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The High-Speed PC Router Research Group was initiated 

on April, 2014. This research group aims to develop 

a high-performance router using commercial off-the-

shelf hardware. The interests of this research group 

span software implementation of high-performance 

network functions including Operating Systems, 

Network Algorithms, and FPGA implementations, 

but the activities are not limited to these topics; e.g., 

storage system. Research group meetings are basically 

held every month. Half of its active members are the 

members of WIDE Project although it is not an official 

activity of WIDE Project. One of the contributions of this 

research group in 2015, which was delivered with the 

strong collaboration of WIDE Project, is a fast IP routing 

table lookup algorithm, named Poptrie. The paper on 

Poptrie was presented in ACM SIGCOMM 2015 [36]. In 

this report, we summarize the experiments of Poptrie 

with the data collected in the network operated by WIDE 

Project. Please refer to the original paper for the details 

of Poptrie and the results of evaluation.

Poptrie is extended from a multiway trie, and it 

compresses its data structure into a small memory 

footprint (e.g., 2.4 MiB for a global tier-1’s full route) 

in order to reduce CPU cache misses in the lookup 

procedure. We have shown that Poptrie achieves 

significantly good performance; it runs 4-578% 

faster than the other state-of-the-art technologies, 

and is advantageous for longer prefixes such as IGP 

routes, which have been more challenging in terms of 

Figure 1  A Visualized Data Structure of Radix Tree
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performance. Poptrie relies on two key ideas to achieve 

high lookup rate: 1) reducing the number of instructions 

executed to search down a trie data structure by 

reducing the lookup depth of a trie, and 2) increasing 

CPU cache efficiency by compressing the data structure 

within CPU cache size. To visually demonstrate these 

two key ideas of Poptrie compared to the conventional 

radix tree, these data structures for an IPv4 routing table 

at an AS border router of WIDE Project are illustrated in 

Figure 1 and 2. 

In these figures, address space and prefix length are 

represented in circumferential and radial directions, 

respectively. As illustrated in these figures, the search 

depth of the conventional radix tree is up to 32 (for 

IPv4), and thus it requires a number of memory access 

to search down the tree. Moreover, it has many pointers 

to descendant nodes, and consequently, consumes a 

large memory footprint. On contrary, the maximum 

depth of Poptrie is reduced to 4. It also reduces 

the number of pointers to achieve a small memory 

footprint. Our extension to a multiway trie requires 

to add a procedure to count the number of 0s or 1s 

bits. Fortunately, an instruction of this procedure is 

implemented in recent x86-64 processors. With other 

performance optimization techniques described in Ref. 

[36], Poptrie achieves very good performance. 

We evaluated the performance of Poptrie on various 

routing tables including future-envisioned synthetic 

datasets as well as real Internet routing tables. One 

important experiment to demonstrate the advantage 

of Poptrie was conducted using the routing table 

of a backbone router of WIDE Project and a traffic 

trace captured at the transit link from the backbone 

router (i.e., MAWI WG Traffic Archive [37]). Since the 

performance of IP routing table lookup in software 

is substantially affected by the traffic pattern, the 

evaluation with a set of IP routing table and traffic trace 

on a running environment is relatively important. Here, 

we summarize the dataset we used for the experiment. 

The routing table of the backbone router was obtained 

at January 3, 2015, and contains 516,100 entries of 

IPv4 prefixes, including IGP routes as well as BGP ones, 

with 32 distinct next-hop addresses. We used a MAWI 

traffic trace, captured on December 16, 2014, for 15 

Figure 2  A Visualized Data Structure of Poptrie
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minutes. An IP address that had probed the entire IPv4 

address space with a huge amount of ICMP packets 

were excluded (USC ANT project: http://www.isi.edu/

ant/address/ ). These packets accounted for 24.4% of 

the total IPv4 packets in this trace. After the exclusion, 

we obtained 97,126,495 IPv4 packets with 644,790 

distinct destination IPv4 addresses, and used them for 

the following experiment.

We conducted the performance evaluation on Poptrie 

(with two parameters, Poptrie16 and Poptrie18) and three 

state-of-the-art algorithms; Tree BitMap [38], SAIL  [39], 

and DXR (D16R and D18R) [40]. We measured the 

average lookup rate on a computer with Intel® Core i7-

4770K CPU and four 8 GiB DDR3-1866 RAMs. Note that 

we have used only one core from the CPU to evaluate 

the serialized lookup performance. As a reference 

experiment, we measured the average lookup rate for 

random-destination traffic, which is more challenging 

in terms of CPU cache pollution. Figure 3 presents the 

average lookup rate for random-destination traffic on 

the WIDE backbone core router. From this figure, we 

confirm that Poptrie18 outperforms the other state-of-

the-art algorithms. The average lookup rate for MAWI 

traffic trace, i.e., real traffic trace, on the WIDE backbone 

core router is shown in Figure 4. We also confirm 

that Poptrie18 performs the best among the evaluated 

algorithms. By comparing Figure 3 and 4, the lookup 

rates of Poptrie and DXR for MAWI traffic trace were 

degraded compared to those for random-destination 

trace. This is because a larger number of packets goes 

to IGP routes that are generally more specific than BGP 

routes in the MAWI traffic trace. 32.5% of the packets in 

MAWI traffic trace on the WIDE backbone core router 

have the search depth in the radix tree of more than 

18, while for the whole IPv4 address space only 22.1% 

have that of more than 18. These addresses cannot be 

looked up in the first stage of the algorithm of Poptrie18 

and D18R. Moreover, 21.8% of the packets of MAWI 

traffic trace have the search depth in the radix tree 

of more than 24, while only 1.66% of the whole IPv4 

address space have that of more than 24. SAIL performs 

better in the lookup rate for MAWI traffic trace than for 

random-destination traffic. This is because SAIL could 

take advantage of the CPU cache due to the locality of 

the destination IP addresses in the real traffic trace, i.e., 

the sequences of packets with the identical destination 

IP address.

In summary, we demonstrated that Poptrie outperformed 

the other state-of-the-art algorithms. With real datasets 

from WIDE Project, Poptrie is proven to be applicable to 

the real Internet routing tables and traffic patterns.

Figure 3  The average lookup rate for random-

destination traffic  on a WIDE backbone core router

Figure 4  The average lookup rate for MAWI traffic trace 

on a WIDE backbone core router
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