
51

第６部

特集6 高速PCルータ研究会

第６部　特集6 高速PCルータ研究会

浅井 大史

The High-Speed PC Router Research Group was initiated

on April, 2014. This research group aims to develop

a high-performance router using commercial off-the-

shelf hardware. The interests of this research group

span software implementation of high-performance

network functions including Operating Systems,

Network Algorithms, and FPGA implementations,

but the activities are not limited to these topics; e.g.,

storage system. Research group meetings are basically

held every month. Half of its active members are the

members of WIDE Project although it is not an official

activity of WIDE Project. One of the contributions of this

research group in 2015, which was delivered with the

strong collaboration of WIDE Project, is a fast IP routing

table lookup algorithm, named Poptrie. The paper on

Poptrie was presented in ACM SIGCOMM 2015 [36]. In

this report, we summarize the experiments of Poptrie

with the data collected in the network operated by WIDE

Project. Please refer to the original paper for the details

of Poptrie and the results of evaluation.

Poptrie is extended from a multiway trie, and it

compresses its data structure into a small memory

footprint (e.g., 2.4 MiB for a global tier-1’s full route)

in order to reduce CPU cache misses in the lookup

procedure. We have shown that Poptrie achieves

significantly good performance; it runs 4-578%

faster than the other state-of-the-art technologies,

and is advantageous for longer prefixes such as IGP

routes, which have been more challenging in terms of

Figure 1 A Visualized Data Structure of Radix Tree

52

performance. Poptrie relies on two key ideas to achieve

high lookup rate: 1) reducing the number of instructions

executed to search down a trie data structure by

reducing the lookup depth of a trie, and 2) increasing

CPU cache efficiency by compressing the data structure

within CPU cache size. To visually demonstrate these

two key ideas of Poptrie compared to the conventional

radix tree, these data structures for an IPv4 routing table

at an AS border router of WIDE Project are illustrated in

Figure 1 and 2.

In these figures, address space and prefix length are

represented in circumferential and radial directions,

respectively. As illustrated in these figures, the search

depth of the conventional radix tree is up to 32 (for

IPv4), and thus it requires a number of memory access

to search down the tree. Moreover, it has many pointers

to descendant nodes, and consequently, consumes a

large memory footprint. On contrary, the maximum

depth of Poptrie is reduced to 4. It also reduces

the number of pointers to achieve a small memory

footprint. Our extension to a multiway trie requires

to add a procedure to count the number of 0s or 1s

bits. Fortunately, an instruction of this procedure is

implemented in recent x86-64 processors. With other

performance optimization techniques described in Ref.

[36], Poptrie achieves very good performance.

We evaluated the performance of Poptrie on various

routing tables including future-envisioned synthetic

datasets as well as real Internet routing tables. One

important experiment to demonstrate the advantage

of Poptrie was conducted using the routing table

of a backbone router of WIDE Project and a traffic

trace captured at the transit link from the backbone

router (i.e., MAWI WG Traffic Archive [37]). Since the

performance of IP routing table lookup in software

is substantially affected by the traffic pattern, the

evaluation with a set of IP routing table and traffic trace

on a running environment is relatively important. Here,

we summarize the dataset we used for the experiment.

The routing table of the backbone router was obtained

at January 3, 2015, and contains 516,100 entries of

IPv4 prefixes, including IGP routes as well as BGP ones,

with 32 distinct next-hop addresses. We used a MAWI

traffic trace, captured on December 16, 2014, for 15

Figure 2 A Visualized Data Structure of Poptrie

53

minutes. An IP address that had probed the entire IPv4

address space with a huge amount of ICMP packets

were excluded (USC ANT project: http://www.isi.edu/

ant/address/). These packets accounted for 24.4% of

the total IPv4 packets in this trace. After the exclusion,

we obtained 97,126,495 IPv4 packets with 644,790

distinct destination IPv4 addresses, and used them for

the following experiment.

We conducted the performance evaluation on Poptrie

(with two parameters, Poptrie16 and Poptrie18) and three

state-of-the-art algorithms; Tree BitMap [38], SAIL [39],

and DXR (D16R and D18R) [40]. We measured the

average lookup rate on a computer with Intel® Core i7-

4770K CPU and four 8 GiB DDR3-1866 RAMs. Note that

we have used only one core from the CPU to evaluate

the serialized lookup performance. As a reference

experiment, we measured the average lookup rate for

random-destination traffic, which is more challenging

in terms of CPU cache pollution. Figure 3 presents the

average lookup rate for random-destination traffic on

the WIDE backbone core router. From this figure, we

confirm that Poptrie18 outperforms the other state-of-

the-art algorithms. The average lookup rate for MAWI

traffic trace, i.e., real traffic trace, on the WIDE backbone

core router is shown in Figure 4. We also confirm

that Poptrie18 performs the best among the evaluated

algorithms. By comparing Figure 3 and 4, the lookup

rates of Poptrie and DXR for MAWI traffic trace were

degraded compared to those for random-destination

trace. This is because a larger number of packets goes

to IGP routes that are generally more specific than BGP

routes in the MAWI traffic trace. 32.5% of the packets in

MAWI traffic trace on the WIDE backbone core router

have the search depth in the radix tree of more than

18, while for the whole IPv4 address space only 22.1%

have that of more than 18. These addresses cannot be

looked up in the first stage of the algorithm of Poptrie18

and D18R. Moreover, 21.8% of the packets of MAWI

traffic trace have the search depth in the radix tree

of more than 24, while only 1.66% of the whole IPv4

address space have that of more than 24. SAIL performs

better in the lookup rate for MAWI traffic trace than for

random-destination traffic. This is because SAIL could

take advantage of the CPU cache due to the locality of

the destination IP addresses in the real traffic trace, i.e.,

the sequences of packets with the identical destination

IP address.

In summary, we demonstrated that Poptrie outperformed

the other state-of-the-art algorithms. With real datasets

from WIDE Project, Poptrie is proven to be applicable to

the real Internet routing tables and traffic patterns.

Figure 3 The average lookup rate for random-

destination traffic on a WIDE backbone core router

Figure 4 The average lookup rate for MAWI traffic trace

on a WIDE backbone core router

 0

 50

 100

 150

 200

 250

 300

 350

Tree BitMap SAIL D16R Poptrie16 D18R Poptrie18

Lo
ok

up
 ra

te
 [M

lp
s]

Data Structure and Algorithm

 0

 50

 100

 150

 200

 250

 300

 350

Tree BitMap SAIL D16R Poptrie16 D18R Poptrie18

Lo
ok

up
 ra

te
 [M

lp
s]

Data Structure and Algorithm

http://www.isi.edu/ant/address/

