
70

第10部　ウェブアプリケーションのセキュリティ技術の研究

第１章　Scope

The SWAN WG carries out research in the field of Web

2.0 application security. SWAN stands for Security for

Web 2.0 ApplicatioN. It was founded and started its

activities in June 2010. It aims to bring forward Web 2.0

application security issues in the WIDE project as these

issues are becoming more and more critical to services

offered on top of the Internet.

第２章　Second Year Activities

From its inception, the SWAN WG has decided to

concentrate on a rather precise objective in order to

appeal to the community and launch projects as fast

as possible. We launched a first project, the Web2Sec

Testbed, a testbed to accommodate largescale practical

Web 2.0 application security-related experiments. The

project does not only intend to build a practical testbed

on top of the WIDE cloud but also to develop tools to be

used within the testbed. While building a testbed seems

relatively easy given the efforts deployed in other WIDE

WGs such as WIDE-Cloud or ds1, theWebSec Testbed is

yet to be constructed. However, the SWAN WG has been

concentrating on developing analysis tools, especially

to analyze JS malware which is a hot topic in Web 2.0

security.

For that purpose, we designed and started developing

a proxy-based solution to analyze JS malware. This

led to several publications on how to detect and

extract obfuscation in JS malware[61] and how to

automate deobfuscation to provide static analysis of JS

malware[62, 63].

The proxy-based solution, named (sak_mis), would

sustain the load of realtime static analysis on JS

candidates. The system is designed to work as follows:

1.		 (sak_mis) is a proxy that intercepts HTTP requestsissued

by the end user and subsequent responses returned by

the server;

2.		 upon reception of an HTTP response, the proxy

kicks off the prefetching stage:

3.		 the requested web page is parsed to detect script

inclusions, links and potential malicious locations

(iframes, images, etc.). Script contents are then

retrieved (prefetching) and inlined into the original

web page;

4.		 if newly downloaded contents also contain links

or inclusions to contents of interest, prefetching

is also performed on these contents. This scenario

also applies when new inclusions are uncovered

after deobfuscation;

5.		 once prefetching is completed, the aggregated

script page is sent to an external application server;

6.		 the application server is responsible for automating

deobfuscation: obfuscated contents and decoding

門林 雄基, Gregory Blanc

第10部

ウェブアプリケーションのセキュリティ技術の研究

71

routines are extracted first. The deobfuscation

stage of the attack scenario is emulated by

the server. The process is repeated in case the

deobfuscation yielded obfuscated contents as well;

7.		 once scripting contents can be directly interpreted

by the machine, the decision module applies static

analysis to extract a model of the script’s intents.

This model is compared to a knowledge base in

order to infer whether it is a model of malicious

intents or not;

8.		 in case, the script is benign, the deobfuscated

script is injected back into the original web

page and served to the end user.

Key components of the proxy-based solution have been

designed and implemented, proving its usefulness

against several real-world JS samples. More detailed

treatment of this subject can be found in the full report

of SWAN WG.

