WIDE 7 7 %7 F WG 2013 4E TG B 5

R B

HR T

2014 #£1 H22 H

1 Ui

WIDE 7 79 R 7 =% v 77 V—=71%, 5%H%D7 7
Y FEAROZEBF 2 #EHE T 2 72 12 2010 4F 1 HIC
WAL E NT, BEE D WIDE MR > GHEA X
BINEEFR 7 5 R 254 TH B WIDE 7 57
Ry 27 oM L, 2% i ZiT->C
W3,

2013 SEED ERTEENILL N DOME) TH 5,

o 77 FEREID R v b7 — 7 Biffi (55 2)
o (AT 4 27 A4 A=A L —PHl (353 E)
o RIGIHKET =¥ — MIB (5 4 ¥)

D, 22 oib@8 ol 2 HsE 4 %,

2 SDNICLBIFIVKRXRYKNDT—
7

2.1 BH=:

AL D FBIC X > TES Lz TaaS 7 77 F
i, BELL DY —E2DAf v 7 7L LTHENT
W3, TaaS 7 7 v Rk 3R LS - — &R
DRI & > T, B — "B ORERIEIER 1< Fik 7% >
7o L2L—75T, BlifEfkfi~> v (VM) 258 %y
F7 =2 ZDbDITHT 2ERBIML T 5%, ¥ —
E R, =L TEHEBTE R, 4T —]
PIRF~NDOERE R R T 2 2y P =7 BB TH
5, BHEDIT A v 7 FBRBICKE T 5%y P 7 =21
WTBERIFLIIHED . 206 2FEBT27-01%
DBBEDRGEAET 2, TIHIVokZy b 7T—2LZD
BERE I, PR MBI & 9, 6T s
BHDTHS, TDXIHIZ, TaaS 7 77 F oA

BTk, VM2 Tadl, 2—FOERIILGL Ty
FU— 7 ORER RIS 5, KA Y T — 7 T
Thob,

COREF Y FT—=27ICBWTERHL ZIINERS
T OLHBEEBIE S IEICH 2%, TaaS 7 77 FIZB W T VM
DECZ DMREE L — Y DSERIIG U CGEIR, AW
5 X90c, VM Z2INET 2 KExy b7 — 27 OB,
I—¥B VM ETHE S8 53— 2 DREPHER
ko TET 2, & ZE BT L TRBT 2
P—ERBDH, WD L= DA THH T 2 HEE M
DEVLDHRDONIZ X > T, 77t Al#HI5 Firewall
DORERIIZENT D, ZDLH T, 2—H T LICHERD
W20, IaaS 777 F EICB W THEIN LK
M2y b7 =271, BELEREZ AT 2 L FIRFIC,
=Y LIS NI Ry V=T THIZNEDDH
%, IETF DA —N—VL A ikl %y b7 —7
BT ANVO3I TV —F v NN —7TlE, ZD2—
PFTEDRy b7 = BEOEEE Ry =2
DEML L THIFTWV 2 (1],

A=Y LI SN Ry b7 — 7 2T
2546, 203y V=7 OMANMEEE RS, 12—
P EWCHERPERDE L2y b= %I TT R
HEEDB 1O 1 OFRET H2DIFHENTIE 2, 22
T, KRy P RENICHERE TS E, ZLT
=N LRERE R NI L ZICAHTEL L) %
TaaS HIEDRERSLERIC 2 5, DK) RERICH L
T, EFERY P =7 2ENCERET 270D 120D
W& Tdh 5. Software Defined Network 23573 H 41T
W%, SDN Tk, 2y F7—270KEZY 7+ 727
T, EBlTAZLIckoT, 2y by —27HAK
o7rars Iy RAREICT 5,

Z ZCTAIFETIE, 2D SDN ZHWwT, TaaS 7 7
7 FICBI B RE Ry b7 — 7 O AREERT % 1R
BB, K2y b7 — 7 IChBERBERE L TP L— T «

YT ORREE, VM & LTEIfET 2L —% Th 2 {KMH
V=L >THBT 2, £ HVERIEERY b7 —
7 DKL E o 7z L2 DIERE% OpenFlow 12 & - T
FHT 2, V7 b7 27k BHHA AT 2 R AL —
% & OpenFlow Z V5 2 L2k >T, laaS 7 77 F
BT BRERY b= OEOHENLEZIT),
oy =Y T EIRBLV— Y 2R T 2 2 LT, KA
v NI =7 Do EIT 5,

AT, ZORETFIEE 2013 £0 INTEROP
Tokyo (2 THMEZ 4172 ShowNet NICEBWTHEA L, #E
BOHBEHENER Y bV — 7 OWEEL{To 7,

2.2 HM®

AWFZETIE, TaaS 7 77 K ETOME Ry b7 —2
OWEEE ZOHBILZHINE T2, TaaS 7 77 FIgk
WThH, VMBEZEGE LY —EXAZ2EHT 270122y
Y= DRERBRETH D, FEFDRY FT—D
=TI U S v, AR T
., IAEBREIC B 2 %y b7 — 7 OFSRE LR . K
B —% & OpenFlow Z W THRLL, V77 =x
7 CHlET 23EHFEZRE T 5, ANEMFEICE -
T, 21 TR, 22— T L OfkL 2 i%ie & fefit
T2EMERy b7 —7 OMEO AL Z BT 5,

2.3 BEEMRE

laaS 7 77 FIZB T 22— Ry b7 =0 D
BT O VT, £ OFEPIRRBWNELH 5, Zi
FUUCITRIRT 23853038 D | TaaS 7 77 FIZE I 51K
Mty b7 =7 T 2 7 0 O TR TR % 1
ZELTw3,

Amazon DT 2% TaaS ¥ —E A TH % Amazon
EC2 T3, Amazon VPC[2] ZH\>T2L—473 Web A
VI—=T =AY POFGHRN—T 4 VT D
WERIT) T EWHEETH S, L L, Amazon VPC
ZRWTHRETE S Z LiX, Amazon VPC D#td 2
REDATH D, 22— HMICHEREZEBMLZZD§
5 LIETER, £/, VPCHIOHIFIC X >T, F]
T & 2 BERECRIBLCHIIR A E S %, CloudNaaS[3]
Tld, 2= L 2R Y > —I12H-> T, TaaS kI
I—FDXy 7= BREINDS, KT —DhiC
RSN 2y b7 — 7 OEEIFRRETH D |

TRV REETR I FVERY 7 A, QoS 7 EX3Fiid T
&5, ZOHAEY., Amazon VPC EAEkIC, RV —
TR CTE LR L > 2 — YD FIHT 5 2 L I3 TET,
=Y L S EEREZ BN 2 Z & XL W,
FloE SN AR Ry V= 2HET 0D
FIEBFET 5, (kD2 7 —2 Tl VLAN %
WT Ry b7 =7 &ENT 5 HENRINTH D B,
—7J7 T VLAN (Zi3., 2@ VLAN ODEZE2TDAA v
Fa, By INA Ry THRICHKELET 20835
32, BTV A Rk B VLAN FDHlR A
HHET S, 22T A=YV Ry b 7L —2%1IP Th
72 WtT 5 VXLAN[4] 2 ED R v 2 v I T H
%, —J7 OpenFlow v F7—27 LTy F7—7 D
SR b DL H D [5], s OEHiIE, L2 % b
7 — 7 %N T 2 EATTH D, TaaS 7 7 F
BT RREEY b7 —2 D7 A FOsrEICHH
WBEZENTES, LL, HLETEIT AV DI
HECTH B0, L3I EOERETH 5 NAT % Firewall,
VPN & Lo BRI O FIECHET 208055 5,

2.4 E&Et

IaaS 7 77 F LIciifE 2y b7 — 7 2R3 L, 22—
FICHRME T 2 72 O DBEBE T2 DU T 1T T,

o 1—HFADRy T — 7 EEREDIR{E
o L— VRIS N Z Yy 7 — 27 D5
o RAEZ Y 7 — 27D BEHEHES

2—¥HTaaS 7 77 F ETHA L 72\ WEERE 1254 I
b, ZZTEITHEHERY F7—2LLTZENSD
ez Rt cE 2 REZ AR L 2 UIs v, 2L
T, ZORMEEy b7 =23 bRy, 2L TCID%
L= T LIt I N TR IUEs v, 7z,
I—HFTEDRMF Y bV =27 % [aaS FHEEVFT
RET2DRBENTHR VD, Iz HECHET
LD B,

Z 2 TAIIZE TR, REL—% £ OpenFlow %\
TEATFEZRET 5, R1ICRET A RERy P 7 —
7 OWEE R, RELV—% L3, BEOZY b7 —
7 OWRe HHT 2L —FIDOS Y 7 b T %,
HV ETEET2 VM & LTHREELZbDTH B, 2
DRV —F a2 —F LIty 22T, 22—

FREL— 5 DR HC R 5 2 &3 TE 5,
X512, laaS 7 77 FicB 282y V7 —7 LT
WA Fy b7 —27 Z2FEBT 2 FiE L LT, OpenFlow
%, OpenFlow ZH\W3 Z LIk > T, YHXR
Ay F Eoffiry V=2 00HE. TRy T LI
L oMEOHILZEBIT 5,
@)Virtual Router

o VM

o VM
O—2 5
0—=2,

s Hyper Visor

~/ ~/ ~/

OpenFlow Switch

o

IaaS Cloud

1: WEET 2%y b7 — 7B

2.4.1 R¥EIL—%

AL — 2 1%, 5 F CHAKS LTEfEL Toir—
ZDOS%Z, VM & LCEIfESE2HDTH S, P
P—NOEELE, VMY 7 b7 272X %87y
MK DO EEIC X o T RELV—8TH oy taE
ZHIFHTIENAREE o7, S5 IREIL—%T
., BIEICW 5 £ TYBERD L — S IcFE I N
% D%y V7= EMHT 2 2 EDHRETH B,
T, 20O ORBOBRE TS EIIEREFETH
D, 5 TCOEATERHMRZZ0FE FRKEL—FI1C
WHT 22 EMTES, BITW L 2D —4 23
REEINTE Y, 2—F ARG U TR AL
FioRENL—F 2 &R L, VM & LTHIHTS Z &0
TE%, 51, VM & LTEMET 2720, KL —
Y DREIR, 72 & 21X CPU O NIC D, % D NIC
KBS 2%y h7 =27 DFER EZ, HV {55
OHESTRETH S, DF D HV D API®Pa~wr %
M2 2 LIk > T, AREEIL—F DOREIEZEE S EH)

mED7 T MK BB LHIEHDREIC & 5,

2.4.2 OpenFlow

OpenFlow 13, A A v F D 77y M % HllE 4
Zl-opi@bE g API £, ZNEEET 570
D7utancdhs, OpenFlow A1 v Fix, a2~ b
v —77% 5 OpenFlow 70 b 2)L 2 H\WT, 87y b
DIV FT74—NVEET I avrd»6l5 Flow LV
MY ZEET S, 2D Flow ¥ VI TN v
F ZIR3%E T %, OpenFlow Tld. AA v F HE IR
ZEHET LR, &TERavy =90 56ERT
228TC, aviu—7h5%xy b7 —7%AMcH
2 ENTES, 23 HTHBANZMY, YL
7 —2 i OpenFlow Z W T o#l It/ L2 & v
b= BEERERET S L TH B, AIFTET
i, Z® OpenFlow Z VM RN —% ZINET 5
HV [, KONEE~DEET 270D L2 F v b7 —7
ICHW%, OpenFlow ZHW3 Z Eick->T, 22—V
HORMEE Yy b7 =7 D L2 % EIIE U TEINIC
BN, HlIfRzZ1T9 2 L TE S,

2.4.3 RBREFZE

AETIE, KBSy b7 =2 DF v L — b+ &
BCL. L3 DL EoBREE KL — % T, L2 LN otk
% OpenFlow ZHWTA Y AF VALK Y b
7= %2R T B, 1 2D2—FDdDRMR Y b
J— 0 ZEB D7 a—% TR T,

1. 7V 7L =26V — & DRGEZ H K

2. RNV —%% HV kicF 7 a4

3. HBVIH TRV —F DA v ¥ — 7 = — A %&b 7
v b7 — 7 Ik

4. OpenFlow #H\»T HV 26 &KL — & D
HV ~® L2 ¥ % 7ERk

RN —2 OFEIL, T —FIHRIHKE L 20
AL 2 2L 3TE D, HIZENV—FYHE~DT
7% ZAHIHR., EHIV—F DIV —F 4 v T DHE.
HEHEROIE 2 ETH B, 29 Vol d 275
DOFER TV TL—MMET 5, LRy v —

7 BB BB, 2 —FICEEDERTHBIP 7 F
LARKA M {ZT Y7 L—MIBOALZ LT, #
DL—VEHADKENL—& 2 ERKT 2, ORI —
&% HV k7 7a4 L, BV N TREIL—% @ NIC
WZDL—FDI2X T AV 2Ty FT5,

RIZ, OpenFlow A A v F12 k> T Z 415 TaaS
OYEEIZN L T, 2—FD L2 T X v M2, K
L= VM DFET % HV., £V —F N EIEIXT
IIOFET B, ZHICKST, 1202 —HFDDHD
W2y b= DHEING, ZOFIEE, TV
L — b OHFIERZRITIZ, 2 ToE¥(EZY 77 =
TICk>THENLT 5 Z L3 TE S,

Flo, —VIRERIOG L TRV — % DFRE%E B
HICFHT 22 L3 Cc& %, KEL—2 12—k
WAE S 5 72, HE DRI — 8 ORI E %2175
TH, o2 —F DRy V=7 I EE 52 %
Ly, 2ok, kKENL—% & OpenFlow %
w3 Z tickoT, BMFED 2y b7 —7 DI¥RES 21—
FIRHEL DD, 2= TLDREEY b T —7 Do
fEE., 2ofiry PV =27 OHABERDSTEEE 22D,

2.5 ShowNet lc& |} 3EH

AFZETIE, LT % INTEROP Tokyo[6] D3
F7— 2T % ShowNet[7] ICTH#H L, EFRICHESE L
% 1{T- 72, INTEROP Tokyo I&. #4F 6 HIChifi
IN5, HARRABED %y b7 — 7 FaR & i
THERETH %, 2D INTEROP Tokyo I8\ THE
I 5 ShowNet &, HARRKDTEV AL —T 3
VA 7= TH5, ShowNet ix, 152V b
VB 2= 3 v &N Z DR L OIRFiiEs O Bk
HRGED 7DD 2y b7 —27 Th 2 LM, FED
v P —IHRERTTETHD, FRERAHE
FHFy b7 — 7R AT A ISP 2y P —7
&L Cofllifiz o,

AW T, 2013 D ShowNet I2B VT Y
Ea—yaryInkKELr—4, OpenFlow A1 v F
k¥aviru—75, HV &3 —"2H0VT, %
FE2REEL, BRRMBEDO 7 —AZ2INET 5 4%
F7—=rD 1ot LTCGERERIT o7, 2 1ICEBICMHE
JH U 72888 %2 /"9, ShowNet Tl., I=EFHEZH\T
HEE AL — 7 284U, VM 0Fb) IcHiE
FHANOEGER R L 72, ZOBROBEKZEK 2 1TRT,

HHEEZDIP 7 FL AP 7 — 24, VLAN 57k L
DTE#RIZ ShowNet DHIEH T —F XR—RILREI N
35, ZOBERED EIC1ODOHBEED 7D DIRIES v
T — 7 BT 2 FIEEZ DN ICRT,

#* 1 AL 2 Bds

A i TR
AL — % SoftAX
AL — % CSR1000V
KA — % JUNOSv Firefly

OpenFlow A4 v F PF5240
OpenFlow A A v F PF5248
OpenFlow A A v F PF5220
OpenFlow 2> ~tua—7 PF6800
HV #— R320
HV #— R420
HV #— R610
HV ¥ —3 C6100
HVY 7t 27 VMware ESX

£9, YT LIEFDEHRTHD, T L —
FCTEBILEINT WS IP 7 FL A% VLAN &5%
DlEHE, HEZHT—FRXR=22 500 HT, Zhs
DffmzE b Lz, FENAFR L RELV—F DT v 7
V=26, EREL2EV—8%2ERT 5, K1
N—=F DT 7 L—b &k, FATER L 728 —
¥ D OVA 7 74 &, Jinja2[8] &\ TR L 72 3%
ET7T7ANTH S, RENL—FIZOVA 774 LD 5
VMware ovftool Z W T HV ~ANF 7 A INb, #
LT, BRL7ZEET 7 ANV EREL—FICGEARE
¥HZET, KL= DT 7uAD%ETT 5, RIZ,
RNV —% D NIC 2@ e 2y P =278 v F
T2, RELV—%1F, BN OERLV—8 LT 57
DDA, HBEZIET 22— I X
b, ZLCavy—nurA vzt -o0EH
LAY EAD3IONIC ZHD, ZhsD NIC %,
VMware ESX @ CLI Z W T/MEroE8/EL. 21
Ty b= ~NEERL

R, ROV — DFEET 2 HV 2 6 HEFINE R —
F ORI — 8 ~D L2 i 2 T 5, AR TD
L2 #v b7 —71%, NEC Programmable Flow IZ &
% OpenFlow M CHEZE L 72, X2 DHEED pf5248-1 &

pf5240-1 23BN — & ZE)fE S & 5 HV #EZ A L.
i FB D pf5240-2 KU pf5248-2 D 2 BsHEE 7 —
ANOYISEZINE Lz, £3, 2= EDKR—
MZINEIN T 20O Rz HEE T — 5 X—2)»
SHH g, ZDOF— MERIC L 72235 7T, OpenFlow
av br—77TH 23 PF6800 DT 5 REST API %
v, HEEZE %Y b7 —2d VLAN % OpenFlow A
A v FOYME— MImA, RELV—F DEET 2 HV
ANDKR—MIZVLAN /12 %, 2O LHIZLT, i
By V7= D L2 HEhi e L 72,
3

Q’QAggregate Router

p£5248-1 pf5240-1
e (pf5220 a”
CCEECELCELCC
(/1420 (Y320 (Yr610 @ €6100
p£5240-2 ;5‘65355% p£5248-2
= = - -
Exhibitors Exhibitors

2: ShowNet IZBWTHEEL 727y b7 — 7 DR

ShowNet ICEB W TIRETFEZHGTHEEL 72+ v b
7—7TiE, FEOTFIEIZX->T, HEEZY b7 —2
O ERICHILT 2 2 L8 TE L, HEET—
FR=2AH 6 DFEROWHHL, 7 7L =1t 560D
WEDER, KLV —%DF 7 a4, OpenFlow 2~
e —7® REST API Z##&H L7 L2 foikE, &
V) HEDEEIR, 2TV 7 MY 2Tk o THEIN
WWETSIN, Do XkHic, KEREFIEICL-T,
ShowNet IZ¥ 1} 5 HEE > v b7 — 7 ORZEO HE)k
EHEBL I, ZORREFEOBELL 2y b7 =7
%, INTEORP Tokyo DRI B W TLEL T
BfEL 7., ZHUT ko T, IREFENFEBETH S
et LT,

2.6 fEmERE

AWFETIE, TaaS 7 77 F LAy b7 —2 O
L zoHEMLEHMWE LT, KL —% &£ OpenFlow
ZHOIL—F T LDRBEXY P —7 DR L, %
DWERTFROREZ T 72, IV —F 25 Z ki
0. 2=FIERD Ry b7 — 7 DR R BEIE T
THRT2ZE08TES, 7, REV—SZ2—F T
EWCHETSZ LIk T, 22— DRERy b7 —7
DR T o7, TaaSEREBICBII 3122y P 7 —27 D
H§5E1Z OpenFlow Z W% Z LT k> T, HV [HD L2
Fv b7 =7 DL BENE LT, TNne Y 7
by =7z & B TRE 2 KRV — % & OpenFlow
EHWEZET, 2=V TLIRKEEY b= %]
BICHERE T 2 FE 2R L 7,

EARBE TR, RETHEZ 2013 £ INTEROP
Tokyo (2 CHf# X 417z ShowNet ICBWTEA L, FEEE
ICHEEE LA 21T o7z, ShowNet DHIEEH T —F X—
ADEHRE D &, HEMEOKEN—% &2 %H)
fEZE 2 HV D API, # LT OpenFlow 2~ FE—7
D9 2 REST APL #H\w3 Z Eick->T, HE
HFy b7 —=07DY 7 b 27Kk B HEERE FEH
L7z, THUCED, KRETFEVEEDO -y F7—7
R LEMICB W THEBWETH D, $/laaS 7 77
FICB 2%y b7 — RIS % 2 A + 2 Hl
WTEBZ 2R,

&!ﬁ

2.7 SHROFE

SHBOBHEE LT, 387 1 —2 ¥ ADFHID
FTHh D, RENL—FIZX B8y FERRERIZ, [A—HV
LRV =8 03% { k2 FERDVED 5, ZDEED
MO T X, HV LTl O VM 28§ 28546 L
R 2 L TVEING, 2070, KELV—% %
F7aAL TEIBROR VR Y 7 L B—D HV LETHE
S BT 2R — % O%c% . SEICEHE§ 2 24
WH 2,

HEHEOBEE LTiE, REXY b7 —27 OO
MDD %, KRy b7 —2ZIcBW»T, 2—FIZHH
WY 7%y PEBEML, PR EEETE ZNEN
H5, LH L. ShowNet |2 THEEE L =Rk <ld. fidd
2y NI —=0 DTy 7L —FiE 1l =T 1 EEL—
FEVIERDARTH-T, ZDId, SHRIET VT

L— b 2EEHETZ LR, Ty 7L — 6 1ER
LR Sy b7 — 2 i —FasH L — % oEh

Pl IR OBEMETZBRICT 208D 5,

3 UKALI: Location Aware Dis-
tributed Local Storage for
Virtual Machine Disk Images

3.1 Introduction

Virtual machine operation has become one of the
core tasks of successful service providers. One prob-
lem still to be solved in this area is that of resource
migration. For instance, it is sometimes necessary
to perform actions such as move a virtual machine
from one hypervisor to another, to decrease the load
of the origin hypervisor, upgrade a hypervisor oper-
ating system, move virtual machines to a newly built
datacenter, or discontinue an existing datacenter. A
virtual machine basically consists of three parts: i)
CPU and memory resources, ii) a network resource,
and iii) a storage resource. To keep a virtual machine
running after migration, an operator must transpar-
ently supply the above three resources to the virtual
machine. For i), the recent major virtualization tech-
nologies [9, 10, 11, 12, 13] already have the ability to
migrate CPU and memory resources. For ii), recent
progress in software defined networking technology
means that is now a candidate solution for network
resource migration [14]. For iii), there are a few tech-
nologies to support storage migration [15, 16, 17].

This paper focuses on the storage resource migra-
tion issue. We believe the following three require-
ments are important when operating a virtual ma-

chine storage backend.

Req.1 Controllablity: to provide the ability to store
a disk image to a specific location for each virtual

machine

Req.2 Awailability: to provide a flexible level of re-

dundancy to avoid data loss

Req.3 Locality: to place a disk image as near its
owner virtual machine as possible to increase
performance and robustness against network

failures

Based on the above requirements, we have designed
a new storage system that serves virtual machine disk
images to hypervisors. The proposed system offers
full control over the storage location of disk image
data for each virtual machine. An operator can as-
sign multiple locations for the same disk image to
increase redundancy and can even specify location
information on a portion of a disk image to protect
important parts.

The location specification can be added or removed
at any time. When a virtual machine moves from
one location to another, an operator can add local
locations, migrate the existing data to local loca-
tions without disrupting machine operations, and re-
move remote locations after migration. Unlike au-
tonomously distributed file/storage systems, an op-
erator can specify storage location. This is impor-
tant because network services usually consist of mul-
tiple virtual machine instances. How storage access
is optimized for one machine may affect the collab-
orative operational performance of the set of virtual
machines.

As might be anticipated, providing full location
control could lead to a lot of configuration tasks when
the number of virtual disks is large. In our proposal,
we do not consider the automated support of location
control; however, it is possible to design a super-layer
for storage management policy. This higher-layer
module may provide automatic location determina-
tion functions. To do that, the lower-layer module
must have detailed location management functions.
This proposal aims to provide the basis for more in-

telligent management systems in future.

3.2 Related Work

The most basic technique of storage migration is

incremental block migration. In this mechanism, the

entire storage image is moved from the source to the
destination location. A simple method was proposed
in [15] that moves disk image blocks from head to tail
after a virtual machine has been moved to a destina-
tion location. If the virtual machine tries to access a
not-yet moved block, then an on-demand copy is ini-
tiated. These mechanisms satisfy requirements 1 and
3. However, since the disk image is stored at single
location, requirement 2 is not achieved.

To achieve redundancy, a distributed filesystem is
sometimes used. Distributed Replicated Block De-
vice (DRBD) [18] provides a block device, replicated
over a network. Since DRBD is a type of mirrored
disk, the operations for disk management are similar
to those of local disk mirroring operations. In this
sense, requirement 1 is satisfied; however, it is not
possible to use this system for each virtual machine.
DRBD also partially satisfies requirement 2 as it can
have up to two replicated disks in a basic configu-
ration. When more than two replicas are needed, a
cascading configuration is required. For requirement
3, DRBD allows a dual primary operation mode that
enables concurrent access to both mirrored volumes.
In this sense, data locality can be achieved. However,
it is difficult to change the mirroring volume from a
remote site to a local site. Even though a user can ac-
cess the local mirrored volume, the remote mirrored
volume is still located remotely. The reconfiguration
operations in DRBD are less flexible.

There are other distributed filesystems such as
Ceph [19] or GlusterFS [20].
tributed block storage mechanism called Sheepdog

There is also a dis-

[21] that is a special block device designed for vir-
tual machine disk images. These distributed systems
use a consistent hash mechanism to determine the
locations for data distribution. An operator cannot
control which part of a disk image is stored on which
storage node. This is problematic when an operator
wants to move a virtual machine to a distant loca-
tion. If a storage cluster is configured locally near
the origin hypervisor, the migrated virtual machine
will suffer from poor disk performance because of the

long network delay. If the storage cluster is deployed

over a wide area network, the daily disk operation
performance will worsen. Hence, these systems only

satisfy requirement 2.

3.3 The UKAI System

In this section, we discuss the design of the UKAI
system', a centrally controllable distributed local

storage system.

3.4 Constraints and Advantages

When designing a new storage system that satisfies
the requirements defined in Section 3.1, we must first
clarify the constraints of a virtual machine operation
mechanism. We believe the operational environment
of a virtual machine is unique, as a storage interface
is not always required to provide a fully functional
distributed filesystem. The constraints are given be-

low.

Con.1 No concurrency: there is only one entity for

accessing a specific disk image at one time.

Con.2 Limited metadata elements: the metadata in-

formation of a disk image is limited.

Since we are designing a storage system for vir-
tual machine disk images, we can assume the disk
images will only be used by hypervisors and virtual
machines. Considering that a disk image is associated
with a specific virtual machine, it is not necessary to
allow concurrent access to a specific disk image from
multiple entities. This means that it is not necessary
to design a distributed resource locking mechanism.

A disk image is seen as a block device from a virtual
machine’s point of view. Creation, access, or modifi-
cation times are not meaningful in such an environ-
ment. The size of a disk image is also meaningless,
as it does not usually change. Based on these con-
straints, a UKAI storage can be implemented with

only simple data I/O interfaces.

IUKAI is named after a traditional Japanese fishing
method that uses cormorants (http://en.wikipedia.org/
wiki/Cormorant_fishing).

3.5 Disk Image Design

In the UKAI system, a disk image is divided into
small blocks. Each block has its own location record.
If redundancy is required, a block may have multiple
location records. A block is the unit of a synchro-
nization operation, and its location record contains
a flag that indicates if the block at that location is
in-sync or out-of-sync. If the disk image does not
have redundancy, then all the locations must be in-
sync. Having an out-of-sync location means that the
disk image is broken, if a block has only one loca-
tion record. If there are multiple locations, the op-
erational requirement is to have at least one in-sync
location. When reading data from a block, one of the
in-sync locations is chosen for data retrieval. When
writing, data is transferred to all locations and writ-
ten to a local storage device at that location. If a
location is in the out-of-sync state, data from one of
the in-sync blocks is transferred to the out-of-sync
location. Once the data transfer completes, the state
is changed to in-sync. Fig. 3 shows the concept of
the UKAI disk image structure.

In the figure, a disk image is divided into four
blocks. Each block has two location records, some of
which are flagged as out-of-sync. Data is read from
the node indicated by the white location information
box. When writing, for example, to block 3, the data
stored in node B is copied to node A before any data
is written. Then the location of node A is changed
to an in-sync state and the actual data is written to

both locations.

3.6 Metadata Design

Metadata information for a virtual disk is stored
in the hypervisor on which the virtual machine using
that disk is run. It consists of the size and name of
the disk image, the size of the block, and location
information of each block. The size and name are
used as a filename when the disk image is exposed
as a file through a filesystem or as a block device

name of a hypervisor, depending on how the system

Disk Image Location Information
E pointers | node A] [node B]
to block synced: yes synced: yes
""""""""""" < <
—————————————————————— Block 0 Block 0
—————————————————————— node A node B]
synced: yes synced: no
RN
Block 1
node A node B]
synced: yes synced: no
RN
Block 2
node A node B]
synced: no synced: yes
R\
Block 3

3: The concept of the UKAI disk image structure

consisting of four blocks and two location records

is implemented. The block size and location records

are used in the UKAI system internally.

3.7 Error Handling

When operating a distributed system, an error is
not an option. For example, when reading data from
one of the nodes defined in the location record, it may
not be available because of node failure, network fail-
ure, or some other reason. In that case, the UKAI
system records the node address in the locally man-
aged failure node list. When accessing a block, the
UKALI system first checks the failure node list. If the
node is listed in when the UKAI system is writing
data, the location information is marked as out-of-
sync. The data is written to all the other nodes listed
in the location record list. When reading, the UKAI
system looks for another candidate from the list of
locations of the block being accessed. If there is no
in-sync candidate, the situation is considered a fatal
error.

The failure node list has a time limit for each en-

try. When this limit expires, access to the node may
be resumed. If the node recovers before the time
limit expires, then the data synchronizing process will
be initiated when a write operation occurs on blocks

marked as out-of-sync.

3.8 Control

The following control operations are defined for the

minimum operation of the UKAT system.

Add image: adds a new virtual disk image to the
UKAI system. An image must be added before being
used as a disk image by a virtual machine.
Remove image: removes an existing virtual disk
image from the UKAI system. Before removing a
disk image, the virtual machine that uses the target
disk image must be powered off.
Add location: adds a location specification to a
range of blocks.
Remove location: removes a location specification
from a range of blocks. When removing a location,
the system must ensure that at least one in-sync lo-
cation is left for each block. Otherwise, the data of
the disk will be lost and a fatal error will occur.
Get metadata: returns the metadata information
of a specific disk image containing the name of the
image, the size of the image, the block size of the im-
age, and the list of locations for all the blocks.
Synchronize: synchronizes a range of blocks be-
tween nodes defined in the location records of the
specified blocks.

Other operations may be defined in future UKAI

systems.

3.9 Implementation

We have implemented the concepts of the UKAI
system in a prototype using FUSE [22] and Python.
Each disk image is exposed through the FUSE mech-
anism as a file. We used QEMU as a hypervisor since
it has the ability to use a file as a virtual disk image.

Any other hypervisors can also be used if they can

{
"name": "diskO1",
"size": 200000000,
"block_size": 50000000,
"blocks": [{
"192.0.2.100": {"synced": true},
"192.0.2.101": {"synced": true}
}.{
"192.0.2.100": {"synced": true},
"192.0.2.101": {"synced": false}
}.{
"192.0.2.100": {"synced": true},
"192.0.2.101": {"synced": false}
}.{
"192.0.2.100": {"synced": false},
"192.0.2.101": {"synced": true}
1
}

4: The metadata structure that represents the disk
image shown in Fig. 3, where the size of the image
is set to 200 MB, the size of each block is set to 50
MB, and the addresses of nodes A and B are set to
192.0.2.100 and 192.0.2.101, respectively

use a file as a virtual disk image. Note that there
is no limitation on how to implement the UKAT sys-
tem. An implementation as a filesystem interface is
just one example. It could also be implemented in a
special block driver form for QEMU or other virtual-
ization systems.

The prototype code is available at the GitHub

repository?.

3.10 Metadata Handling

Fig. 4 shows the metadata structure for the exam-
ple disk image shown in Fig. 3. The data is struc-
tured using a JSON [23] format. The name of the
disk image is disk01 and this name is used as a file
name under the FUSE mount point of the UKAI sys-
tem. The size of this disk image is defined to be 200
MB. Since the block size is 50 MB, the total number
of blocks will be four blocks.

The metadata file for a virtual disk is stored in the

%https://github.com/keiichishima/ukai/

hypervisor that runs its virtual machine. When a vir-
tual machine is migrated to another hypervisor, the
related metadata must be accessible from the desti-
nation hypervisor. This can be achieved in several
ways. One method is to copy the entire metadata file
at the last moment when the virtual machine state
is migrated to the destination. Since the size of a
metadata file is small compared to memory or storage
data, copying a metadata file does not affect migra-
tion performance. The other method is to use some
kind of distributed filesystem, such as GlusterFS, to
share metadata files. In the latter case, it is nec-
essary to operate a wide-area distributed filesystem:;
however, the update of metadata information occurs
only when the synchronization status changes, so its
influence is small. In the test operations discussed
in Section 3.14, we simply share metadata files using
NFS. For performance reasons, we plan to integrate
the former metadata transition method in the final

form of the implementation.

3.11 FUSE Interface

To implement a FUSE interface in Python, we uti-
lized fusepy®, a FUSE-Python binding library. As we
have discussed in Section 3.4, not all the filesystem
interfaces must be implemented. In the prototype im-
plementation, only the interfaces shown in TABLE 2
are implemented.

Other filesystem interfaces are either not imple-
mented (such that the call falls back to the default
behavior of fusepy), or do nothing.

3.12 Remote Read/Write Operations

In some cases, read or write operations may require
access to a remote UKAI node. This is implemented
using the XML-RPC mechanism. As we discussed in
Section 3.4, we do not need to take care of conflict-
ing accesses to a disk image since only one virtual

machine accesses a specific disk image at one time.

Shttps://github.com/terencehonles/fusepy/

10

Z¢ 3: Configuration of location information of three
UKALI disk images
’ Location type

Configuration detail

Local A virtual machine and its disk
image are located on the same

node.

Remote A virtual machine and its disk
image are located on different

nodes.

Mirror A disk image has two locations:
one is on the same node as the

virtual machine and the other is

on a different node.

When receiving read/write requests from a remote
node, the UKAI storage node just performs read or
write operations on the local disk without any exclu-
sive control because it is certain that there is no other

entities accessing the disk.

3.13 Control Operation

Control operations described in Section 3.8 are also
implemented using the XML-RPC mechanism. The
RPC interface is open to a local node. An operator
can issue management commands such as adding an

image or location through this interface.

3.14 Performance Measurement

We measured the I/O bandwidth with our proto-
type implementation. We prepared three 8 GB UKAI
disk images with different block size values (5 MB,
10 MB, and 20 MB) and three different locations as
shown in TABLE 3.

For comparison, a disk image was created on local
storage as a single file, and a disk image served by
NFS was also prepared.

Two physical machines connected with a 1 Gbps
Ethernet switch were prepared and configured as hy-
pervisors and UKAI nodes. These nodes were located

in the same network segment. One of the nodes was

7% 2: FUSE interfaces mandatory for the UKAT system

Interface Action ‘

init Q) Initializes the UKAT system. The function launches two threads, one for receiving read /write
operation requests from remote UKAI nodes as described in Section 3.12 and the other for
receiving control commands as described in Section 3.13.

getattr() | Returns a stat structure of a disk image file. The total image size is the only meaningful
information.

open() Returns a file descriptor of the specified disk image.

readdir() | Returns a list of disk image file names. To conform to the normal filesystem readdir ()
operation, the current and parent directories of the UKAI mount point are also returned.

read() Reads data from a virtual disk and returns it to the caller. One read operation may contact
multiple blocks depending on the specified read size and offset value.

write() Writes data to a virtual disk. Just as for the read operation, multiple blocks may be
accessed depending on the specified write size and offset. The write operation may initiate
a synchronization operation if the blocks to be accessed have location information with an
out-of-sync status.

4: Specifications of the measurement equipments

Nodes

Product ID | EPSON Endeavor AT971

CPU Intel® Core™2 Duo E8400 3.00
GHz

Memory 4 GB

HDD 250 GB SATA

NIC Intel® PRO/1000 Gigabit Net-
work Adapter

Switch

Product ID ‘ Corega CG-SWO5GTLXW

also configured as a NFS server for the NF'S disk im-
age mentioned above. TABLE 4 shows the specifica-
tions of the equipments.

The virtual machines used for the measurement ran
Ubuntu 12.04 LTS with 512 MB memory.

Fig. 5 shows the system diagram of the measure-
ment system. There were five different virtual ma-
chine configurations, each using a different disk im-
age configuration. The three that used UKAI disk
images also had three different block size configura-
TABLE 5 shows all the

combination cases of the disks and virtual machines

tions as described earlier.

11

Node 1 Node 2

Virtual Virtual
Machine Machine Machine

(File) (UKAI Local) | | (UKAI Remote)

|

Virtual Virtual

Machine
(UKAI Mirror)

UKAI

[Se—
UKAI
‘>
UKAI NFS
server client

Virtual
Machine
(NFS)

 Synchro-
nized

1Gbps Ethernet Switch

5: System diagram of the performance measure-

ment system

Random read and random write
128 MB, 256 MB, 512 MB, and

I/0 pattern
I/0 file size

1 GB

I/0 block size | 4 KB

I/O API Use standard read() and
write() system calls and

fseek() library call

6: Configuration parameters of the fio command

used in the measurement.

Location type

Virtual disk type

Owner virtual machine

Local file Local
UKAI 5 MB BS
Local
UKAI 10 MB BS | UKAI Local
UKAI 20 MB BS
NFS file NFS
UKAI 5 MB BS
Remote
UKAI 10 MB BS | UKAI Remote
UKAI 20 MB BS
UKAI 5 MB BS
Mirror UKAI 10 MB BS | UKAI Mirror
UKAI 20 MB BS

% 5: Mapping table of virtual disk location types, virtual disk configuration types, and their owner virtual

machines

We used the fio* measurement tool. The configura-
tion parameters for fio are shown in TABLE 6. Mea-
surement operations were done one-by-one for each
virtual machine. While one virtual machine was run-
ning, the other four machines were shut down. As
shown in TABLE 6, four different file sizes, 128 MB,
256 MB, 512 MB, and 1 GB were used in the experi-
ment to compare the effect of files size on performance

variation.

3.15 Local Storage

Fig. 6 shows the results for local storage cases.
The graph shows four different types of local disk:
the first three are UKAI images with different block
sizes and the fourth is a local file disk image.

In the random read case, we see unstable behavior
for UKAT disks of 5 MB and 10 MB block sizes in
the 1 GB file test case. However, the overall perfor-
mance is not worse than that of the local file storage
method. For the random write case, the UKAI disks
often achieved better bandwidth than the local file
storage method.

4nttp://freecode.com/projects/fio

12

Random read (Local) Random write (Local)

80000 3000

M svB Bs

M 1omB BS
20MB BS

B Local file

(2]
o
=]
o
S

2250

40000 1500

Bandwidth (KB/s)

20000 750

128M 256M 512M 1G
File size

128M 256M 512M 1G
File size

6: Comparison of I/O bandwidth of local disk

images

3.16 Remote Storage

Fig. 7 shows the results for remote location cases.
In this case, we used a NFS mounted disk image for
comparison instead of a local file disk image.

In the remote location cases, the UKAI disks
achieved better performance in both the random read
and random write cases. However, we observed un-
stable behavior when reading, just as for the local

case.

3.17 Mirrored Storage

Fig. 8 shows the results for three mirrored (one
on local and the other on remote) UKAI disk im-

Random read (Remote) Random write (Remote)

70000 1000

W svBBS
M 1omB BS
20MB BS

B NFs

o
N
o
o
o

750

35000 500

Bandwidth (KB/s)

17500 250

128M 256M 512M
File size

1G 128M 256M 512M

File size

1G

7: Comparison of I/O bandwidth of remote disk

images
Random read (LR) Random write (LR)

80000 800

| BB M svBBS
M 1ovB M 1omBBS
20MB 20MB BS
= 60000 600
2 M Local M NFs
<
5 40000 400
H
°
C
@©
D 20000 200 I I I
0

128M 256M 512M
File size

1G 128M 256M 512M

8: Comparison of I/O bandwidth of mirrored
UKAI disk images and other images

ages. For comparison, a local file disk image result is
shown for the random read case and a NFS disk im-
age result is shown for the random write case. Since
the prototype UKAI implementation prefers reading
from a local node whenever available, it is natural to
compare it to a local file when reading. For writing,
the UKAI filesystem has to write to both locations.
Since a network write operation always happens in
this case, a NFS disk is used for comparison.

For reading, the UKAI performance should be sim-
ilar to that of a local disk because data is read from
the local side of a disk in the local-remote mirror case.
However, for the 512 MB and 1 GB file size cases, the
actual performance was worse than expected. For
write operations, even though UKAI writes to two
locations, the performance was better than that of
NFS.

13

3.18 Measurement Summary

The results show that performance degrades when
the size of a test file is increased. There were some
cases where the performance of the UKAI disk was
much worse than expected, for example, for random
reads in the local storage and mirrored cases. On the
contrary, for all the random write cases, its perfor-
mance was better than local file and NF'S storage.

The block size configuration of UKAI storage does
not have a serious impact on the overall read/write
performance; however, we do not recommend using
a large block size because it will impact synchroniza-
tion performance. If a block size is large, the possi-
bility of accessing a block that is being synchronized
increases. Such access results in device-level disk I/0
blocking and will cause serious performance degrada-

tion at the virtual machine operation level.

3.19 Discussion

We have not identified the reason for the varia-
tion in the UKAI storage system performance that
we observed in the previous section. Our current hy-
pothesis is that the load of other user-space programs
might affect its performance because the UKAI sys-
tem is implemented in user space. Another hypoth-
esis is that the variation is caused by the nature of
a layered filesystem. A virtual machine has its own
filesystem and buffering mechanism. Its disk device
is in reality provided by a hypervisor and is built on
top of FUSE and hypervisor files, both of which also
have buffering mechanisms. Because of these layered
mechanisms, it is difficult to gain the control needed
to optimize the I/O operations of a virtual machine.
Where or how to buffer I/O data is currently a vital
topic in virtual storage research [24]. We need to in-
vestigate the true source of this behavior to achieve
a more stable and predictable performance.

We initially thought that using a smaller block size
would increase access overhead, especially when op-
erating with large size files. However, it seems that

block size did not significantly influence read/write

Write (Local)

150000 60000

M svBBS
I 1omB BS

20MBBS 000
. Local file

s)
o
s
N
a
o
S

75000 30000

Bandwidth (KB/:

37500 15000

128M 256M 512M
File size

1G

9: Comparison of I/O bandwidth for

configurations

operations. The analysis of its impact on synchro-
nization operations and the determination of the best
block size during synchronization are future issues we
plan to address.

It was surprising that the random write perfor-
mance was better than for the local file and NFS
storage cases, considering that the current UKAT is
implemented in user space in Python and FUSE. We
think this is because the filesystem buffering mecha-
nism works efficiently for random write operations on
the UKAI disk image blocks that have a much smaller
file size compared to the disk image file used by local
file and NF'S storage. We have not yet measured the
amount of resources consumed for UKAI I/O oper-
ations when handling a large number of block files,
but this may have to be investigated in order to un-
derstand the overhead of the UKAI system.

One negative observation not mentioned in the pre-
vious section is that we found particularly poor se-
quential write performance in every case (Fig. 9).
This is probably because the UKAI system uses small
files to build a disk image. Buffering may not work
efficiently in a sequential write operation that spreads

over many small files.

3.20 Conclusion

Flexible virtual machine location and/or reloca-

tion is a key function for efficient virtual machine

Write (Remote) Write (LR)
W svees 60000 M svBBs
I 1omB BS I 1omB BS
20MB BS 20MB BS
45000
M NFs B NFs

128M 256M 512M

14

30000

15000

1G 128M 256M 512M

File size

1G
File size

sequential write operations over nine different UKAI disk image

resource management. Research on storage manage-
ment mechanisms for virtual machine image stor-
age is vitally needed to enable relocatable virtual
machines. We defined three requirements necessary
for a distributed virtual machine image storage sys-
tem: controllability, redundancy, and locality and
proposed the UKAI system. We implemented the
concepts of the UKAI system in a prototype and
achieved as good or better throughput compared to
existing virtual disk mechanisms in most of the ran-
dom read/write cases common to real-life operations.
However, we also found that in some cases, the perfor-
mance was not stable. We also found that sequential
write performance was particularly poor. We con-
tinue to investigate the reason for these behaviors
and will improve the design and implementation of
the UKAI system to provide a better virtual machine

image storage mechanism.

4 {REHEHBHE=4—MIB

WIDE 7 97 F7—% v 77 V—7Cld, RAEFE
FROIRREZ IR T 2 Befiff & L <, (RAEGHRRE
DIFHIEE L REBHERNDO T 7 v AFERZRIET
5MIBA 7Y 7 b ZEEL TV (25,

VAR oHEF TR 7@ D, Juergen Schoen-
waelder fli2> & kD MIB & 72 = 7 b 2MELE S
Twhlkd, SEERINS DREZFKA L. HET
IETF OPSAWG A4 ¥ ¥ —%» b FF7 b & LT

HlZ, BERFS 7 b3y 7 —~"—THgE I
88 [IETF T % T, OPSAWG D7 —% 7
=7 F77 e LTERBINDIZESTVDS, 54,
REC LI THEDRE Z k5 L Tw <,

5 &

2013 FEEEIE 7 T RO EAM, & EREART O
ZehFE. M T =y kv ¥y —EHICEB T B RET 4 A
7 A X — R O 2 E L 72, £z, 5
BETIC% 57 77 FEREBICBIT S %y b7 — 7 Hiffi
DO AZFBL, 777 F7F—% % ¥ —3EH
DEWET VOB ZHG L7, WIDE 7 77 F7—
XU T ITN—=TTIE, SHBROIEESHEETD Y 57
R 2 FEBLT 2 72 0 O EAFATS 2 /e L T P
Tbh5,

SE W

[1] Marc Lasserre, Florin Balus, Thomas Morin,
Nabil Bitar, and Yakov Rekhter.
for DC Network Virtualization, draft-ietf-nvo3-

Internet Draft, IETF, July

Framework
framework-03.txt.
2013.

Amazon VPC. http://aws.amazon.com/vpc/.

Theophilus Aditya Akella,
Shaikh, and Sambit Sahu. CloudNaaS: a cloud

networking platform for enterprise applications.

Benson, Anees

In Proceedings of the 2nd ACM Symposium on
Cloud Computing, SOCC ’11, pages 8:1-8:13,
New York, NY, USA, 2011. ACM.

M.Mahalingam, D.Dutt, K.Duda, P.Agarwal,
T. Sridhar, M.Bursell,
C.Wright. draft-mahalingam-dutt-dcops-vxlan-
00.txt. ID, IETF, Aug 2011.

L. Kreeger, and

Yoshihiko Kanaumi, Shuichi Saito, Eiji Kawai,
Shuji Ishii, Kazumasa Kobayashi, and Shinji
Shimojo. Rise: A wide-area hybrid openflow net-
work testbed. IEICE Transactions, 96-B(1):108—
118, 2013.

15

[6] INTEROP Tokyo 2013. http://www.interop.
Jp-
ShowNet 2013. http://www.interop.jp/2013/

shownet/index.html.

Python Jinja2.
docs/.

http://jinja.pocoo.org/

Paul Barham, Boris Dragovic, Keir Fraser,
Steven Hand, Tim Harris, Alex Ho, Rolf Neuge-
bauer, Ian Pratt, and Andrew Warfield. Xen and
the art of virtualization. In SOSP’03: Proceed-
ings of the nineteenth ACM symposium on Oper-
ating systems principles, pages 164-177. ACM,
2003.

[10] Fabrice Bellard. QEMU, a Fast and Portable
Dynamic Translator. In Proceedings of the an-
nual conference on USENIX Annual Techni-
cal Conference (ATEC’05), pages 41-41, April

2005.

R.A. Harper, A.N. Aliguori, and M.D. Day.
KVM: The Linux Virtual Machine Monitor. In
Proceedings of the Linux Symposium, pages 225—
230, 2007.

VMware,

http://www.vmware.com/.

Inc. VMWare.

Christopher Clark, Keir Fraser, Steven Hand,
Jacob Gorm Hansen, Eric Jul, Christian
Limpach, Tan Pratt, and Andrew Warfield. Live
migration of virtual machines. In Proceedings of
the 2nd conference on Symposium on Networked
Systems Design € Implementation (NSDI’05),
volume 2, pages 273-286, 2005.

[14] Jennifer Rexford. Programming Languages for
Programmable Network. In Proceedings of the
39th annual ACM SIGPLAN-SIGACT sympo-
stum on Principles of programming languages

(POPL’12), pages 215-216, 2012.

[15] Takahiro Hirofuchi, Hirotaka Ogawa, Hidemoto

Nakada, Satoshi Itoh, and Satoshi Sekiguchi.

[18]

[19]

[22]

[23]

A Live Storage Migration Mechanism over
WAN for Relocatable Virtual Machine Services
on Clouds. In Proceedings of the 2009 9th
IEEE/ACM International Symposium on Clus-
ter Computing and the Grid (CCGRID’09),
pages 460-465, 2009.

Robert Bradford, Evangelos Kotsovinos, Anja
Feldmann, and Harald Schiéberg. Live Wide-
Area Migration of Virtual Machines Including
Local Persistent State. In Proceedings of the
8rd internatiolan conference on Virtual execu-

tion environments, pages 169-179, 2007.

Jie Zheng, Tze Sing Eugene Ng, and Kunwadee
Workload-Aware Live Stor-
age Migration for Clouds. In Proceedings of
the 7th ACM SIGPLAN/SIGOPS international
conference on Virtual execution environments
(VEE’11), pages 133-144, 2011.

Sripanidkulchai.

Lars Ellenberg. DRBD®) 9 & Device-Mapper
Linux® Block Level Storage Replication. In
Proceedings of Linux-Kongress 2008, October

2008.

Sage A. Weil, Scott A. Brandt, Ethan L. Miller,
Darrell D. E. Long, and Carlos Maltzahn. Ceph:
A Scalable, High-Performance Distributed File
System. In Proceedings of the 7Tth symposium
on Operating systems design and implementa-

tion (OSDI’06), pages 307-320. USENIX, 2006.

Gluster Inc. Gluster File System Architecture.
Technical report, Gluster Inc., 2010.

Kazutaka Morita. Sheepdog: Distributed Stor-
age System for QEMU/KVM. Linux.conf.au
2010, January 2010.

Miklos Szeredi. FUSE: Filesystem in Userspace.
http://fuse.sourceforge.net/.

Douglas Crockford. The application/json Media
Type for JavaScript Object Notation (JSON).
IETF, July 2006. RFC4627.

16

[24]

Vasily Tarasov, Deepak Jain, Dean Hildebrand,
Renu Tewari, Geoff Kuenning, and Erez Zadok.
Improving I/O Performance Using Virtual Disk
Introspection. In Proceedings of the 5th USENIX
Workshop on Hot Topics in Storage and File
Systems, June 2013.

Hirochika Asai, Michael MacFaden, Juergen
Schoenwaelder, Yuji Sekiya, Keiichi Shima, Tina
Tsou, Cathy Zhou, and Hiroshi Esaki. Manage-
ment Information Base for the Virtual Machine
Monitoring. IETF, October 2013. draft-asai-

vimm-mib-05.

