SWAN WG - Year 2011 Activity Report

Gregory BLANC (gregory@is.naist.jp)
Youki KADOBAYASHI (youki-k@is.naist.jp)

2011/12/31

1 Introduction

The SWAN WG carries out research in the field
of Web 2.0 application security. SWAN stands for
Security for Web 2.0 ApplicatioN. It was founded
and started its activities in June 2010. It aims to
bring forward Web 2.0 application security issues
in the WIDE project as these issues are becoming
more and more critical to services offered on top
of the Internet. As a matter of fact, the IETF has
also witnessed the recent foundation of the WebSec
WG this year and SWAN actually preempted this
creation.

1.1 What is Web 2.0?

There is no strict difference between Web 1.0 and
Web 2.0 but it is universally understood that Web
1.0 applications rely mainly on the HT'TP protocol
to download pages in a synchronous pattern. On
the other hand, Web 2.0 applications do involve
abundant processing on the client side through
embedded scripts transferring data to the server,
even asynchronously, without the user experienc-
ing delays. Web 2.0 does not rely on any partic-
ularly recent technology but on technologies that
have been spreading the Web since its early years.
JavaScript and XML, at the origin of the coined
word Ajax (Asynchronous JavaScript with XML,
2005)[15], were technologies designed in the mid-
1990 s. However what characterize Web 2.0 ap-
plications are their content-richness, their collab-
oration features (user participation, folksonomies,
social networks), their ability to syndicate contents
(aggregate sites, feeds, mashups) as well as their ex-
tensive use of the Ajax framework to perform dy-
namic, asynchronous HTTP transactions. Other
essential objects comprise the Document Object
Model (DOM), which is usually modified dynam-
ically to avoid reloading web pages, JS Object No-
tation (JSON) objects, which are used for the seri-
alization of structured data during XmlHTTPRe-
quest (XHR) object transactions. Further informa-
tion can be found in [19].

1.2 Web 2.0 Security Issues

For many years, web applications have been threat-
ened by attacks such as SQL injections, direc-
tory traversals, buffer overflows, command injec-
tions and the likes. Then, the increasing popu-
larity of BBS promote stored cross-site scripting
(XSS) among attackers. Classic attacks usually at-
tempt to abuse the targeted web server in order to
take control of it. On the contrary, new genera-
tion attacks concentrate follow the paradigm shift
prompted by Web 2.0 applications which are user-
centric, cross-domain and rely on dynamic scripting
technologies. As a matter of fact, new generation
attacks often leverage scripting languages and trig-
ger cross-domain bypasses to harm the user. Not to
mention that Web 2.0 applications also often push
much of the application logic to the browser allow-
ing attackers to test their security as a whitebox.
And vulnerabilities are not only found in the tar-
geted application but also in script libraries, APIs
or plugins the application uses, or in contents the
application mashes from external origins.

Attackers have therefore learnt how to take ad-
vantage of such security holes to make their at-
tacks stealthier and more massive. These attacks
can leverage the user’s browser to carry out a num-
ber of purposes ranging from information leakage,
live keylogging, session riding or more elaborated
schemes such as internal network fingerprinting,
worm propagation or botnet management. Such
sophisticated attacks are carried out through com-
plex scripts hidden through layers of redirection
and obfuscation and commonly known as malicious
JavaScript or JS malware[23]. More information on
Web 2.0 vulnerabilities and related attacks can be
found in [8, 18]

1.3 Research Approaches

The SWAN WG is basically approach-agnostic in
that it allows anyone to join and to propose its
own approach to contribute to the fight against the
proliferation of web-based attacks. Of course, on-
going projects do implement one specific approach

but this does not constrain all members to follow
the same path; parallel, complementary or concur-
rent approaches are also welcomed. Indeed, there
are many ways to deal with security issues in Web
2.0 applications either from the client or server’s
viewpoint or through the collaboration of the two
sides. However it is usually agreed that server-side
countermeasures are ineffective when attacks target
users unless one is able to protect every web appli-
cation on the Internet. Therefore, recent research
works have been carried out on the client-side ex-
clusively, except for secure mashup schemes|[21, 25].

Some researchers have concentrated on the
browser itself where many vulnerabilities lie and
where exploitation takes place: initiatives aiming to
sandbox the browser[16] or to enforce security poli-
cies in the browser[22] have been proposed. Other
works focused on how to prevent some kind of at-
tacks such as XSS[20] or CSRF[24] by designing
some heuristics to characterize these attacks. To a
much more granular level, JavaScript being the de-
facto standard in AJAX and in other programming
frameworks, attackers have naturally took advan-
tage of it being enabled in the victims’ browsers.
Consequently, some researchers took interest in
how to mitigate such attacks by trying to mini-
mize the impact of the JavaScript language: secure
subsets[29], interposition[35, 39] or other harden-
ing techniques have been elaborated. An adverse
approach is not to restrain JavaScript in any way
but rather to analyze programs to detect any mali-
cious behavior: VM-based execution[31, 33], data
tainting to prevent XSS[38] or even control flow
analysis[17].

Though, we have favorized the latter approach in
some of our works, we do not restrain WG members
from contributing using any other approach.

2 Second Year Activities

From its inception, the SWAN WG has decided to
concentrate on a rather precise objective in order
to appeal to the community and launch projects
as fast as possible. We launched a first project, the
Web2Sec Testbed, a testbed to accommodate large-
scale practical Web 2.0 application security-related
experiments. The project does not only intend to
build a practical testbed on top of the WIDE cloud
but also to develop tools to be used within the
testbed. While building a testbed seems relatively
easy given the efforts deployed in other WIDE WGs
such as WIDE-Cloud or ds1, the WebSec Testbed is
yet to be constructed. However, the SWAN WG has
been concentrating on developing analysis tools, es-
pecially to analyze JS malware which is a hot topic

in Web 2.0 security.

For that purpose, we designed and started de-
veloping a proxy-based solution to analyze JS mal-
ware. This led to several publications on how to de-
tect and extract obfuscation in JS malware[3] and
how to automate deobfuscation to provide static
analysis of JS malware[4, 5].

3 Web2Sec Testbed

The testbed is an all-purpose tool in that it allows
designing large-scale experiments on both the of-
fensive and the defensive side. By collaborating
with the WIDE-cloud WG, we propose to deploy a
testbed to perform experiments on Web 2.0 secu-
rity issues. Similar to previous works from Stanford
University[7], the deployment is two-fold. We pro-
pose on one end cloud services that will simulate a
vulnerable and/or hostile Web 2.0 environment and
on the other end, users will be provided with virtual
machine (VM) images comprising several browsers
(and several personalities) equipped with some plu-
gins for defense and analysis, as well as several tools
to perform security audit or attacks.

3.1 Motivation

The main motivation for such testbed is the one for
any testbed: we cannot perform large-scale experi-
ments in the wild and need to recreate a practical
environment to provide containment of our exper-
iments. Furthermore, large-scale attacks on social
networks have already been witnessed and it is le-
gitimate to try to understand propagation schemes
better in order to mitigate these. But this cannot
be reproduced on a small network, thereby the need
for a larger experiment environment.

3.2 Overview

Figure 1 shows a simple overview of the tools we
will deploy and develop for the Web2Sec testbed.
As stated previously, the deployment is two-fold.
On the server-side are present Web services we will
provide to create the experiment environment and
on the client-side are listed tools that will be in-
cluded in the VM image: aside from browsers, prox-
ies, vulnerability scanners, automation engines, at-
tack frameworks will also be featured. On the right
side of Figure 1, we present some tools we wish to
develop in order to support experiments carried out
in the testbed. At least 3 tools are to be engineered:
a web security scanner for Web 2.0 applications, an
AJAX monitor to track AJAX transactions gener-
ated by the browser and a JavaScript debugger to

Available Tools for Testbed Tools to Develop

‘GoogleWave" CSAW " WebGoat ' | ‘WSScanner '
JS Debugger

Server Side

Client Side

WebScarab 02

Firefox 4

Flrebug, NoScript,
Greasemonkey, etc.

Figure 1: Overview of the tools to be deployed in
the Web2Sec testbed

analyze JS programs and their behavior.

3.3 Applications

The Web2Sec testbed will support both offensive
and defensive experiments in the realm of the Web
2.0. It can be used to perform sophisticated web
application security evaluations and measure their
impact on different browser personalities. We can
also evaluate independently the security of differ-
ent browsers against different type of attacks. It
can also be used to foresee next-generation attacks
and monitor the propagation of Web 2.0 attack vec-
tors. Instrumentation of browsers and applications
can also provide several interesting measures. Not
to mention that such tool can also be used for edu-
cation purposes as it was done in previous research
works cited in Section 3.4

3.4 Related Works

Though testbed is not a recent research topic, there
have not been any proposal on web security ori-
ented testbeds until 2010. Contributions are not
revolutionary but rather attempt to shed light on
the critical issues the web community incurs. Un-
surprisingly, most of the proposed testbeds were de-
signed and used for educational purpose, the most
outstanding being the Webseclab[7] used in web
security classes in both Stanford and CMU. Our
testbed basically follows the same design with on
one end the cloud service and on the other end
VM images. Webseclab’s cloud service does actu-
ally perform class administration tasks while every
student gets a VM distribution that contains the
class exercises and tools to resolve them. Connect-
ing to the cloud service allows for rating, download-
ing class materials and updating contents. Other
notable testbeds have been the Blunderdome[27]

which is rather an academic multi-layer service of-
fensive security testbed simulating a university net-
work and moth[6], a VM image that contains a set
of vulnerable web applications and scripts for test-
ing web application security scanners or static code
analysis tools.

4 JavaScript Analysis Proxy

One of the other main projects of the SWAN WG
is the development of a JS analysis proxy.

4.1 Motivation and Approach

Web 2.0 applications make an important use of the
JavaScript (JS) language through the AJAX frame-
work and it has proven to be a critical component
of modern applications in terms of security, to the
extent that is it often considered safer for users to
disable JS in the browser. However, there is an
important shortfall regarding user-experience and
some popular applications are simply not accessible
without JS enabled, not to mention the addiction
of users to eye-candy interfaces.

Therefore, it has become obvious that such users
are in need of systems able to provide them with
a safe and usable Web experience. Earlier works
have already tackled how to prevent attacks either
on the server-side or on the client-side but often
rely on heuristics an attacker can mimick. Lately,
it has been understood that Web 2.0 security is-
sues are more and more exploited through client-
side vulnerabilities, notably by abusing the Same-
Origin Policy (SOP) weakness and injecting remote
JS payloads through Cross-Site Scripting (XSS)
vulnerabilities. Attack payloads are often obfus-
cated and infected pages use many anti-analysis
techniques, making straightforwared dynamic anal-
ysis techniques somehow difficult to use. Many
proposals have also focused on analysis but fail to
provide a consistent context, especially in context-
dependent obfuscations against which forensic anal-
ysis is useless.

Additionally, a recent technical report from
Google[34] pointed out several weaknesses of cur-
rent web malware detectors. In particular, it
distinguishes four prevalent classes of detectors:
virtual machine-based detectors (web honeypots),
emulation-based detectors which are the succes-
sors of virtual machine-based detectors, reputation-
based detectors (blacklists) and signature-based de-
tectors (antiviruses). The authors of this report
surveyed circumvention techniques in modern web
malware:

e social engineering are a set of techniques that
require the end-user interaction in order to cir-
cumvent passive web honeypots;

e cloaking are a set of techniques that prevent
analysis from emulation-based environments
by detecting their presence;

e redirection are a set of techniques to hide mal-
ware distribution websites from blacklists by
leveraging a redirection network made of nu-
merous domains redirecting to each other;

e obfuscation are a set of techniques that render
the code of program unintelligible to a human
user and thwart signature-matching.

The authors propose to combine existing ap-
proaches in order to increase effectiveness.

On the other hand, we remark that actual
web malware detectors that propose to analyze
JavaScript are often execution-based which lead
to undesired effects. First, the side-effects of ex-
ecution have prompted attackers to design anti-
analysis techniques to thwart dynamic analysis such
as cloaking and obfuscation. Second, executing a
malware can result in exploitation if the execu-
tion is not properly contained, prompting an offline
analysis, that is analysis does not take place dur-
ing browsing the Web. This has the consequence to
render offline analyzers less attractive to end-users
due to a low usability. Indeed, it is difficult to co-
erce users into analyzing scripts on a web malware
analysis website each time they suspect a page of
containing malware.

We also remark obfuscation is not really con-
sidered an issue by past research: either it is
seen as an indicator of malice[9, 26] (while it is
not[33]) or it is seen as trivially deobfuscated during
execution|[11, 36, 12]. However, recent advances in
cloaking have demonstrated a hardening of obfusca-
tion techniques that are able to stop deobfuscation
in the case an analysis environment is detected. Of-
ten, benign contents are produced in order to con-
fuse analysis.

We propose to apply a static, that is execution-
less, approach to JS malware. The above remarks
indicate that such analysis should take place on un-
obfuscated malware in order to be successful. Since
static examination of obfuscated JS code cannot
yield any result, it is necessary that we design a
method to reliably cancel obfuscation while pre-
venting execution of the JS code.

4.2 Threat Model

A common scenario unfolds as follows (cf. Fig. 2):

Web Server

= Y
7 F7 $.0 B
g8 — 8 =%

A

Web Cluster

Figure 2: Typical Web infection threat model sce-
nario

e step 1: the victim browses an infected web ap-
plication (infected at step 0);

e step 2: the server will process requests from
the user and may include infected contents in
its response;

e step 3: the malware content possesses some
specificities that makes it possible to bypass
deployed security devices;

e step 4: the browser parses the web contents
and eventually executes embedded scripts or
download linked scripts that will be then ex-
ecuted. The user can also be trapped into a
redirection or have a malicious iframe injected
into the page she is browsing;

e step 5: upon execution, the script does some-
thing harmful and might communicate results
back to an attacker’s remote server or simply
take silent actions that will profit the attacker
or else make the victim download some mal-
ware;

e in most advanced scenarios, several attacks are
combined to produce more massive harm lever-
aging either the participatory or social charac-
teristics of Web 2.0 applications, or the loosely
secured internal network of the victim.

One may opt that such scenarios do seldom occur.
However, isolated infected users might not notice
they are part of a massive attack, and companies
often fail (sometimes on purpose) to report on such
events. Hence, the publicity of large-scale Web 2.0
attacks remain lower than reality.

4.3 Overview

JS malware are stealthy, polymorphic and highly
use obfuscation to conceal its malicious intent. It
is often hidden through several layers of redirec-
tion and obfuscation. Since, we cannot rule that
an obfuscated script is malicious[33], we need to

HTTP N Internal
request process
HTTP ;
response
- Cr"oss—do.mam 3
inclusion

Prox:
communication

Domain P (target)

remote

inclqsion
wel
-

4
—
Domain C

(vulnerable)

Application

Deobfuscatiol

ICAP server S

dynamically
generated
requests

Malware
database

aggregated .
script page‘ E mashing

Figure 3: Overview of the Proposed Solution

deobfuscate it to ensure a sounder and more com-
plete analysis. Besides, we require static analysis
methods in order to maximize code coverage in a
single pass. However to fight against different anti-
analysis tricks specific to obfuscation schemes, we
need to convey enough usable context to the an-
alyzer. This can be done by parsing suspicious
linked contents and fetching potential deciphering
scripts. In order to tackle client-side JavaScript, we
decided to deploy our solution on the client-side and
to avoid putting any trust on the server-side since
it is likely to be infected. However, since we need
a consistent context in order to conduct JS pro-
gram analysis, a realtime processing becomes nec-
essary, which implies new constraints on our design
solution. On one hand, program analysis can be a
computation-intensive task and we should not im-
pose it on the browser which is already busy with
Web 2.0 application rendering. Additionally, if we
were to partly execute suspicious code, we would
rather avoid the browser performing such a risky
task. On the other hand, we are looking for a re-
alistic browser context in order to analyse the JS
program as precisely as possible, but since we are
aiming at performing static analysis, the context of

the application and the personality of the browser
can be provided to a proxy.

For these reasons, we advocate the use of a proxy-
based solution, we named (sak_mis) which would
sustain the load of realtime static analysis on JS
candidates. The system is designed to work as fol-
lows (please refer to Fig. 3):

1. (sak_mis) is a proxy that intercepts HTTP re-
quests issued by the end user and subsequent
responses returned by the server;

2. upon reception of an HTTP response, the
proxy kicks off the prefetching stage:

3. the requested web page is parsed to detect
script inclusions, links and potential malicious
locations (iframes, images, etc.). Script con-
tents are then retrieved (prefetching) and in-
lined into the original web page;

4. if newly downloaded contents also contain links
or inclusions to contents of interest, prefetch-
ing is also performed on these contents. This
scenario also applies when new inclusions are
uncovered after deobfuscation;

5. once prefetching is completed, the aggregated
script page is sent to an external application
server;

6. the application server is responsible for au-
tomating deobfuscation: obfuscated contents
and decoding routines are extracted first. The
deobfuscation stage of the attack scenario is
emulated by the server. The process is re-
peated in case the deobfuscation yielded ob-
fuscated contents as well;

7. once scripting contents can be directly inter-
preted by the machine, the decision module
applies static analysis to extract a model of
the script’s intents. This model is compared
to a knowledge base in order to infer whether
it is a model of malicious intents or not;

8. in case the script is benign, the deobfuscated
script is injected back into the original web
page and served to the end user.

Since the goal is ultimately to decide on the mal-
ice of a given JS program, the proposed solution
should prepare the JS candidate to be analyzed in
the most efficient way. To do so, we need to de-
obfuscate obfuscated contents in order to provide
readable code from which we can compute abstract
semantics. But again, to achieve such task, we
should ensure enough code is actually available to
reverse the cipher (in case of a cipher obfuscation).
Obfuscation techniques actually rely on several lay-
ers of links and redirections, as well as layers of
obfuscation, therefore we need to ensure that all
linked contents (scripts) are prefetched and mashed
in order to perform deobfuscation. Therefore, the
proposed system revolves around 3 modules: aggre-
gation, deobfuscation, decision (analysis).

4.4 Recursive Pre-fetching of Suspi-
cious Linked Contents

A malicious script is not expected to be monolithic
and is often scattered across script files, DOM-
embedded contents or iframes. In particular, linked
contents injected via script or iframe tags may orig-
inate from different domains. Therefore, the script
found in the original web page may not be mali-
cious itself, or hard to be decided on. It is nec-
essary to fetch these additional or linked contents
in order to have an accurate view of the script-
ing contents involved in a web page. Another ex-
ample is on-demand loading, where additional con-
tents are only downloaded later during execution.
Such behavior is implemented through the Xml-
HTTPRequest (XHR) object which allows asyn-
chronous HTTP communication. Pre-fetching here

will look for XHR and download script contents in
advance to evaluate its impact on the current script
contents. Prototype hijacking[32] has the potential
to override a benign function with a malicious one.

Since malicious scripts may be obfuscated
through several layers of obfuscations and redirec-
tions; the two first processing steps are recursive.
Once a deobfuscation step has been taken, the out-
come may be still obfuscated but the deciphering
routine may not be directly present in the output
but rather as a link, a DOM-embedded string or
an iframe. Therefore, it is necessary to run the
pre-fetching step again to gather scripting contents
used in the deobfuscation step. These steps are re-
peated until the outcome is a plain interpretable
script with no linked or DOM-embedded contents.

4.5 Emulation-based Deobfuscation

Obfuscation is any transformation that render a
piece of code unreadable, hence hindering analysis
by a human or an automated analyst. Obfuscat-
ing transformations span a wide set of techniques
ranging from simple string splitting to encryption.

Obfuscated scripts, in particular, malicious ob-
fuscated scripts carry out 4 common stages as
stated in [11]: 1) redirection and cloaking, 2) de-
obfuscation, 3) environment preparation and 4) ex-
ploitation. This highlights the fact that some ob-
fuscated scripts, e.g., encrypted ones, will eventu-
ally deobfuscate themselves before further execu-
tion. Such argument is always pointed out by dy-
namic analysis advocates to support the fact that
obfuscation is not an issue, if not completely dis-
carded by researchers that confuse obfuscation with
malice. But the boundary between deobfuscation
and the following stages is not always clear and
some recently witnessed obfuscation schemes do in-
terleave obfuscation with environment preparation
and/or exploitation.

Contrary to past research that emulated a com-
plete browser environment and just integrated a
JavaScript engine, sometimes instrumented, we
propose to emulate down to the execution of
JavaScript, precisely at the deobfuscation stage
(stage 2).

4.5.1 Approach

Since static methods cannot overcome the obstacle
of obfuscation, emulation allows to reproduce the
outcome of the deobfuscation stage without incur-
ring side-effects inherent to a real execution. Here,
the emulation is not aimed at the whole script and
should only be carried out on the obfuscated path.
The obfuscated path is comprised of all the instruc-

tions involved in deobfuscating the script: it can
be further decomposed into the obfuscated strings
and the deciphering routine (or decoder), when it
exists. The first step of deobfuscation is therefore
to extract the obfuscated path from the aggregated
script parse tree, obtained after pre-fetching. But
only the decoder is actually emulated, obfuscated
strings being used as input.

In this research, we focus on JavaScript,
which has been widely used in attack scenarios.
JavaScript is both an object-oriented and func-
tional language but the obfuscation schemes we are
considering seldom make use of functional proper-
ties of JavaScript (variable promotion, variable sub-
stitution). Given that the deobfuscation stage can-
cels a prior obfuscation to provide an executable
script to the next stage, the deobfuscation process
is bound to terminate. We assume that the de-
obfuscation stage ultimately converges to a unique
normal form: the unobfuscated original script.

Concerned with issues of performance, soud-
ness and completeness, we considered several ap-
proaches to automate the deduction of obfuscated
strings by the deciphering routine. Emulating JS
instructions through another scripting language ob-
viously suffers from lack of completeness as well as
poor performance inherent to scripting languages
in general. To satisfy properties of soundness
and completeness, we considered formal approaches
such as theorem proving, but state-of-the-art the-
orem provers can not completely emulate JS ob-
fuscating transformations. Eventually, we turned
to rewriting systems. Maude[10] is such rewriting
framework whose underlying logic is membership
equational logic. Meseguer[30] observed that equa-
tional logic is very well suited to give executable
axiomatizations of imperative sequential languages.
It was suggested to us that functional modules in
Maude[10] could fit our requirements for sound and
complete deduction of the outcome of JS instruc-
tions. As a matter of fact, computation in func-
tional modules is accomplished using the equations
as rewrite rules.

4.5.2 Maude and Membership Equational
Logic

Functional modules satisfy the membership equa-
tional logic as well as the additional requirement
of being confluent and terminating. Functional
modules are thereby used to emulate deobfusca-
tion: variables and objects are mapped to Maude’s
sorts, instructions are emulated through equations.
Computation is realized by using these equations as
rewrite rules applied to the obfuscated strings, un-
til a canonical form is found, i.e., the deobfuscated

script. The system supports the extraction and
conversion steps to deobfuscate a script: at first, a
preliminary analysis should allow the system to dis-
ambiguate obfuscated contents from the rest of the
code, and then further isolate the deciphering rou-
tine and the obfuscated strings. The deciphering
routine is then converted to a functional module’s
equations which are then used to rewrite the obfus-
cated string through reduction. Algorithm 1 gives
a more detailed description of the processing that
takes place just after pre-fetching. Once the em-
ployed obfuscation scheme has been detected, the
obfuscated path is extracted and the deciphering
routine is converted into a Maude functional mod-
ule. Upon deobfuscation, an additional step verifies
whether deobfuscation is still needed.

An advantage of Maude is that it employs
term-indexing techniques to achieve high speeds of
rewriting[37]. However, it does not support every
JS native construct, such as loops. Yet, we can
take advantage of conditional equations to emulate
recursions. Doing so requires additional process-
ing to transform JS loops to recursive functions.
With a similar approach to some previous works in
binary deobfuscation[l], we propose to apply auto-
mated deduction to the deobfuscation of scripting
languages. In particular, for this work, we focus
our efforts on JavaScript, a Web 2.0 de-facto stan-
dard language embedded natively in every browser
and actively used in attack scripts. However, we be-
lieve that such approach can be applied to scripting
languages bearing similar properties to JS, such as
ActionScript (Flash) or VBScript.

Algorithm 1 Automated deduction of script in-
structions

1: obfstring, decroutine = extract(script)
2: if script contains loops then

3: script = loopToRecursion(loops)

4: end if

5: fmod = convert(decroutine)

6: output = Maude.reduce(fmod,obfstring)
7. if output contains links then

8: output += prefetch(links)

9: end if

10: if output is obfuscated then

11: script = output

12: repeat from line 1

13: end if

4.5.3 AST-based Extraction of Obfuscated
Contents

Techniques to detect obfuscation in web scripts|9,
26] have been proposed recently. The goal is usu-

ally to detect malware assuming obfuscation is an
indicator of malice. Both proposals make use of ma-
chine learning methods whether on statistical string
features (byte occurence, entropy, word size) or se-
mantic features (JS keywords and symbols).

Contrary to these related works, we are not con-
sidering the obfuscated string itself, but rather the
obfuscating transformation or combination of ob-
fuscating transformations, often implemented as
automated tools. This proposal is not a method
for deobfuscation however; it seeks to exhibit sig-
nificant features of obfuscating transformations in
order to automate their detection and deobfusca-
tion.

In our approach, we consider the abstract syn-
tax trees of scripts to analyze. We distinguish two
distinct phases: first, we attempt to learn obfus-
cating transformations as subtrees in obfuscated
scripts” ASTs; then, we try to identify the presence
of such obfuscating transformations by matching
learned patterns in candidate scripts’ ASTs. The
expression of a script as an AST is common to both
phases and is obtained by simply parsing the script.
Our subtree matching prototype developed in Ruby
takes advantage of the johnson library [2] which
supports the SpiderMonkey [13] JavaScript engine.

Since we are concerned with reducing the entropy
of script contents for the purpose of analysis, it be-
came necessary to abstract the script code in order
to get rid of the randomization introduced in the
identifiers and values. An accurate and abstract
representation of a program is its abstract syntax
tree. However, the AST used here is different in
some aspects from similar approaches [12]:

e values are discarded and replaced by generic
types: NUM for numeric values, STR for
string values, ID for identifiers;

e some identifiers for
e.g., document, and functions, e.g.,
String.fromCharCode(), are preserved
in order to make explicit operations such as
overriding or aliasing of core objects;

core objects,

e conditions of branching and looping are dis-
carded and the whole construct is replaced by
a couple (S,Z) where S represents a symbol
(either BRANCH or LOOP) and 7 the set of
child nodes, which are instructions that form
the body of the branch or loop;

e all instructions in a block are represented at
the same level by sibling nodes, children of a
node representing the containing block (which
can be a branching control, a loop, a function
definition, etc.).

In this approach, we focus on the hierarchical prop-
erties of tree-like structures.

Obfuscated contents represent part of the code
of JS malware and can therefore be considered as
subtrees of the malware’s AST. Provided we can
learn recurring subtrees from obfuscted JS samples,
it is possible to match such patterns in other JS
ASTs by subtree matching.

We can build a pushdown automaton (PDA) ac-
cepting the selected subtrees. Then, any analyzed
script is transformed into an AST and fed to the
PDA in order to match occurrences of the learned
subtrees (the ones expressing obfuscation). This
technique has been proposed by Flouri et al. [14],
who aim to apply or adapt algorithms, commonly
applied to strings and sequences, to the field of tree
structures. Strings are usually processed using fi-
nite state machines as the model of computation
and this naturally led to the use of pushdown au-
tomata towards trees, since the addition of a stack
accommodates recursion. Thanks to syntactic rules
that limit the number of combination between sym-
bols in a programming language, employing a sub-
tree automaton seems an effective solution that can
scale with a large number of subtrees. Still, the size
of these subtrees can badly affect performance and
should be limited.

Constructing a deterministic pushdown au-
tomata accomodating a set of subtrees is done in
three distinct steps:

1. construction of a PDA accepting a set of sub-
trees in their prefix notation

2. construction of a nondeterministic subtree
matching PDA for a set of subtrees in their
prefix notation

3. transformation of the nondeterministic subtree

matching PDA to an equivalent deterministic
PDA

Each step employs well-known PDA construction
algorithms which are further detailed in [14]. In
this research, we implemented a script that parses
an XML file listing recurring subtrees and gener-
ates the transition rules for the deterministic sub-
tree matching PDA. We also modified a program
emulating a finite state machine to accommodate a
stack. This program would parse the file containing
the transition rules, as well as a file containing the
script to be analyzed. The script to be analyzed
is transformed into an AST and then expressed as
its prefix notation to be fed to the subtree match-
ing PDA. Whenever, there is a match, the matched
subtree is reported, allowing to identify character-
istic subtrees while traversing the script’s AST.

<html>

<title>404 Not Found</title>

</head><body>

<h1>Not Found</hl>

<p>The requested URL /index.php was

not found on this server.</p>
<p>Additionally , a 404 Not Found

error was encountered while trying to use
an ErrorDocument to handle the request.</p>
<hr>

</body></html><script language=JavaScript>
str = "gqndy ‘mh) (:” // the obfuscated string is
// abbreviated for the purpose of brevity
str2="";for (i = 0; i < str.length; i ++){

str2=str24+String.fromCharCode(str.charCodeAt (i) "1);

eval(str2);</script></html>

Figure 4: Original HTML code

4.5.4 Example

This example (see Fig. 4) is a simple eval unfolding
featuring a single loop that deciphers an obfuscated
string via XOR operations. The script is included
into an HTML file that displays a 404 error page to
an unsuspecting user.

In the previous learning stage, we have learnt
one instance of eval unfolding loop and its AST.
Figure 5 displays a sample AST for the following
eval unfolding loop:

for(i=0;i<str.length;i++){
str2 = str2 +

String.fromCharCode (str.charCodeAt(i)~1);

str3 = str3 + str3};
eval (str2);

The LOOP statement contains two instructions
represented by two paths stemming from the LOOP
node: one being the actual decoder using the
String.fromCharCode function and the other path
being a dummy operation on an unrelated variable.

We first extract the script contents from the
HTML file, i.e., instructions comprised between the
<script> tags, and parses the contents. The parse
tree is analyzed to detect the obfuscation scheme
by PDA-based subtree matching. Here, the ob-
fuscation scheme uses a loop to process the obfus-
cated string. This loop is converted to a recursive
function whose body is the decoding routine. The
Maude system readily provides a predefined func-
tional module that defines the string data type as
well as operators to manipulate string objects: the
fromCharCode () function is mapped to Maude’s
char operator, which converts an ASCII code to the
corresponding character; the charCodeAt() func-
tion is emulated by the combination of two basic
operators, ascii, the inverse of char, and substr,
the substring operator. The result of the conver-
sion to a Maude functional module is displayed in

root

/N

LOOP CALL

‘Ay }ody &unc%garam

ASSIGN ASSIGN eval ID

’/eft &lght llef'N‘ght

ADD ADD

C e R

CALL

’/unctloNaram

ACCESS XOR

PN

fromCharCode CALL

/Jncmkgaram

ACCESS

e

charCodeAt

String

Figure 5: Abstract syntax tree of an eval unfolding
transformation.

fmod TEST is
protecting INT .
protecting STRING .
op test Int String String —> String
var I Int
vars S1 S2 : String
ceq test(I1,S1,S2) = S2 if length(S1l) <=1
ceq test(I,S1,S2) = test((I + 1),S1,S2)
+ char(ascii(substr(S1,(length(S1) — I — 1),

if T < length(S1) .
endfm

Figure 6: Maude functional module

Figure 6. The workflow of the recursion is realized
through conditional equations.

4.6 Decision

Static methods are difficult to apply to obfuscated
strings. Our method here applies to a deobfuscated
string obtained after emulation. The intuition is
that we are able to tell what the script intends to
do without executing it. By looking to what the
script offers to do, i.e., its functionalities, it is pos-
sible to understand the actions a script might per-
form upon execution. To that end, script contents
undergo static flow analysis on function calls or op-
erators that are traced back to the root of an in-
struction block. This analysis allows building func-

tional units that decompose the script into blocks
that express a single functionality. The combina-
tion or sequence of functionalities indicate what are
the intentions of the script.

4.6.1 Static Functional Unit Decomposi-
tion

Algorithm 2 Block-based forward flow tracing

functions = []
params =]
transitions =]
for blk € blocks do
for instr € instructions do
if instr D call € calls then
functions|call].add (instr,blk)
for par € params do
params|par].add(instr,blk)
end for
end if
end for
end for
for f € functions do
for instr,blk € f do
for instr/,blkr € fr do
if (instr,blk) = (instr/, blks) then
transitions.add(instr,blk)
end if
end for
end for
end for

transitions.sort()

A functional unit is a set of instructions that
express a single functionality. The term was first
coined by Lu and Kan|[28] and originally refers to
a JavaScript instance, combined with all of (poten-
tially) called subprocedures. Algorithm 2 describes
the steps taken to cluster instructions to function-
alities and link these through their interaction. A
block-based forward flow tracing approach is used
to list native function calls in every block of the pro-
gram as well as instructions related to these func-
tions. Functions manipulating common variables
are then seen as interacting, providing a logical link
between two clusters.

While Lu and Kan favored a top-down approach,
we advocate a bottom-up linking approach in order
to focus on the functional characteristic of the clus-
tered instructions. Besides, a JS function is not ex-
pected to perform a single functionality, especially
malicious ones. Our method applies on the parse
tree (or its abstract syntax tree (AST) representa-
tion) of a deobfuscated script and directly targets
explicit functions. Explicit functions are functions
of which functionality is obvious and that have been
classified by us. By tracing the flow of these func-
tions, we can identify clusters of instructions that
express a single functionality (Fig. 7) and eventu-
ally trace the flow of variables through these dif-
ferent clusters. Such abstract model can be then
compared with a database of models. At the time

10

<script>
var C = init();
// other instructions

var A = C.createSth() Triggering Object Creation
// other instructions
Identified Explicit Function

SuperTriggering Object
Creation

<

A.g(B);
</script>

Figure 7: The proposed JavaScript functional unit

poexali();

function poexali() {

var ender = document.createElement('object');
ender.setAttribute('id','ender');

ender.setAttribute
(‘classid','clsid:BD96C556-65A3-11D0-983A-00C04FC29E36");
try{

var asq = ender.CreateObject('msxmI2. XMLHTTP",");

var asst = ender.CreateObject(‘adodb.stream',");
try {

asst.type = 1;

asq.open('GET', 'http://attacksite//attack.php',false);
asq.send();

asst.open();

asst.Write(asg.responseBody);

var imya = ".//..//svchosts.exe";
asst.SaveToFile(imya,2);

asst.Close();

t}n(;a{mh(e) ¢ - download
(imya); - storage

}catch(e) {} -

} catch(e) { D execution

}

Figure 8: Colored output after processing

of writing, we are not able to predict the average
size of such models. Examples usually feature 3 or
4 functional units.

4.6.2 Example

The output of the Maude functional module (see
Fig. 6) obtained in the previous step is then parsed
and decomposed into functional units. This out-
put is actually the result of emulating the decod-
ing routine on the obfuscated string, which nor-
mally yield the original unobfuscated code. In
this deobfuscated code, the open() call issued
by the variable asq, which is an instance of the
msxml2.XMLHTTP object allows clustering instruc-
tions dedicated to the download of some data, while
the SaveToFile() call from the ADODB stream
instance, asst isolates storage-related instructions.
Finally, the shellexecute () function is linked to a
ShellApplication instance, ass that expresses an
execution functionality. The clustered instructions
have been colored differently in a modified output
(see Fig. 8) of the Maude framework.

This output can be further abstracted to a func-

storage
(asst)

GET http://attacksite//attack.php
[downmad

(asq) [

asq.responseBody

Fo{

imya

execution
(ass)

Figure 9: Functional model computed from the
sample file

tional model as shown in Figure 9. This ab-
stract view offers a more straightforward model
of what activities the malicious script is actu-
ally carrying out: after downloading contents from
a remote URL, the contents of the response,
asq.responseBody, are passed to a storage func-
tionality that saves these into a file called imya and
this file is then inputted into an execution function-
ality.

5 Conclusion and Future

Works

For its second year of activity, the SWAN WG is
steadily progressing. So far, we have proposed some
approaches to tackle Web 2.0 security issues with
our JS analysis proxy, as well as a federating project
that is the Web2Sec testbed.

In particular, the proxy is entering an advanced
stage in its design since all modules are completely
defined. So far, its implementation has yielded
promising proof-of-concepts. However, this still
needs a little more work to reach completion, and
obviously further evaluation is needed. Numerical
results and discussion can be found in the produced
publications[4, 3, 5].

As for the Testbed, it is in stand-by mode but
should be resumed in a near future.

We are still calling for other participants to pro-
pose new projects or contribute on exisiting ones.
In particular, we are interested in developing a JS
debugger, as well as other analysis tools targeted
to other aspects of web applications (Flash, PDF,
etc.) and web services. New approaches to analysis
such as formal methods or symbolic execution also
offer plenty of research opportunities and perspec-
tives.

References

[1] R. Ando. Parallel Analysis of Polymorphic
Viral Code Using Automated Deduction Sys-
tem. In Proceedings of the 8th ACIS Inter-
national Conference on Software Engineering,

11

Artificial Intelligence, Networking and Paral-
lel/Distributed Computing, 2007.

J. Barnette. johnson. Available at: http://
github.com/jbarnette/johnson/.

G. Blanc, M. Akiyama, D. Miyamoto, and
Y. Kadobayashi. Identifying Characteristic
Syntactic Structures in Obfuscated Scripts by
Subtree Matching. In Proceedings of the anti
Malware engineering WorkShop (MWS 2011),
Oct. 2011.

G. Blanc, R. Ando, and Y. Kadobayashi.
Term-Rewriting Deobfuscation for Static
Client-Side Scripting Malware Detection. In
Proceedings of the 4th IFIP International
Conference on New Technologies, Mobility
and Security (NTMS 2011), Feb. 2011.

G. Blanc and Y. Kadobayashi. A Step Towards
Static Script Malware Abstraction: Rewriting
Obfuscated Script with Maude. IEICE Trans-
actions on Information and Systems, E94-
D(11):2159-2166, Nov. 2011.

Bonsai Information Security. moth.
http://www.bonsai-sec.com/en/research/
moth.php.

E. Bursztein et al. Webseclab Security Edu-
cation Workbench. In Proceedings of the 3rd
Workshop on Cyber Security Experimentation
and Test, Aug. 2010.

R. Cannings, H. Dwidedi, and Z. Lackey.
Hacking Fxposed Web 2.0: Web 2.0 Security
Secrets and Solutions. McGraw-Hill, 2007.

Y. Choi, T. Kim, S. Choi, and C. Lee. Auto-
matic detection for javascript obfuscation at-
tacks in web pages through string pattern anal-
ysis. In Proceedings of the 1st International
Conference on Future Generation Information
Technology, pages 160-172. Springer-Verlag,
20009.

M. Clavel, F. Durén, S. Eker, P. Lincoln,
N. Marti Oliet, J. Meseguer, and C. Talcott.
The Maude System. Available at: http://
maude.cs.uiuc.edu.

M. Cova, C. Kruegel, and G. Vigna. Detec-
tion and Analysis of Drive-by Download At-
tacks and Malicious JavaScript Code. In Pro-
ceedings of the 19th International WWW Con-
ference, 2010.

[12]

[16]

[17]

[18]

[19]

[21]

[22]

23]

C. Curtsinger, B. Livshits, B. Zorn, and
C. Seifert. ZOZZLE: Fast and Precise In-
Browser JavaScript Malware Detection. In
Proceedings of the 20th USENIX Security
Symposium, Aug. 2011.

B. Eich. SpiderMonkey (JavaScript-C) Engine.
Available at: http://www.mozilla.org/js/
spidermonkey/.

T. Flouri, J. Janousek, and B. Melichar.
Subtree Matching by Pushdown Automata.
Computer Science and Information Systems,
7(2):331-357, Apr. 2010.

J. J. Garrett. Ajax: A New Approach to Web
Applications. http://www.adaptivepath.
com/ideas/essays/archives/000385. php,
2005.

C. Grier, S. Tang, and S. T. King. Secure Web
Browsing with the OP Web Browser. In Pro-
ceedings of the 2008 IEEE Symposium on Se-
curity and Privacy (S&P 2008), May 2008.

A. Guha, S. Krishnamurthi, and T. Jim. Us-
ing Static Analysis for Ajax Intrusion Detec-
tion. In Proceedings of the 18th International
World Web Wide Conference (WWW 2009),
Apr. 2009.

B. Hoffman and B. Sullivan. Ajaz Security.
Addison-Wesley (Pearson), 2007.

A. Holdoner.
O’Reilly, 2008.

Ajaz: The Definitive Guide.

O. Ismail, M. Etoh, Y. Kadobayashi, and
S. Yamaguchi. A Proposal and Implementa-
tion of Automatic Detection/Collection Sys-
tem for Cross-Site Scripting Vulnerability. In
Proceedings of 18th International Conference

on Advanced Information Networking and Ap-
plications (AINA 2004), Mar. 2004.

C. Jackson and H. J. Wang. Subspace: Se-
cure Cross-Domain Communication for Web
Mashups. In Proceedings of the 16th Interna-
tional World Web Wide Conference (WWW
2007), May 2007.

T. Jim, N. Swamy, and M. Hicks. BEEP:
Browser-Enforced Embedded Policies. In Pro-
ceedings of the 16th International World Web
Wide Conference (WWW 2007), May 2007.

M. Johns. On JavaScript Malware and Re-
lated Threats. Journal in Computer Virology,
4(3):161-178, Aug. 2008.

12

[24]

28]

[29]

[32]

[33]

M. Johns and J. Winter. RequestRodeo:
Client Side Protection against Session Riding.
In Proceedings of the OWASP FEurope 2006
Conference, May 2006.

F. D. Keukelaere, S. Bhola, M. Steiner,
S. Chari, and S. Yoshihama. SMash: Secure
Component Model for Cross-Domain Mashups
on Unmodified Browsers. In Proceedings of the
17th International World Web Wide Confer-
ence (WWW 2008), Apr. 2008.

P. Likarish, E. Jung, and I. Jo. Obfuscated ma-
licious javascript detection using classification
techniques. In 4th International Conference on

Malicious and Unwanted Software, pages 47 —
54, Oct. 2009.

G. Louthan, W. Roberts, M. Butler, and
J. Hale. The Blunderdome: An Offensive Ex-
ercise for Building Network, Systems, and Web
Security Awareness. In Proceedings of the 3rd
Workshop on Cyber Security Ezperimentation
and Test, Aug. 2010.

W. Lu and M.-Y. Kan. Supervised Catego-
rization of JavaScript using Program Analysis
Features. In Asian Information Retrieval Sym-
posium. Springer-Verlag, 2005.

S. Maffeis and A. Taly. Language-Based Iso-
lation of Untrusted JavaScript. In Proceedings
of the 22nd IEEE Computer Security Founda-
tions Symposium, 2009.

J. Meseguer. Software Specification and Veri-
fication in Rewriting Logic. Models, Algebras
and Logic of Engineering Software, 2003.

A. Moshchuk, T. Bragin, D. Deville, S. Grib-
ble, and H. Levy. SpyProxy: Execution-based
Detection of Malicious Web Content. In Pro-
ceedings of the 16th Annual USENIX Security
Symposium, 2007.

S. D. Paola and G. Fedon. Subverting Ajax
for Fun and Profit. In Proceedings of the 23rd
Chaos Communication Congress, 2006.

N. Provos, D. McNamee, P. Mavrommatis,
K. Wang, and N. Modadugu. The Ghost in the
Browser: Analysis of Web-based Malware. In
Proceedings of the 1st Workshop on Hot Topics
in Understanding Botnets, Apr. 2007.

M. Rajab, L. Ballard, N. Jagpal, P. Mavrom-
matis, D. Nojiri, N. Provos, and L. Schmidt.
Trends in Circumventing Web-Malware Detec-
tion. Technical Report rajab-2011a, Google,
Inc,, July 2011.

[35]

C. Reis, J. Dunagan, H. J. Wang, and
O. Dubrovsky. BrowserShield: Vulnerability-
Driven Filtering of Dynamic HTML. In Pro-
ceedings of the 7th USENIX Symposium on
Operating Systems Design and Implementa-
tion, Nov. 2006.

K. Rieck, T. Krueger, and A. Dewald. Cujo:
Efficient Detection and Prevention of Drive-
by-download Attacks. In Proceedings of the
26th Annual Computer Security Applications
Conference, pages 31-39. ACM, 2010.

N. Shankar. Automated Deduction for Verifi-
cation. ACM Computing Surveys, 41(4), Oct.
2009.

P. Vogt et al. Cross Site Scripting Preven-
tion with Dynamic Data Tainting and Static
Analysis. In Proceedings of the 14th Annual
Network & Distributed System Security Sym-
posium (NDSS 2007), Feb. 2007.

D. Yu, A. Chander, N. Islam, and I. Serikov.
JavaScript Instrumentation for Browser Secu-
rity. In Proceedings of the 34th Annual ACM
SIGPLAN - SIGACT Symposium on Princi-
ples of Programming Languages, Jan. 2007.

13

