
WIDE Paper-List in 2011

Network Access Authentication
Infrastructure Using EAP-TTLS on

Diameter EAP Application
wide-paper-aaa-eapttls-00.pdf

PROJECT

WIDE Project : http://www.wide.ad.jp/

If you have any comments on WIDE documents, please contact to
board@wide.ad.jp

Title: Network Access Authentication Infrastructure Using EAP-
TTLS on Diameter EAP Application

Author(s): Yuki Atsuya, Souheil Ben Ayed, and Fumio Teraoka
Date: 2011-11-09

Network Access Authentication Infrastructure Using
EAP-TTLS on Diameter EAP Application

Yuki Atsuya
Graduate School of Science

and Technology
Keio University

3-14-1 Hiyoshi, Kohoku-ku,
Yokohama, 223-8522, Japan
atie@tera.ics.keio.ac.jp

Souheil Ben Ayed
Graduate School of Science

and Technology
Keio University

3-14-1 Hiyoshi, Kohoku-ku,
Yokohama, 223-8522, Japan

souheil@tera.ics.keio.ac.jp

Fumio Teraoka
Faculty of Science and

Technology
Keio University

3-14-1 Hiyoshi, Kohoku-ku,
Yokohama, 223-8522, Japan

tera@ics.keio.ac.jp

ABSTRACT
In our universal AAA (Authentication, Authorization, and
Accounting) infrastructure project, we have already devel-
oped the implementations of Diameter Base Protocol and
Diameter EAP Application. As part of this project, we de-
veloped the first open-source of an EAP-TTLS server on Di-
ameter EAP Application for network access control. EAP-
TTLS is one of the authentication methods in EAP. EAP-
TTLS has two phases. In phase 1, the user authenticates
the EAP-TTLS server by the certificate of the EAP-TTLS
server. In phase 2, the EAP-TTLS server authenticates the
user by user’s password transmitted through the secure tun-
nel established in phase 1. Our implementation supports sev-
eral authentication methods in phase 2 such as PAP, CHAP,
MS-CHAP, and MS-CHAPv2. It was made sure that the
EAP-TTLS server worked correctly for several types of user
terminals such as Windows, Linux, iPad, and Android. The
evaluation results show that the processing time of the EAP-
TTLS server is short enough for practical use.

Categories and Subject Descriptors
C.2.2 [Computer Systems Organization]: Computer-
Communication Networks, Network Protocols

General Terms
Design, Performance

Keywords
AAA, Diameter, EAP, EAP-TTLS

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AINTEC’11, November 9–11, 2011, Bangkok, Thailand.
Copyright 2011 ACM 978-1-4503-1062-8/11/11 ...$10.00.

1. INTRODUCTION
AAA (Authentication, Authorization, and Account-

ing) is an indispensable function for service providers to
provide users with services in the Internet. One of our
projects aims at building a universal AAA infrastruc-
ture for a multi-realm environment on which a service
provider can authenticate and authorize a user request-
ing a service via a trust chain between realms even if
the realm to which the user belongs and the realm to
which the service provider belongs do not have a direct
trust relationship.
In the current Internet, RADIUS (Remote Authenti-

cation Dial In User Service)[13] is widely used for AAA.
Since RADIUS is originally designed for a single realm,
it has several problems if it is used in a multi-realm
environment. For example, RADIUS uses UDP as the
transport layer protocol and does not define a mecha-
nism for secure and reliable message exchange; it does
not define a failover mechanism when a server crashes;
it does not have server-initiated message exchange. As
a successor of RADIUS, Diameter Base Protocol[8] was
standardized in the IETF. It is designed for a multi-
realm environment and solves the problems RADIUS
has. The function of Diameter Base Protocol is to ex-
change AAA information between a Diameter client and
a Diameter server. Application specific functions are
defined as Diameter Applications on top of Diameter
Base Protocol in separate documents. For example, Di-
ameter EAP Application[10] is defined for authentica-
tion and authorization for network access.
In our universal AAA infrastructure project, we have

already developed the first open source of Diameter
Base Protocol called freeDiameter[9] and the first open
source of Diameter EAP Application calledDiamEAP[5].
EAP (Extensible Authentication Protocol)[4] is exten-
sible so that newly defined authentication methods can
be added later. The package of DiamEAP includes
EAP-TLS[14], which supports mutual authentication
between the user and the Diameter server by exchang-

ing the certificates of both sides. Although EAP-TLS is
one of most secure authentication methods, it is a little
bit difficult to deploy EAP-TLS because it requires that
users’ certificates be distributed to the users and that
the user certificate be installed in user’s device.
On the other hand, EAP-TTLS[11] also supports mu-

tual authentication but it does not require the user cer-
tificate for user authentication. EAP-TTLS has two
phases. In phase 1, the EAP-TTLS server sends its
certificate to the user and the user authenticates the
EAP-TTLS server. In this phase, a secure tunnel is es-
tablished between the user and the EAP-TTLS server.
In phase 2, the user can select one of EAP methods that
might not be secure enough such as CHAP and send
user’s information such as the password to the EAP-
TTLS server through the secure tunnel. Since deploy-
ment of EAP-TTLS is easier than that of EAP-TLS,
several operating systems such as Windows, Linux, and
Android support EAP-TTLS as user side network ac-
cess control. However, as far as we know, there is no
open source of an EAP-TTLS server.
This paper describes the design, implementation, and

evaluation of the EAP-TTLS server on Diameter EAP
Application. As far as we know, this implementation
is the first open source of an EAP-TTLS server. It is
made sure that our EAP-TTLS server works correctly
for several types of user terminals. The performance of
our EAP-TTLS server is also shown.

2. RELATED WORK

2.1 Eduroam
Eduraom (education roaming)[1, 6] is an international

roaming service for members of different universities,
research institutions and educational organizations. In
the Eduroam architecture, users from these institutions
are able to access the Internet at any of the participated
institutions. Eduroam is a hierarchically federated ser-
vice based on a number of technologies: principally the
RADIUS AAA protocol and the IEEE 802.1X technol-
ogy. The principle of Eduroam control access is that
when a user tries to access the Internet, its credentials
are checked at the institution to which the user belongs.
Eduroam lacks some critical features such as for con-

trolling user’s authorizations to access the Internet. In
addition, an institute may provide additional services
and resources for visitor users, however, after being au-
thenticated successfully, the home institution and the
institution providing Internet access are not exchanging
user’s attributes which can be useful for access-control
at service layers.

2.2 Shibboleth
Shibboleth[3, 12] is Internet2 federated identity man-

agement middleware focusing on educational institu-

tions. It is an open-source project based on Security
Assertion Markup Language (SAML)[2], an OASIS Se-
curity Services Technical Committee XML-based stan-
dard for creating and exchanging authentication and
authorization information, to protect online resources
from unauthorized access. It also provides a federated
Single Sign-On (SSO) for web-based applications. The
Shibboleth protocol aims to allow federated organiza-
tions and different Service Providers (SPs) to manage
and exchange information about shared resources. It
defines a set of interactions between a service provider
and an identity provider to facilitate exchange of at-
tributes. Comparable to many other authentication
and authorization environments, the access control in
Shibboleth is based on user identity. However, the user
identity is not enough and more additional user infor-
mation should be considered in making decision in order
to offer fine-grained access control and grant adequate
authorizations for accessing services.

3. OVERVIEWS OF DIAMETER AND EAP

3.1 Diameter Architecture

3.1.1 Diameter Nodes
Diameter defines several kinds of nodes for use in a

multi-realm environment. The Diameter client is a node
that sends AAA requests. An example of the Diameter
client is a NAS (Network Access Server). The Diameter
server is a node that handles AAA requests for a par-
ticular realm. The relay agent relays the Diameter mes-
sages without analyzing their contents. The proxy agent
relays the Diameter messages and it may modify the Di-
ameter messages based on the policy of the realm. The
redirect agent does not forward the Diameter messages
but notifies the Diameter client, the relay agent, or the
proxy agent of the routing information. The translation
agent performs protocol translation between Diameter
and other AAA protocols such as RADIUS.
Figure 1 shows an example of Diameter nodes. There

are two realms: Realm-1 and Realm-2. Each realm has
its own Diameter server that handles AAA requests for
the realm, the relay or proxy agent for message rout-
ing to other realms, the redirect agent, and the NAS
(Network Access Server) as the Diameter client. In
this example, a node node@realm-2 sends a network
access request to the NAS in Realm-1. The Diameter
Request and Answer messages are exchanged between
the Diameter client in Realm-1 and the Diameter server
in Realm-2 via the relay/proxy agents in Realm-1 and
Realm-2. As a result, the node is authenticated and
allowed to access the Internet.

3.1.2 Diameter Base protocol and Diameter Appli-
cations

!"#$%&'

!"#$%&(

!"$#)*+,-.)/

#0"12

!"$#)*+,-.)/

#0"12

34#%"2",/

5",6",

34#%"2",/

5",6",

34#%"2",/7$4"12*/

8,#15$#9-1/#0"12/

:";0;</=>?@

34#%"2",/7$4"12*/

8,#15$#9-1/#0"12/

:";0;</=>?@

!"A4,"72/

#0"12

!"A4,"72/

#0"12

1-A"B!"#$%&(

=>?C/="2D-,E/>77"55/?",6",

#77"55/

,"FG"52

Figure 1: An example of Diameter nodes

Diameter consists of Diameter Base Protocol[8] and
a lot of Diameter applications such as Diameter EAP
Application[10]. At the Diameter Base Protocol level,
all the Diameter nodes are forming an overlay peer-
to-peer network with specific security, reliability, and
routing properties. On top of this overlay network, Di-
ameter applications are deployed. A Diameter applica-
tion specifies the role of the different entities involved
in a particular service, and the different commands and
data that these entities exchange. For example, Diame-
ter EAP Application defines some commands and data
for authentication and authorization of a node that tries
to connect to a network.

3.2 EAP

3.2.1 EAP Architecture
Extensible Authentication Protocol (EAP) is an au-

thentication framework. It transports authentication
information and parameters between the user and the
authentication server. In addition, EAP provides func-
tionalities for negotiation and selection of the appro-
priate authentication method among those proposed by
the both sides. EAP is not an authentication method;
it provides necessary functions and defines message for-
mats for supporting authentication method.
The EAP standard was designed to be extensible by

adding new EAP methods. It supports various authen-
tication methods called EAP methods such as EAP-
MD5, EAP-TLS[14], EAP-TTLS[11], and EAP-PSK[7].
Many standards support EAP authentication methods,
such as IEEE 802.11, WPA and WPA2.

3.2.2 EAP-TLS
EAP-TLS is one of EAP methods that uses the TLS

(Transport Layer Security) handshake to authenticate
the user and the authentication server. TLS provides
mutual authentication securely by exchanging the cer-
tificates of the user and the authentication server.
EAP-TLS authentication begins with the EAP-TLS-

Start message in the EAP-Request message sent by the

!"# $%&' #&'(&')

*+,-&.&')/"01"2%3&'4)

))))/"015&67&%.899:#1#.,'. /"015&67&%.);,%%.<'=7><

/"015&%;=2%&899:#4)

))))?@+&2.)A&@@=

*+,-&.&')/"015&67&%.4)

))))/"015&%;=2%&);,%%.<'=7><

*+-&.&')/"01"2%3&'4)

))))/"015&67&%.899:#4)

)))))))))#&'(&'A&@@=B)?&'CDE,.&

/"015&%;=2%&899:#4)

))))?<,2>&?+;<&'#;&EB)F+2+%<&G

*+,-&.&')/"015&67&%.4)

))))/"015&%;=2%&);,%%.<'=7><

/"015&67&%.);,%%.<'=7><

*+-&.&')/"01"2%3&'4)

))))/"015&67&%.899:#4)

)))))))))?<,2>&?+;<&'#;&EB)F+2+%<&G

/"015&%;=2%&899:#4)

))))"H0%

*+,-&.&')/"01"2%3&'4)

))))/"01#7EE&%%

/"0I:4)

))))/"01#7EE&%%

/"015&67&%.);,%%.<'=7><

*+,-&.&')/"015&67&%.4)

))))/"015&%;=2%&);,%%.<'=7><

0
<
,
%&
)J

0
<
,
%&
)K

Figure 2: EAP-TTLS sequence on Diameter
EAP Application

authentication server. Upon receiving the EAP-TLS-
Start message, the user responds with the Client Hello
message in the EAP-Response message containing other
information such as the TLS version number, the ses-
sion ID, the random number, and the set of cipher suites
supported by the user. Next, the authentication server
sends its certificate so that the user can authenticate
the authentication server. Next, the user also sends its
certificate so that the authentication server can authen-
ticate the user.
The use of certificate makes great advantage for se-

cure authentication. But it also makes disadvantage
for the cost of the infrastructure, because distribution
of user certificates is required, and users need to bring
their own certificates when they use.

3.2.3 EAP-TTLS
EAP-TTLS uses the TLS handshake for server au-

thentication while it uses a password based authentica-
tion method for user authentication. It is composed of
two phases as shown in Figure 2: phase 1 uses the TLS
handshake and phase 2 uses a password based authen-
tication method through a secure tunnel.
In phase 1, the authentication server initiates the

EAP-TTLS method with the EAP-TTLS-Start message
in the EAP-Request message. Upon receiving this mes-
sage, the user responds with the Client Hello message.
To complete the TLS handshake, exchange of EAP mes-
sages continues between the user and the authentication

server as shown in Figure 2. When phase 1 finishes, a
TLS tunnel is established between the user and the au-
thentication server.
In phase 2, through this TLS tunnel established dur-

ing phase 1, authentication message exchange will take
place with another EAP method such as PAP, CHAP,
MS-CHAP, and MS-CHAPv2.

4. FREEDIAMETER AND DIAMEAP

4.1 freeDiameter
freeDiameter[9] is an open source of Diameter Base

Protocol[8] developed in NICT (National Institute of
Information and Communication Technology), Japan.
It is written in C and fully conforms to the specification.
As described in Sec. 3.1.2, Diameter Base Protocol is

responsible for reliable and secure exchange of Diameter
messages between the Diameter client and the Diame-
ter server. Application specific functions are defined as
Diameter Applications such as Diameter EAP Applica-
tion. In freeDiameter, a Diameter Application can be
added as an extension of freeDiameter.

4.2 DiamEAP
DiamEAP[5] is an implementation of Diameter EAP

Application developed in our laboratory. It is imple-
mented as an extension of freeDiameter. It provides
functions in a Diameter server for authentication and
authorization of a user.
As described in Sec. 3.2.1, EAP is just a framework of

authentication and authorization and practical authen-
tication mechanisms are defined as EAP methods. Di-
amEAP is designed to make it possible to dynamically
add EAP methods such as EAP-TLS and EAP-TTLS
as plug-ins.
DiamEAP controls the EAP method plug-ins using

callback functions. By registering the functions in an
EAP method plug-in with DiamEAP as the callback
functions, DiamEAP will call the appropriate callback
function at each time. Figure 3 shows the entries of the
callback functions. The five main callback functions are
described bellow.

Config Function
When DiamEAP starts up, this function is called to
read the configuration file of the EAP method plug-in.
This function can specify how to parse the configuration
file, which variable, e.g., certificate, loads its value from
the configuration file.

Check Function
When DiamEAP receives an EAP packet that should be
processed by the EAP method plug-in, this function is
called. This function checks the format of the received
EAP packet.

! "
struct register_plugin
{

char *configure;
char *init;
char *initPickUp;
char *buildReq;
char *isDone;
char *process;
char *check;
char *getTimeout;
char *getKey;
char *unregister;
char *datafree;
char *authavp;

};# $
Figure 3: Callback function entries in

DiamEAP

Process Function
This is the main function of the EAP method plug-
in. It is called after the check function. This function
performs the authentication process and sets the result
to the EAP state machine structure.

BuildReq Function
This function generates the EAP Request message ac-
cording to the value in the EAP state machine.

getKey Function
Once the client is authenticated successfully, this func-
tion will be called. This function makes the master
session key (MSK), which will be shared between the
network access server such as a WiFi access point and
the client.

5. DESIGN AND IMPLEMENTATION OF EAP-
TTLS PLUG-IN

Our implementation of EAP-TTLS is designed as an
EAPmethod plug-in (EAP-TTLS Plug-in) in DiamEAP
as shown in Figure 4. The protocol stack composed
of freeDiameter, DiamEAP, EAP-TTLS Plug-in, and
EAP-TLS Plug-in realizes a Diameter EAP server that
supports EAP-TTLS and EAP-TLS as EAP methods.
Hereafter, the Diameter EAP server that contains EAP-
TTLS Plug-in is called the EAP-TTLS server.
EAP-TTLS Plug-in is designed according to RFC

5281[11]. The supported authentication methods in
phase 2 are PAP, CHAP, MS-CHAP, and MS-CHAPv2.
The user can choose an authentication method used in
phase 2 from this list during the authentication process.
EAP-TTLS Plug-in does not need to configure which
authentication method is used in phase 2 in advance.

5.1 Callback Functions

!"#$%&%'()#*%(+',&,-,.(

/!"##$%&'#(#"0

!"#$%&%'(12+(233."-#4,5(

/$%&')*+0

6&7%'(

!"#$%&%'(

233."-#4,5*(

)*+,-./0

+123,%40

)*+,--./0

+123,%40

8(8(8

8(8(8

!"#$%&%'(12+((

9%':%'(;29 <*%'

!"#$%&%'($%**#=% 12+6>($%**#=%

Figure 4: Position of EAP-TTLS Plug-in

!"#$%&&'()*$+#*

,-!'./$0%*1'

-)23%*+$/2#"'42/2%'

5/$36*%

76/8,-!'$#88#*'

96:"/";

76/8,-!'96:<";=2

>*)?@4'96:"/";

!3/&%'A'-)23%*+$/+#*

B&%"C&'

D*E#"8/+#*

F%2G%;'()*$+#*

<#*HF'(69% <#*HF'()*$+#*

<3%$0'()*$+#*

.)691I%J'()*$+#*

,-!K??@4'=9)FK6* 76/8,-!

Figure 5: EAP-TTLS Plug-in Architecture

Sec. 4.2 describes the interface between the DiamEAP
server and an EAP method plug-in. This section de-
scribes the details of each callback function from the
viewpoint of EAP-TTLS Plug-in. Figure 5 shows the
module diagram of EAP-TTLS Plug-in and Figure 6
shows the definitions of the callback functions.
There is an important data structure, the eap state

machine structure. This structure is defined base on the
EAP back end authenticator state machine[15] and used
for exchanging various information between DiamEAP
and EAP-TTLS Plug-in. It contains the user informa-
tion registered with the user DB such as the user ID, the
password, and the EAP method ID. It also contains a
void pointer methodData which points to the ttls data
structure used in EAP-TTLS Plug-in.
The ttls data structure is used in EAP-TTLS Plug-

in and maintains the authentication session, the cur-
rent phase, the authentication method, and the frag-
mentation information. The fragmentation information
is used for fragmentation and reassembly of an EAP
packet.

Config Function
The config function is called when the DiamEAP server
starts up. As described before, in EAP-TTLS, the server

! "
int eap_ttls_configure(char *configfile)

int eap_ttls_buildReq(struct eap_state_machine *smd,
u8 id, struct eap_packet *eapPacket)

boolean eap_ttls_check(struct eap_state_machine *smd,
struct eap_packet eapRespData)

int eap_ttls_process(struct eap_state_machine *smd,
struct eap_packet eapRespData)

int eap_ttls_getKey(struct eap_state_machine *smd,
u8 **msk, int *msklen, u8 **emsk,
int *emsklen)# $

Figure 6: Definitions of callback functions in
EAP-TTLS Plug-in

is authenticated with its certificate in phase 1 and the
user is authenticated with the password in phase 2. In
EAP-TTLS Plugin, the config function opens the EAP-
TTLS configuration file and reads several parameters
such as server’s certificate, server’s secret key, and CA’s
(Certificate Authority) certificate.

Check Function
When freeDiameter receives a Diameter message that
contains the Diameter EAP Application AVPs, the Di-
ameter message is passed to DiamEAP. Next, DiamEAP
retrieves an EAP packet from the AVPs contained in
the Diameter message. Hereafter, this procedure is de-
scribed as “DiamEAP receives an EAP packet.”
When DiamEAP receives an EAP packet, it calls

the check function. The check function of EAP-TTLS
Plug-in checks that the EAP packet is not broken and
whether the type field contains the correct value that
specifies EAP-TTLS (21).
For example, suppose that the EAP-TTLS server re-

ceives an EAP packet that contains three AVPs of MS-
CHAPv2: the User Name AVP, the MS-CHAP Chal-
lenge AVP, and the MS-CHAPv2 Response AVP. These
AVPs are encrypted by the TLS tunnel established in
phase 1. The check function extracts just the type field
by using a DiamEAP library function diameap eap get type().
Then, the extracted type is checked whether the value
is correct or not. If it is correct, the check function
returns a boolean value TRUE.

Process Function
After the check function successfully finishes, the pro-
cess function is called by DiamEAP. The process func-
tion of EAP-TTLS Plug-in is composed of three main
functions: the reassembly function, the phase 1 func-
tion, and the phase 2 function. The reassembly func-
tion reassembles the received fragments into the original

EAP packet by checking the fragment flag in the frag-
ment. If an EAP packet is fragmented, the fragment
flag is set in each fragment except for the last fragment.
The phase 1 function and the phase 2 function use the

libCrypt library in DiamEAP and the GnuTLS library.
For EAP-TLS, DiamEAP provides a library for EAP-
TLS handshake processing. EAP-TTLS Plug-in also
uses this library in the phase 1 function. In phase 2, the
received EAP packet is encrypted because it is transmit-
ted through the TLS tunnel established in phase 1. The
phase 2 function decrypts the EAP packet and performs
the phase 2 authentication. When the phase 2 function
sends an EAP packet, it encrypts the EAP packet.
For example, suppose that the process function is

called after the previous example in “check function.”
To decrypt the EAP packet, the process function uses a
DiamEAP library function diameap tls record receive().
After that, to extract the AVPs from the EAP packt,
diameap eap ttls listAVPs() is used. Next, the pro-
cess function decides which phase 2 authentication method
should be used according to these AVPs and authenti-
cates the user by the decided authentication method.
The result of authentication is set in the eap state machine
structure.

BuildReq Function
The buildReq function generates an EAP packet such
as the EAP-TTLS-Start message and the EAP-TTLS-
Ack message for a fragmented EAP packet. The data
to be sent is generated based on the information in the
eap state machine structure.

getKey Function
After the authentication processing successfully com-
pletes, the MSK (master session key) shared between
the user and the access point must be generated. Ac-
cording to RFC 5281, the getKey function of EAP-
TTLS Plug-in generates the MSK and the EMSK (ex-
tended MSK) by using GnuTLS library.

5.2 State Machine of the EAP-TTLS Plug-in
Figure 7 shows the state machine of EAP-TTLS Plug-

in. In the initialization phase, EAP-TTLS Plug-in reads
the configuration file and initializes the data for au-
thentication session management, etc. After initializa-
tion, EAP-TTLS Plug-in moves to the phase 1 pro-
cessing and waits for the first message from the user.
When EAP-TTLS Plug-in receives the first message,
it sends the TTLS-Start message to the user. After
that, EAP-TTLS Plug-in waits for the EAP-Response
message from the user. It continues the phase 1 pro-
cessing until the Finished message is received. After
that, EAP-TTLS Plug-in moves to the phase 2 process-
ing. It sends the request message to the user and waits
for the response message from the user. Upon receiving

!"#$"

%#&"'()$'

*!"'+!,

%#&"'()$'

-.#!/'*'

$/!0)1!/

%#&"'()$'

0.#!/'2'

$/!0)1!/

3)14,5$/6'&1&78&9#7)1

$/3:'+!,'

0$)36'!/1;'<=->?"#$"

!533/!!'0.#!/'*'

0$)36'!/1;'$/@6'/1"/$'0.#!/'2

$/3:'$/!0)1!/'

0$)36'!/1;'$/@

$/3:'$/!0)1!/'

0$)36'!/1;'!533/!!A(#&85/

B

Figure 7: State Machine of EAP-TTLS Plug-in

Table 1: Supported phase 2 authentication
methods and their AVPs

authentication method contained AVPs

PAP User Name
User Password

CHAP User Name
CHAP Challenge
CHAP Password

MS-CHAP User Name
MS-CHAP Challenge
MS-CHAP Response

MS-CHAPv2 User Name
MS-CHAP Challenge
MS-CHAPv2 Response

the response message, EAP-TTLS Plug-in performs the
phase 2 authentication processing and sends the result
(success or failure) message to the user.

5.3 Selection of Phase 2 Authentication Method
RFC 5281 does not specify how the user and the

EAP-TTLS server agree with the phase 2 authentica-
tion method. In our design, the phase 2 authentication
method is selected by checking the AVPs contained in
the EAP packets from the user in phase 2. Table 1 is
the list of the supported authentication methods and
the AVPs contained in each method. For example, if
the EAP-TTLS server receives the User Name AVP, the
MS-CHAP Challenge AVP, and MS-CHAPv2 Response
AVP, EAP-TTLS Plug-in estimates that the user wants
to use MS-CAHPv2. If there are lacked or excess AVPs
in the received packets, EAP-TTLS Plug-in returns the
EAP-Failure message.

5.4 Implementation of MS-CHAPv2
As mentioned before, EAP-TTLS Plug-in supports

!"#$%&%'($%))#*% +,!-./($%))#*% 0,123

!""#$$%&'()*

+!,-./0,(12#*#3%

41*#516

,(12#*#3%7!&%

/#38#3 .$#3

Figure 8: Evaluation environment

PAP, CHAP, MS-CHAP, and MS-CHAPv2. As an ex-
ample, this section describes the implementation of MS-
CHAPv2 in EAP-TTLS Plug-in. MS-CHAPv2 is a chal-
lenge handshake authentication protocol defined by Mi-
crosoft. The authentication process of MS-CHAPv2 is
the same as that of CHAP; it compares the user name,
the challenge, and the password hashed by the chal-
lenge. Both the user and the server severally generates
the challenge. Since the challenge is generated by us-
ing the MSK (master session key) and random numbers
exchanged in phase 1, they can generate the same chal-
lenge.

6. EVALUATION
This section shows the working test and the perfor-

mance of the EAP-TTLS server. In the measurement,
multiple operating systems are used as the user termi-
nals. The result of the measurement is the average of 5
times tests.

6.1 Evaluation Environment
Figure 8 shows the evaluation environment. Sev-

eral operating systems and devices such as Windows7,
Linux, iPad, and Android are employed as the user ter-
minal. These operating systems and devices originally
support EAP-TTLS and are not modified for our test.
The EAP-TTLS server is installed in a Linux machine.
The NAS (Network Access Server) is an off-the-shelf
WiFi access point. The user terminal sends the EAP
packet to the NAS by EAPOL (EAP over LAN). The
NAS retrieves the EAP packet from the EAPOL packet
and encapsulates it in the RADIUS packet. Thus, since
there is no off-the-shelf WiFi access point that supports
Diameter, we employed the RADIUS/Diameter gate-
way that performs protocol conversion between RA-
DIUS and Diameter. This gateway retrieves the EAP
packet from the RADIUS packet and encapsulates it in
the Diameter packet. Finally, the EAP packet reaches
the EAP-TTLS server. In the reverse path, the EAP
packet sent by the EAP-TTLS server is forwarded to
the user terminal by the Diameter packet, the RADIUS
packet, and the EAPOL packet. The specification of
each machine is shown in Table 2.

6.2 Working Test
First, the sequence of the EAP-TTLS server is checked

by capturing packets. As a result, it was made sure
that the EAP-TTLS server authenticated the user in

!"# $%&'
()*+&,&'-."/--

#&'0&'-

()*+&,&'-."/1"2%3&'4-

----."/15&67&%,899:#1#,*', ."/15&67&%,-;*%%,<'=7><

."/15&%;=2%&899:#4-

----?@)&2,-A&@@=

()*+&,&'-."/15&67&%,4-

----."/15&%;=2%&-;*%%,<'=7><

()+&,&'-."/1"2%3&'4-

----."/15&67&%,899:#4-

---------#&'0&'A&@@=B-?&'CDE*,&

."/15&%;=2%&899:#4-

----?<*2>&?);<&'#;&EB-F)2)%<&G

()*+&,&'-."/15&67&%,4-

----."/15&%;=2%&-;*%%,<'=7><

."/15&67&%,-;*%%,<'=7><

()+&,&'-."/1"2%3&'4-

----."/15&67&%,899:#4-

---------?<*2>&?);<&'#;&EB-F)2)%<&G

."/15&%;=2%&899:#4-

----"H/%

()*+&,&'-."/1"2%3&'4-

----."/1#7EE&%%

."/I:4-

----."/1#7EE&%%

."/15&67&%,-;*%%,<'=7><

()*+&,&'-."/15&67&%,4-

----."/15&%;=2%&-;*%%,<'=7><

/
<
*
%&
-J

/
<
*
%&
-K

5"(L$#-"EE&%%1?<*@@&2>&4-

----."/15&67&%,899:#1#,*',

5"(L$#-"EE&%%15&67&%,4-

----."/15&%;=2%&-;*%%,<'=7><

5"(L$#-"EE&%%1?<*@@&2>&4-

----."/15&67&%,899:#4-

---------#&'0&'A&@@=B-?&'CDE*,&

5"(L$#-"EE&%%15&67&%,4-

----."/15&%;=2%&-;*%%,<'=7><

5"(L$#-"EE&%%1?<*@@&2>&4-

----."/15&67&%,899:#4-

---------?<*2>&?);<&'#;&EB-F)2)%<&G

5"(L$#-"EE&%%1"EE&;,4-

----."/1#7EE&%%

5"(L$#-"EE&%%15&67&%,4-

----."/15&%;=2%&-;*%%,<'=7><

5"(L$#8()*+&,&'-

M*,&3*N

Figure 9: Sequence of evaluataion

Table 2: Machine specification
machine CPU memory

ThinkPad Intel
user X200s Core2Duo 4GB

terminal 1.4GHz
iPad Apple 256MB

A4 1GHz
Allide Telesis – –

NAS CentreCom
8724SL V2

RADIUS/ DELL Intel
Diamter OPTIPLEX Core2Quad 4GB
gateway 380 2.66GHz

EAP-TTLS DELL Intel
server OPTIPLEX Core2Quad 4GB

380 2.66GHz

the manner of the specification and that each message
contains the appropriate data. When the EAP-TTLS
server receives an illegal user name or password, it re-
jects authentication and returns Access-Reject. If the
NAS is configured as a DHCP server, the user termi-
nal can obtain an IP address and access the Internet.
Table 3 shows the tested operating systems and devices
of the user terminal. It was made sure that all phase
2 authentication methods supported by the operating
systems or devices worked correctly.

6.3 Measurement of Authentication Time
The time of entire EAP-TTLS authentication and the

time of phase 2 authentication were measured. The en-
tire time is from the time when the EAP-TTLS server
sends EAP-TTLS-Start message to the time when the
EAP-TTLS server sends EAP-Success message. In EAP-
TTLS, each authentication method was measured. In
addition, the time of EAP-TLS authentication was also
measured for comparison.
As Table 4 shows, the time of the entire EAP-TTLS

Table 3: Confirmation of user terminals
phase 2 OS/device of user terminal
auth Windows Linux Android iPad
method 7 2.1

not not
PAP OK OK supported supported

by Android by iPad
not not

CHAP OK OK supported supported
by Android by iPad

not
MS-CHAP OK OK OK suppored

by iPad
MS-CHAPv2 OK OK OK OK

Table 4: Authentication Time
Phase 2 Auth Total time Phase 2 time
method (msec) (msec)

EAP-TTLS

PAP 16.39 0.184
CHAP 16.06 0.217
MS-CHAP 16.02 0.442
MS-CHAPv2 15.83 0.436

EAP-TLS - 29.08 -

authentication is about a half of that of the EAP-TLS
authentication. Basically, authentication processing based
on certificate takes much longer time than that based
on password. The difference of authentication time of
EAP-TTLS and that of EAP-TLS is caused by the num-
ber of times of authentication processing based on cer-
tificate; EAP-TTLS performs certificate base authen-
tication once while EAP-TLS performs certificate base
authentication twice.
The time of the phase 2 authentication depends on

the authentication methods. The more complex the au-
thentication method is, the longer the processing time
is. However, the differences are negligible from the
viewpoint of practical use.

7. CONCLUSION
As part of our universal AAA project, the first open

source of EAP-TTLS is developed on Diameter EAP
Application for network access control. In EAP-TTLS,
the user authenticates the EAP-TTLS server by server’s
certificate while the EAP-TTLS server authenticates
the user by the password transmitted through a TLS
tunnel. Currently, several operating systems and de-
vices support EAP-TTLS. Our EAP-TTLS server works
correctly for several types of user terminals such as Win-
dows7, Linux, Android, and iPad. The authentication
time of the EAP-TTLS server is short enough for prac-
tical use.

8. REFERENCES
[1] eduroam home page. http://www.eduroam.org/.
[2] Security Assertion Markup Language (SAML)

OASIS Standard. http://saml.xml.org/.

[3] Shibboleth home page.
http://shibboleth.internet2.edu/.

[4] B. Aboba, L. Blunk, J. Vollbrecht, J. Carlson,
and H. Levkowetz. Extensible Authentication
Protocol (EAP), June 2004. RFC 3748.

[5] S. B. Ayed and F. Teraoka. DiamEAP: an
Open-Source Diameter EAP Application and Its
Evaluation. In Proceedings of the 16th
Asia-Pacific Conference on Communications
(APCC 2010), October-November 2010.

[6] F. Bernal, M. Sánchez, G. López, A. F.
Gómez-Skarmeta, and O. Cánovas. Trusted
Network Access Control in the eduroam
federation. In Proceedings of 2009 3rd
International Conference on Network and System
Security (NSS’09), pages 170–175, October 2009.

[7] F. Bersani and H. Tschofenig. The EAP-PSK
Protocol: A Pre-Shared Key Extensible
Authentication Protocol (EAP) Method, January
2007. RFC 4764.

[8] P. Calhoun, J. Loughney, E. Guttman, G. Zorn,
and J. Arkko. Diameter Base Protocol, September
2003. RFC 3588.

[9] S. Decugis and F. Teraoka. freeDiameter: An
Open Source Framework for an Authentication,
Authorization, and Accounting Infrastructure.
JSSST Computer Software, 2011. (to appear).

[10] P. Eronen, T. Hiller, and G. Zorn. Diameter
Extensible Authentication Protocol (EAP)
Application, August 2005. RFC 4072.

[11] P. Funk and S. Blake-Wilson. Extensible
Authentication Protocol Tunneled Transport
Layer Security Authenticated Protocol Version 0
(EAP-TTLSv0), August 2008. RFC 5281.

[12] W. Jie, A. Young, J. Arshad, J. Finch,
R. Procter, and A. Turner. A Guanxi Shibboleth
based Security Infrastructure for e-Social Science.
In Proceedings of 2008 12th Enterprise Distributed
Object Computing Conference Workshops, pages
151–158, September 2008.

[13] C. Rigney, S. Willens, A. Rubens, and
W. Simpson. Remote Authentication Dial In User
Service (RADIUS), June 2000. RFC 2865.

[14] D. Simon, B. Aboba, and R. Hurst. The
EAP-TLS Authentication Protocol, March 2008.
RFC 5216.

[15] J. Vollbrecht, P. Eronen, N. Petroni, and
Y. Ohba. State Machines for Extensible
Authentication Protocol (EAP) Peer and
Authenticator, August 2005. RFC 4137.

