the

WIDE Internet, and then removed repeated destination since IP forwarding function of

4.4BSD Lite caches one routing entry. This results in a sequence of 32792 destinations

including 652 unique destinations. This sequence is labelled as \Measured". We also tried

a randomly generated destination sequence for each of Class A addresses, Class B addresses,

and Class C addresses whose length is totally 10000 and this is labelled as \Random". We

measured the average CPU time in micro seconds after 10000 trials and divided it by the

length of the sequence. In the following tables, the numbers shown are the average CPU

time in micro seconds for one lookup.

JP/Measured is really practical, so many destinations match leaves of the JP routing ta-

ble. Most destinations of the Random sequence tend to match with the default route in the

JP routing table and does not match any vertex on the FULL routing table. FULL/Random

emulates lookup patterns on a default free backbone since its tra�c is considered random.

1.3.6 Forward search

Since the Radish lookup algorithm is very simple and the number of link chases is less

than Radix, we expected the Radish lookup to be faster than Radix. Unfortunately, this

is not the case. Table 1.3 is the evaluation of this strategy.

For convenience, we call our original lookup strategy for Radish forward search(FS).

Table 1.3 indicates that the Radish forward search is about 1.7 times slower than Radix

concerned with \Measured" sequence.



第 5部 経路制御技術 113

表 1.3: Time required to lookup routing table for Radix and Radish. Unit is micro second.

Table JP JP FULL FULL

Sequence Measured Random Measured Random

Radix 13.06 18.42 12.60 8.454

Radish FS 22.29 6.318 22.24 8.657

表 1.4: Time required to Radish forward search by 4-byte word basis

Table JP JP FULL FULL

Sequence Measured Random Measured Random

Radish FS by word 9.827 3.098 10.07 4.207

The reason that Radish FS is not fast is due to the fact that address comparison is

a heavy operation. To support variable length addresses, Radix and Radish compare

the masked destination and a route in byte-by-byte basis. Radish FS makes a address

comparison on every vertex toward a leaf, while Radix procedure is mainly a chase of links

with some address comparison. It is true that Radish FS is fairly fast if address comparison

is performed in a single instruction. Table 1.4 shows the results of forward search whose

address comparison is performed by 4-byte word basis for IP addresses.

This result indicates that it is reasonable for IP oriented OS to implement Radish with

forward search on typical architecture machines whose natural computation unit is 4-byte

word.

1.3.7 Skipping forward search

FS always compares the masked destination and a route at vertexes on the search path.

If address comparison is a heavy job, it is not a good idea to compare address at vertexes

which does not associate with a real route. We can skip address comparisons for such

vertexes since they can not be candidates. Although this delays exit of search, total CPU

time for lookup becomes faster. We call this strategy skipping forward search(SFS). The

result of SFS with address comparisons in a byte-by-byte basis is shown in Table 1.5. SFS

provides almost the same performance as Radix.

Consider that the maximum depth of the \JP" routing table is 27. Most of the routes

are not aggregated and the default route is included. Therefore, the numbers of routes on

a search path is about 2, the root (default) and a leaf. SFS thus omits address comparisons



114 1996 年度 WIDE 報告書

表 1.5: Time required to skipping forward search

Table JP JP FULL FULL

Sequence Measured Random Measured Random

Radish SFS 13.65 5.306 12.89 6.868

表 1.6: Time required to skipping backward search

Table JP JP FULL FULL

Sequence Measured Random Measured Random

Radish SBS 10.81 6.516 10.14 7.701

25 times on a path to one of the deepest leaves. With \FULL" routing table, the maximum

depth is 23 and there are many aggregated routes. This yields that several real routes have

to be compared on a path. Even in this case, performance of SFS is almost the same as

one of Radix.

1.3.8 Skipping backward search

The next interesting strategy is called skipping backward search(SBS). In hosts or campus

routers, or even on some backbone routers, most lookups match leaves since most tra�c

is for local communication. An alternative strategy is to �nd a leaf vertex without any

address comparisons, and to then compare address at the leaf. Note that leaves always

have a real route. If the masked destination and the route is same, the leave is the match.

Otherwise, we trace back parent vertexes and performs address comparisons only on the

vertexes which associate with real routes.

Measured CPU time for SBS is shown in Table 1.6. SBS is about 1.3 times faster than

SFS with \Measured" sequence but about 1.2 times slower with \Random" sequence.

1.4 Implementation Status

We have already implemented Radish for SunOS 4.x kernel. Since Tahoe-based SunOS

4.x does not support variable length addresses and our main interest is the Internet, Radish

for SunOS 4.x (sometimes called Sun Classless) adopts skipping forward search with ad-

dress comparison by 4-byte word basis. Most workstations running SunOS 4.x on WIDE



第 5部 経路制御技術 115

backbone are utilizing the Radish routing table and they are running stable. Radish for

4.4BSD Lite has been also implemented in the kernel space. It is used for our IPv6 codes

and stalely running as 6bone routers.

1.5 Conclusion

In the days of classless routing, non-continuous subnet-mask bits that make Radix com-

plex are no longer practical. Eliminating the support of non-continuous subnet-mask, the

best-match lookup is equal to �nd the longest initial substring among all routing entries.

We designed and implemented a simple tree structured routing table, Radish, which is a

variant of TRIE. The maintenance procedure of Radish is straightforward. We proposed a

skipping forward search and a skipping backward search which is faster than Radix.



116 1996 年度 WIDE 報告書


