
第XXIII部

ネットワーク情報の視覚化





W I D E P R O J E C T

�23

第 23部

ネットワーク情報の視覚化

第 1章 netvizワーキンググループについて

netvizワーキンググループの目的は、ネットワーク

の視覚化およびその他の表現、そのためのツールやノ

ウハウに関する議論と情報の共有を行なう事である。

現在、WIDEには、ビジュアライゼーション自体

を研究テーマにしている人はいないが、目に見えな

いインターネット技術を説明するため、また、説得力

のあるプレゼンテーションのために、道具としてビ

ジュアライゼーションを使いこなす事はすべての研

究者に必要になっている。従来は、mawiワーキング

グループなどで計測データの視覚化等の議論をして

きたが、研究目的を持ったワーキンググループの中

では、どうしても研究内容に話が行くため、参加者

の間口が狭くなる。そこで、独立したワーキンググ

ループとして、データ表現にフォーカスした netviz

が存在する。

第 2章 netviz ワーキンググループ 2008 年度の活

動概要

netvizワーキンググループでは、地球規模のイン

ターネットを見せる事を大きなテーマにしている。

2008年5月20日に日本科学未来館で開催したWIDE

プロジェクト 20周年シンポジウムでは、オリジナル

画像を未来館の球面ディスプレイ GeoCosmosに投

影する試みを行ったので、3章で報告する。

4章では、画像認識技術を用いた異常検出につい

て報告する。ここでは、多くの異常トラフィックは、

トラフィック表示した際に特有のパターンを持つこ

とに着目し、画像認識技術を使ってこれを検出する。

異常を検出した際に、対応するトラフィックグラフ

と検出したパターンを表示できるため、検出後の異

常の把握が容易になる。

第 3章 巨大球面ディスプレイによるインターネッ

ト可視化の試み

3.1はじめに

WIDE プロジェクトは日本科学未来館と協力関

係にあり、代表の村井が未来館アドバイザーを務め

るほか、これまでにも展示協力やネットワーク接続

等を行なってきている。2008 年 5 月 20 日に日本

科学未来館で開催した WIDE プロジェクト 20 周

年シンポジウムでは、オリジナル画像を未来館の

球面ディスプレイ GeoCosmos に投影する試みを

行った。

3.2 GeoCosmos

GeoCosmos は、世界初の球面ディスプレイとし

て日本科学未来館に導入され、そのシンボル展示と

なっている。1階シンボルゾーンの吹抜け空間に浮

かぶ直径 6.5 mの球面には、約 100万個の LEDが

貼り込まれており、アニメーションまたは静止画が

投影可能となっている。通常の展示では、気象衛星

がとらえた雲の画像や世界の温暖化を示す画像など

のコンテンツが映されている。また、2階に設置さ

れた球面コントローラを使ってインタラクティブに

画像を操作することも可能である。

3.3オリジナル画像の投影

WIDEプロジェクト 20周年シンポジウムを日本

科学未来館で開催するにあたり、世界を結ぶインター

ネットの画像を GeoCosmosに投影できないかと未

来館に打診したところ、それまで人工物の画像を投

影した事がないとの事であったが興味を持って頂き、

WIDE と未来館の共同研究として取り組むことに

なった。

画像は、Global Lambda Integrated Facility（GLIF

http://www.glif.is/）に協力をしてもらい、GLIF

マップにWIDEやアジア関連のリサーチネットワー

クを追加した図 3.1に示すようなオリジナルの画像
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図 3.1. GLIFマップをベースにした投影用オリジナル画像（提供：GLIF）

図 3.2. GeoCosmosに投影した画像を下から見たところ

を作成した。GeoCosmosの静止画用の画像フォー

マットは、経緯度のマス目が正方形になる正距円筒

図法で 1024 × 2048ピクセルとなっている。

しかし、通常の北極を上にした表示では、会場で

は下から画像を見上げる形になるため、そのままで

はネットワークが集中する北半球の様子が見にくい。

そこで、南北を逆にして表示することにした。

グローバルなインターネットを球面に表示するこ

とで、世界が繋がっている様子、特にその距離感が掴

み易くなる。球面に表示すると、平面画像とはまっ

たく違った印象を受ける事に加え、これだけ巨大な

球面だと迫力も全然違ってくる事が分かった。

3.4まとめ

今回の展示を通して、改めてグローバルなインター

ネットを地球にマップして視覚化する有効性を認識

した。今後もインターネットのグローバル性を示す

ために、球面ディスプレイの有効利用を考えていき

たい。また、次の機会にはぜひ動画にチャレンジし

たいところだが、動画に使えるようなネットワーク

のコンテンツの作成も大きな課題である。次回には、

より面白く分かりやすい展示ができるように、日頃

から考え準備をしておきたい。
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図 3.3. シンポジウム懇親会の様子

第 4章 An Image Processing Approach to Traffic

Anomaly Detection

Abstract

This paper discusses the possibility of apply-

ing an image-processing technique to detecting

anomalies in Internet traffic, which is different

from traditional techniques of detecting anoma-

lies. We first demonstrate that anomalous packet

behavior in darknet traces often has a character-

istic multi-scale structure in time and space (e.g.,

in addresses or ports). These observed structures

consist of abnormal and non random uses of par-

ticular traffic features. From the observations,

we propose a new type of algorithm for detecting

anomalies based on a technique of pattern recog-

nition. The key idea underlying our algorithm

is that anomalous activities appear as “lines” on

temporal-spatial planes, which are easily identi-

fied by an edge-detection algorithm. Also, the

application of a clustering technique to the lines

obtained helps in classifying and labeling the

numerous anomalies detected. The proposed algo-

rithm was used to blindly analyze packet traf-

fic traces collected from a trans-Pacific transit

link. Furthermore, we compared the anoma-

lies detected by our algorithm with those found

by a statistical-based algorithm. Consequently,

the comparison revealed that the two algorithms

found mainly the same anomalies but some were

of various different characteristic types.

4.1 Introduction

The Internet has become one of the most

important social infrastructures in our daily lives.

However, many issues have simultaneously been

pointed out from the view-point of network secu-

rity. Improper uses of networks due to failures,

misconfigurations and malicious attacks consume

excessive bandwidth and deteriorate their per-

formance. Thus these anomalies penalize legiti-

mate applications from using optimal resources.

Detecting anomalies quickly and accurately in

network traffic is a hot topic in the current field of

research (e.g., [17, 38, 51, 94, 95, 101, 140, 198]).

It is essential to characterize network anomalies

to be able to identify them. However, because

anomalies in Internet traffic are widely diversi-

fied, it is difficult to generally characterize them

all, and high volume makes them harder to iden-

tify. Several volume-based methods have been

proposed of finding anomalies by analysing time

series generated from network traffic (e.g. [17,

96]). However, as these methods give no infor-

mation on the specificities of anomalies, the char-

acteristics of anomalies are consequently identi-

fied by investigating dump files or flow records,

and this can be a baffling problem. Recent work

has considered information on network traffic to

accurately identify anomalous traffic. For exam-

ple, Lakhina et al.[101] emphasized the significant

role played by traffic features (e.g. addresses or

port numbers) in detecting anomalies, and they

detected anomalies by analyzing the distribution

of traffic features in network flows.

In this paper we also point out abnormal
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distribution of traffic features and go further by

identifying non-random distributions. We pro-

pose a new approach to identifying anomalies in

network traffic in which the traffic is mapped on

snapshots and anomalies are identified by a tech-

nique of pattern recognition. The snapshots are

based on several traffic features to detect most

kinds of anomalies and they are computed on dif-

ferent (spatial/temporal) scales. The technique

of pattern recognition that is implemented allows

unsupervised learning and no anomaly database is

required. A further advantage of pattern recogni-

tion is its ability to capture ambiguous and short-

lived anomalies. Also, a clustering algorithm

helps to label and classify the multitude of anoma-

lies found. The approach we propose is evaluated

by comparing it with a method of detection based

on a non-Gaussian multi-timescale model[38].

The derived results demonstrate that numerous

kinds of anomalies can be identified with the pro-

posed approach; moreover, it can detect several

short-lived and low-intensity anomalies that the

statistical-based method cannot identify.

4.2 Related work

Network traffic anomalies have been studied

for many years, and several supervised and

unsupervised-learning approaches have been sug-

gested. Supervised-learning methods have mainly

been represented by intrusion detection systems

(IDSs) based on anomaly signatures. However,

due to the constant appearance of new anoma-

lies, unsupervised-learning approaches have also

been focused on. They were first based on volume

variance, identifying both short or long-lasting

anomalies through local or global variances in

the number of bytes. Nevertheless some sophis-

ticated low-rate attacks[100] cannot be identified

by merely analyzing the volume of traffic. For

example a port-scan attack does not necessarily

consume much bandwidth when it tries to access

an abnormally large number of ports on a single

host. In addition to volume, recent work has also

considered traffic features for a closer analysis of

traffic; consequently, the anomalies that have been

found have been more diversified.

4.2.1 Signature-based approaches

Currently, IDSs ([141, 150]) are the most widely

tools used to notify operators about security

issues. These applications analyze all transmit-

ted packets and search for sequences of bytes

known to be malicious. The key feature of IDSs is

their signature database that can be referenced

to identify well-known anomalies. In addition,

pattern-matching techniques allow fast process-

ing to identify malicious code from the payload.

However, because IDSs are based on a signature

engine, novel anomalies cannot be identified and

new signatures haves to be developed for every

new attack. Signatures also cannot be designed

for sophisticated attacks, such as self-modifying

worms, and they cannot cover the multitude of

possible attacks created by malicious users. IDSs

can help to protect systems from attacks they have

previously experienced but they are inefficient in

immediately preventing new attacks.

4.2.2 Statistical-based approaches

The wavelet tool[1] allows a single signal to be

decomposed in several signals representing differ-

ent frequencies. High frequencies indicate spon-

taneous behavior by traffic while low frequencies

exhibit global behavior by traffic. Methods of

detection involve finding global and local vari-

ances in wavelet coefficients to detect respective

short and long-term anomalies. Wavelet methods

were first used on throughput signals highlight-

ing anomalies particularly greedy for bandwidth.

However, several kinds of anomalies cannot be

detected if only the number of bytes is taken into

consideration. To find more diversified anoma-

lies, Kim and Reddy[96] proposed a data struc-

ture to generate more complex signal as a func-

tion of packet information. As the analyzed sig-

nal represents changes in few traffic features, more

kinds of anomalies can be identified. Unfortu-

nately, analysis is still based on a single signal
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describing the whole flow of traffic; consequently,

low-intensity anomalies have yet an insignificant

impact on identifying anomalies in the entire traf-

fic flow.

Network traffic represents a complex multidi-

mensional object in which wavelet provides an

interesting way of breaking down time space.

Despite this, another mechanism also has to be

used to dissect the address space to obtain a finer

grained view of traffic.

Other methods based on statistical analysis

have been proposed to solve the problem of detect-

ing anomalies in network traffic. Unlike tra-

ditional wavelet methods, these methods have

considered traffic features to highlight anoma-

lies. Recent statistical-based methods have

created several random aggregated traffics (or

sketches)[38, 103] to dissect the whole flow. After

this, the global behavior of the traffic is extracted

from these sketches, and discriminating crite-

ria based on statistical analysis highlights data

with abnormal characteristics. A key feature of

statistical-based methods is their accurate charac-

terization of the behavior of global traffic to detect

most anomalies. Different techniques have been

proposed. For example, Lakhina et al.[101] took

advantage of primary component analysis (PCA)

while Dewaele et al.’s approach[38] was based on

non-Gaussian procedures, where both methods

computed their analyse of IP addresses and port

numbers. These methods made use of a thresh-

old on the minimum number of packets involv-

ing anomalies to avoid false positives. Indeed,

statistics computed from “small” flows are not

sufficiently representative and may provide unex-

pected results. Kim et al. proposed[94] a different

approach, i.e., a Bayesian statistics based DDoS

algorithm for detection, which calculated the like-

lihood of non-legitimate packets for each arrived

packet. This approach was promising, but had

a disadvantage in needing answer data for the

learning process.

Consequently, although statistical-based anal-

ysis allows us to identify a large variety of

anomalies, those involving small traffic flows or

those that are defined statistically close to global

traffic behavior cannot be identified with these

methods.

4.2.3 Image processing-based approaches

Some image processing-based methods for

detecting network anomalies have recently been

studied. For example Kim and Reddy[95] intro-

duced a way of summarizing packets information

in a picture (or frame); thereby, many frames

could be computed from network traffic consti-

tuting a movie. A scene-change algorithm was

applied to it to highlight significant changes in

network traffic. The main contributions of this

approach were its short latency to detect anoma-

lies and the use of image-processing techniques to

detect network anomalies. However, as this tech-

nique still counted packets and used threshold to

determine significant changes in network traffic,

several anomalies could not be detected with this

kind of counter.

We propose a new approach to detecting

anomalies based on pattern recognition, where

anomalous traffic flows are detected through

behavior-based signatures, similar to the graph-

ical signatures introduced by Farraposo et al.[51]

for classifying anomalies.

4.3 Temporal and spatial behavior of anoma-

lous traffic

Here, we focus on the temporal and spatial

behavior of anomalies appearing in two types of

network traffic. The first is traffic data called

“darknet”, which only consists of nonproduc-

tive traffic. The second is backbone traffic data

extracted from a trans-Pacific link.

4.3.1 Darknet data

Figure 4.1 displays example scatter plots gen-

erated from a darknet trace taken from a /18

sub-network for a period of 24 hours in October

2006. As described by Pang et al.[140], a darknet

(or background radiation) means nonproductive
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Fig. 4.1. Scatter plot of darknet traffic: desti-

nation address (top) and source port

(bottom)

traffic sent to unused address space. Darknet

data helps us to understand anomalous traffic and

observe graphical signatures. In the upper panel

of Fig. 4.1 the time is represented by the horizon-

tal axis and the vertical axis stands for destination

addresses. The vertical axis represents the source

port number in the lower panel. Each pixel cor-

responds to packets, and the color indicates the

intensity of arrival of the packets. In the upper

panel, vertical “lines” represent exploit attacks or

any processes using network scans (e.g. (e)). The

horizontal “lines” indicate hosts or sub networks

under heavy attack. They could be the targets

of any flood attacks or misconfigurations (e.g. (d)

and (f)).

In the lower panel, we can observe other kinds

of anomalous activities, and we obtained more

information about those found in the upper scat-

ter plot. Here, the vertical or oblique “lines”

mean any procedures using an increasing num-

ber of port sources. This is the case with most

operating systems when a process opens as many

connections as possible. In this panel, the hor-

izontal “lines” indicate constant and heavy traf-

fics from a single port, emphasizing flooding, mis-

configuration, or heavy-hitters. We can observe

two sets of consecutive vertical “lines” (see (a)

and (b) in Fig. 4.1) appearing at the same time as

a sudden heavy noise in the upper panel. These

two behaviors can be understood as a process try-

ing to access a maximum number of computers in

a sub-network within a short duration. This is

typically an exploit or worm behavior. Checking

the header information, note that all these pack-

ets are directed to port 445. Windows has vul-

nerabilities in protocols using this port. Several

worms have spread exploiting these vulnerabili-

ties. The vertical “line” (e) behaves in the same

way, but within a shorter time. Indeed, the packet

information for (e) informs us about an exploit on

ssh. Also, we analyzed the slanted curves (see (c)

an (d) in Fig. 4.1) and detected attacks aimed at

services sensitive to attacks. These attacks do not

appear linear because of the variance in time pro-

cessing or network delays (due to another activ-

ity (d) has some peaks in its source port numbers).

The ports concerned are 80 for (c) and 161 for (d).

These services have well known anomalies driving

in a DoS or buffer overflow. The targets in (d) are

aimed at a small sub-network (see (d) in the upper

panel), whereas (c) is aimed at a single target that

can be easily identified by zooming in on (f).

4.3.2 Trans-Pacific traffic data

The previous figure indicated the shapes of the

anomalies. However, as the input files we used

only provided darknet traffic, these files did not

contain any legitimate traffic. Now, let us present

another example with anomalies in a large and

complex traffic flow. We analyzed a traffic trace

from the Measurement and Analysis on the Wide

Internet (MAWI) archive[29], which is a set of

traffic traces that has been collected by the WIDE

Project since 19991. This archive provides large-

scale traces taken from trans-Pacific links. The

1 http://mawi.wide.ad.jp/mawi/
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Fig. 4.2. Trans-Pacific traffic data in multiple

time scales (2007/01/09)

traffic traces are in pcap form without payload

data, and with both addresses anonymized. Also,

the time duration of all traces is fifteen minutes.

Figure 4.2 shows graphical representations gen-

erated from ten consecutive files of the MAWI

database. The total size of these ten files is about

7.6 GB, for a time length of 2.5 hours and more

than 22 million packets. In the top panel, the ver-

tical axis stands for the source port. We easily see

that the traffic is much heavier than in the pre-

vious example. However, we can still distinguish

several dark “lines” from the whole traffic flow.

Next, we zoomed in on the right (during 9:45–

10:15) of the figure in detail. The middle panel

was also drawn regarding the source port to obtain

a finer grained time scale. The header information

helps us to understand the plotted pixels. The

two oblique “lines” crossing the figure (see (a)

in Fig. 4.2) represent a SYN flood. This is

an attack from a single host on several targets.

The attacker floods targets on port 443 (usually

used for HTTP over SSL). This method is well

known and results in buffer overflow in the Pri-

vate Communications Transport (PCT) protocol

implementation in the Microsoft SSL library. The

other slanted “lines” are the same kinds of attacks

against other services and from different hosts. In

particular (b) stands for a DDoS attack against

a few HTTP servers. The horizontal dark “lines”

are anomalies consuming bandwidth such as that

in DoS attacks, misconfiguration or heavy-hitters

from peer-to-peer networks.

The bottom panel in Fig. 4.2 shows the same

traffic as in the middle panel, but regarding the

destination port. We can observe similar “lines”

to those found in the middle panel (b), and they

stand for the server reactions to the DDoS attack

previously observed. Also, note two kinds of

“lines” repeated several times (see (c) and (d)).

Both of these were DoS attacks on ACK packets

from two distinct hosts against different targets.

4.4 Proposed algorithm

Let us briefly review six goals and main issues in

detecting anomalies in network traffic: (1) First,

it is necessary to design an unsupervised-learning

method (i.e. where anomalies are not known

a priori). We could thereby avoid having to

use signature-anomaly databases or other meth-

ods based on well-known anomalies, like most

of the current IDSs are based on. The pro-

posed method would have to be able to dis-

cover new and unknown anomalies through their

unusual behaviors. (2) In a backbone network,

a huge amount of data is constantly transmit-

ted, meaning that all the data could be merely

handled by summarizing the information. How-

ever, suspicious data only represent a small part

of the whole traffic flow, and the characteristics of

anomalies should not be lost when information on
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traffic is summarized. Significant data for char-

acterizing anomalies would have to be empha-

sized to enable us to proceed with accurate anal-

ysis. (3) Analyzing network traffic is a complex

task due to the number of dimensions implied

in network communications (e.g. addresses, ports,

TCP flags, ICMP types/codes). Although many

abstractions have to be done to handle such multi-

dimensional objects, network traffic anomalies

must still remain conspicuously identifiable. Fur-

thermore, some network-traffic dimensions stand

for large spaces where no elements can be han-

dled individually. For example, the source and

destination address space consists of 232 hosts in

IPv4; therefore, a method of detection in real-

time cannot thoroughly take each host into con-

sideration individually. (4) Once an anomaly

is detected in network traffic, data involved in

the event also have to be retrieved to accurately

characterize the anomaly (its origin, target, and

period of time). (5) Further, anomalies in net-

work traffic are particularly diversified; among

other phenomena their duration and number of

targets are extremely varied. For example, DoS

attacks are characterized by a flash flood to a sin-

gle host whereas an exploit attack tries to con-

nect to a large range of hosts for an undetermined

period of time. It is generally difficult to char-

acterize anomalies in network traffic and similar-

ities among anomalies have to be well defined.

(6) Finally, methods involving low computational

costs are required and anomalies have to be iden-

tified early before they spread.

4.4.1 Main idea

We propose a new approach to detecting

anomalies in network traffic using a technique

of pattern recognition in images similar to the

ones presented in Section 4.3. To provide an

unsupervised-learning method, we have to con-

sider a generic pattern allowing all kinds of

anomalies to be detected in analyzed snapshots.

Although the anomalous traffics discussed in

Section 4.3 are represented by different shapes,

Fig. 4.3. Same anomaly at different scales

appropriate scales allow all anomalies to be shown

as (solid or dotted) “lines”. For example, Fig. 4.3

represents an anomaly on different scales. The

time scale is small in the left panel. The anomaly

is not entirely displayed, and only the local behav-

ior of the anomaly is provided. However a large

time scale allows us to draw the “line” of the

right panel where the whole anomaly is repre-

sented, and the global behavior of the anomaly

is presented. In both cases these “lines” repre-

sent an abnormal distribution of traffic features

where dispersed distributions are depicted as ver-

tical “lines” and concentrated distributions are

represented by horizontal “lines”. For example,

a network scan is represented as a vertical line

in an image where the vertical axis stands for

the destination address and the horizontal axis

represents the time. Due to the wide variety of

anomalies, we have no knowledge of the num-

ber or nature of traffic features abnormally dis-

tributed in these anomalies. In this paper, we dis-

cuss our analysis of only two dimensional images

highlighting one traffic feature; consequently, an

anomaly may appear in different images but

always as a “line”. Combining more dimensions

into an image results in detecting anomalies with

higher computational complexity and, paradoxi-

cally, more graphical representations have to be

considered (to detect all classes of anomalies). For
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example, we can identify anomalies regarding four

traffic features; in 3-dimensional representations

(two traffic features and the time) there is six

possible ways of plotting network traffic, whereas

with 2-dimensional representations (a traffic fea-

ture and the time) there are only four possibilities.

The main idea underlying the new method is to

find, lines representing unusual and excessive use

of a traffic feature from different snapshots. Thus,

the proposed technique focuses on the nature of

the traffic (traffic features) instead of the volume

(number of bytes). This paper has taken into con-

sideration four traffic features (source/destination

addresses and ports) to detect anomalies; how-

ever, the method can easily be applied to other

traffic features. The detected lines correspond to

an important or a negligible number of packets.

Consequently, our method takes advantage of this

asset and permits us to detect anomalies involving

a small amount of data and/or a small number of

packets. Since our method of detection is based on

unusual traffic behaviors and it does not require

an anomaly database, it is able to detect new and

unknown anomalies.

The new method consists of six steps: (1) Ini-

tially adjust a sliding window to the beginning of

the data. (2) Compute multi-scale snapshots for

each traffic feature to be considered. (3) Identify

lines in the snapshots. (4) Retrieve data on net-

work traffic involved in the lines found and sum-

marize these in an “event”. (5) “Events” from the

same source or aimed at the same destination are

grouped together to form “anomalies”. (6) Shift

the sliding window and repeat steps 2 to 5. A clus-

tering technique classifies anomalies found follow-

ing their distribution of traffic features to provide

understandable output.

4.4.2 Computation of multi-scale snapshots

4.4.2.1 Spatial direction

We focused on four traffic features for detecting

anomalies; thus, four graphical representations

were used to compute the snapshots. To reduce

noise in network traffic surrounding the anomalies

and to facilitate their identification in the ana-

lyzed images, we split the entire network traf-

fic into smaller sub-traffics. Indeed, if the whole

network traffic could be analyzed at once, then

anomalies appearing simultaneously would over-

lap one another and generate confusing images.

We propose two general ways of dividing the entire

traffic. On the one hand, the whole traffic is clas-

sified in N sub-traffics corresponding to data sent

from N disjointed blocks of source addresses. On

the other hand, the traffic is arranged in N sub-

traffics standing for data received by N sepa-

rated blocks of destination addresses. Therefore,

2 ∗ N sub-traffics are formed, and a snapshot is

computed after this for each sub-traffic and each

graphical representation (considered for detecting

anomalies). Here, we have considered four graph-

ical representations (from four traffic features),

consequently 2 ∗ N ∗ 4 snapshots are processed

for detecting anomalies in network traffic. This

process helps us to generate images emphasizing

different kinds of anomalies and avoids noise in

network traffic. For example, Fig. 4.4 summarizes

the process for generating images from network-

traffic data from five communications between

three blocks of addresses (N = 3). In this exam-

ple, a network scan on the entire network can be

outlined in the left lower set of images (labelled 3,

4, and 5); also, a DDoS attack from hosts over

the whole network can be highlighted in the right

upper set of images (labelled 1, 2, and 3).

4.4.2.2 Time direction

Like most methods of detection, the proposed

approach browses network-traffic data by using

a sliding window. A common issue is to define an

optimal window size to detect a sufficient number

of anomalies within a short time. With traditional

methods of detection, a small window is preferred

to rapidly detect anomalies; however, only short-

term anomalies can be identified. The advantage

of our method is that we use a small window

to quickly detect short and long-term anomalies.

Indeed, our method only detects lines, and we
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Fig. 4.4. Image generation

do not need to display the whole segment repre-

senting the anomaly; a sub-segment is sufficient

to identify it. For example, Fig. 4.3 shows an

anomaly on different temporal and spatial scales.

In the left panel, the time scale is very short;

therefore, the anomaly is not completely displayed

but can still be identified. We thus took advantage

of a short time scale to detect short and long-term

anomalies as quickly as possible.

4.4.3 Detection: Hough transform

The basic tool we employed to find lines in snap-

shots was the Hough transform[44, 70]. Its two

main advantages are: (1) It is able to detect solid

lines as well as lines with missing parts (e.g. dot-

ted lines). This asset is important for our purpose

since anomalies do not always constantly gener-

ate traffic. (2) Furthermore, it is robust against

noise, and images generated from traces contain

noise due to legitimate traffic.

Let us review some details of this well-known

technique used in pattern recognition. The Hough

transform consists of a voting procedure with an

equation characterizing a shape. For each plot-

ted point, a vote is done for all possible shapes

passing through this point. All votes are recorded

in a parameter space called an accumulator (or

Hough space). Finally, shapes are found by iden-

tifying non-local maximum values from the Hough

space where the coordinates are the parameters

values for identified shapes. In the particular case

of lines, we use polar coordinates to define a line:

ρ = x · cos θ + y · sin θ. For each plotted point

(x1, y1), votes are done for all θ and ρ solving the

following equation: ρ(θ) = x1 · cos θ + y1 · sin θ.

These votes stand for all lines passing through

(x1, y1). Once all votes are done for all points

plotted in the image, lines are found by identi-

fying maximum values in the accumulator, where

the coordinates are values of parameters (ρ and θ)

for the line equation.

For example, in Fig. 4.5 the left graph plots

three points in the line; the use of the Hough

transform in this graph provides the line pass-

ing through these three points. The right graph

in Fig. 4.5 plots the Hough space standing for

the votes of all points; each curve represents all

votes made for a single point. The intersection of

the three scatter plots gives parameters values (ρ0

and θ0) defining the line binding the three given

points.

In our approach, we took advantage of the

Hough transform to find lines (representing

anomalous traffic) in images generated from net-

work traffic. The maximum values were extracted

from the Hough space using a relative threshold

regarding the average value of the accumulator.

Figure 4.6 shows an example of an image com-

puted from darknet traffic and the corresponding

Hough space. The top panel is the original image

from network traffic; note the seven lines indi-

cate the use of an increasing number of source

ports during a short period of time, and there

are some activities in the lower port. The middle
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Original coordinate plane Hough space

Fig. 4.5. Hough transform with three points

Fig. 4.6. Original darknet traffic (top), Corre-

sponding Hough space (middle), and

Detected lines (bottom)

panel is the Hough space resulting from the top

image; there are numerous curves and they mainly

cross at eight points. The point most highlighted

(intersection of curves) represents traffic in the

lower ports whereas around this point the seven

other points stand for the seven lines identified in

the original images. The coordinates of the high-

lighted intersections determine the lines and the

lower panel shows the original image with the lines

identified through the Hough transform.

4.4.4 Identification

Packet-header information corresponding to

lines extracted with the Hough transform should

be used to identify origins, targets, and types of

detected anomalies. Once a line is found, packet-

header information is retrieved from all plotted

points along the identified line. Such packet infor-

mation is summarized into a set of statistics called

an event, constituting a report on a specific identi-

fied line. Indeed, an event provides detailed infor-

mation on a particular set of packets extracted

from the whole traffic flow regarding its abnormal

behavior.

Since several lines can be drawn from a single

anomaly, several events can stand for the same

anomaly. Events with the same destination or

source address are grouped together to output

a single notification per anomaly. For exam-

ple, assuming that the seven distinct lines from

Fig. 4.6 (top panel) are from the same source, only

one event will consequently result from these lines

being detected. Once events are merged and rep-

resent more than one line, we call this an anomaly.

No events standing for a single line are considered

as anomalies to avoid false positives. Anomalies

are reported with corresponding events informa-

tion; consequently, an operator can understand

the anomaly identified and act according to this.
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Seven kinds of reported information are:

• The number of lines found for this anomaly.

• The number of packets recovered for this

anomaly.

• The graphical representation used to identify

the lines.

• The source and destination addresses (IP)

with corresponding percentages and time-

stamps of the first and last packets retrieved

for each host.

• The source and destination ports (TCP or

UDP) with corresponding percentages.

• The percentages of use for all protocols.

• The entropy for each traffic feature considered

in the clustering method (see 4.4.5).

4.4.5 Classification

Many kinds of anomalies in network traffic can

be identified with the method of detection we pro-

pose. To sort the anomalies found and to clar-

ify the output of the algorithm, we classified all

anomalies into several labelled clusters. We imple-

mented a simple method of clustering based on

the distribution of traffic features of each anomaly

that was identified. We evaluated the distribution

of traffic features with the sample entropy intro-

duced by Lakhina et al.[101]. This metric basi-

cally informed us if the distribution of traffic fea-

tures was concentrated or dispersed within a given

traffic flow. Many kinds of anomalies have differ-

ent distributions of traffic features, and their types

can be determined by the distribution of features.

For example, a port scan, executed by a single

host, is characterized by a concentrated distribu-

tion of address sources and a dispersed distribu-

tion of port destinations.

To classify identified anomalies, we took into

account the four traffic features considered for

detecting anomalies; therefore anomalies were

ordered in clusters following a four-dimensional

vector. Each coordinate of the vector was equal

to 0 or 1 depending on whether the sample entropy

was lower than the average or not. Thus, we

obtained 24 different vectors, each of them rep-

resenting a particular cluster. Consequently, each

anomaly was classified regarding its vector (i.e.

its distribution of traffic features) in one of the

24 clusters representing a certain kind of anomaly.

Table 4.1 provides a number for each cluster and

labels for corresponding anomalies. Some clus-

ters are not labelled meaning unknown anomalies.

Note that the cluster numbered 15 is intended for

anomalies identified with all dispersed traffic fea-

tures. However, these kinds of anomalies make

Table 4.1. Cluster of anomalies

Anomaly label Addr Src Addr Dest Port Src Port Dest Cluster Number

Heavy traffic, Peer to peer traffic 0 0 0 0 0

Port scan on few host 0 0 0 1 1

Flood, DoS attack 0 0 1 0 2

Port scan on several host 0 0 1 1 3

Network scan, Exploit, Worm 0 1 0 0 4

Reply to a DDoS attack,

Reply to a DoS attack from spoofed host 0 1 0 1 5

Network scan, Exploit, Worm 0 1 1 0 6

Worm 0 1 1 1 7

DoS attack from spoofed host 1 0 0 0 8

1 0 0 1 9

Flash crowd, DDoS attack 1 0 1 0 10

1 0 1 1 11

1 1 0 0 12

1 1 0 1 13

Worm spreading 1 1 1 0 14

Anomalies mixed, false positive 1 1 1 1 15
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no sense and we deduced that this cluster cor-

responds to a false positive or several anomalies

overlapping.

4.5 Evaluation

We run our algorithm on trans-Pacific traf-

fic traces in a preliminary evaluation, and com-

pared the results with a statistical-based algo-

rithm[38]. Comparing the results from the two

methods revealed that the new method is able to

efficiently identify short and long-term anomalous

traffics representing many classes of anomalies.

The Hough transform allows to detect exploits,

worms, and (port and address) scans through hor-

izontal or slanted lines, while DoS attacks are

represented by horizontal lines in the analyzed

images. Further, the proposed approach has the

ability to detect volume-based methods through

their excessive use of traffic features. It also per-

mits anomalies to be detected involving a small

amount of data, which cannot be detected with

other methods (due to their thresholds on the

minimum number of packets to be analyzed). Fur-

thermore, the detection delay2 with our approach

is shorter and allows us to rapidly warn opera-

tors. Although, our approach is able to detect

anomalies in real-time, the computation time is

significantly longer for the current implementa-

tion of our method than that for the statistical-

based algorithm. However, the small number of

images to process the Hough transform reduces

the execution time and memory use by the appli-

cation. The number of anomalies detected also

increases with a larger number of images (and

a small address block).

4.5.1 Methodology

The two methods were tested on a trans-Pacific

trace from the MAWI project where many anoma-

lies have been reported using the method pre-

sented by Dewaele et al.[38]. Note that the traf-

fic data were captured in August 2004, after the

Sasser worm had become widespread. A great

deal of network activity has been reported con-

cerning this worm.

Although several parameters have to be speci-

fied for both methods, optimal parameters have

not yet been fully evaluated for either of these

two methods. To evaluate our method we tuned

both approaches to approximately find the same

number of anomalies. However, for few attacks,

we figured out that the method based on statis-

tical analysis reported, two anomalies though our

method reported only one. Since anomalies are

reported differently by both methods, we com-

pared the results by checking whether anomalies

found by one method had also been detected by

the other (after ensuring that they were not false

positives), and vice-versa.

4.5.2 Results

The method proposed by Dewaele et al.[38] was

executed with values of 1 for the alpha param-

eter and 1000 for the threshold. The method

detected 630 anomalies. The method we proposed

was run with a window size of 3 s and the relative

threshold (for the Hough transform) was set to

100%. For a 15 minutes trace, the execution time

for detection was about 10 minutes on a standard

desktop PC (Core2Duo 2.6 GHz, 2 Gb of RAM).

Our method identified 625 anomalies. The identi-

fied anomalies were also classified into clusters as

shown in the histogram Fig. 4.7. Note that clus-

ter number 6 contains a large number of anomalies

due to the Sasser worm. Furthermore, we deduced

that cluster 15 presented confused anomalies, viz.,

each occurrence in this cluster stood for a mixture

of several anomalies.

4.5.3 Comparison

We first checked if the anomalies reported

by our algorithm had also been reported by

the statistical-based method. The method

based on pattern recognition identified 297 (over

625) anomalies that were not identified by the

statistical-based one. The two methods are

2 That is the period of time between the outbreak of anomalies and their identification.
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Fig. 4.7. Anomalies identified both methods, sorted by cluster numbers.

compared in the histogram in Fig. 4.7; most dif-

ferences appears in clusters 0 and 6. We inspected

all anomalies not reported by either methods and

noticed that about 100 anomalies were identified

in cluster 6 as true positive anomalies related

to the Sasser activity. This revealed that the

image processing-based approach detected twice

the anomalous traffic for this class of anomaly

than the statistical-based one. Several of these

anomalies could not be detected with the method

proposed by Dewaele et al.[38] due to the small

number of packets involved. However, anomalies

classified into cluster 0 and not identified by the

statistical-based approach were mostly heavy traf-

fic between two hosts using HTTP, HTTPS, or

peer-to-peer protocols. More in-depth investiga-

tions have to be done to estimate if they are false

positive anomalies.

The method proposed by Dewaele et al.[38]

reported 630 anomalies classified in six groups

regarding several heuristics (Fig. 4.8), where

165 identified anomalies were not detected by

the pattern-recognition method proposed in this

paper. Of these 165 anomalies 24 were labelled

as OK meaning they were certainly not harmful

(i.e., mostly http traffic). Also, 54 were classified

as UNKNOWN and we deduced that they were

heavy traffic using HTTP or peer-to-peer proto-

cols; yet, more investigations are needed to deter-

mine if they were false positive anomalies or not.

However we noticed that 149 of the 165 anomalies

identified as ATTACK were also detected with the

method proposed in this paper.

The method proposed by Dewaele et al.[38]

used a time bin of 1min; thus, in the worst

case an anomaly would be reported 1 min after

it occurred. However, the pattern-recognition

method proposed in this paper is able to report

anomalies after the window slides, meaning every

3 s in this evaluation. Consequently, the detec-

tion delay with our method is shorter than

that of the method based on statistical analysis.

The new method can help operators to become

rapidly aware of when anomalies appear in net-

work traffic.
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Fig. 4.8. Anomalies identified by both methods, sorted by type of traffic.

4.6 Conclusion and future work

We first highlighted the need for identifying

anomalies in this paper, and understanding net-

work traffic behavior on all temporal and spatial

scales. We demonstrated that anomalous traf-

fic has characteristic shapes in time and space.

A darknet trace exhibited several spatial-temporal

patterns for different anomalies in a snapshot, and

a trace taken from a trans-Pacific backbone had

anomalies, in heavy traffic, that were still high-

lighted. These structures represented particular

distributions of traffic features, and should be

a good medium for detecting anomalies in net-

work traffic.

The main contribution of this paper was to pro-

pose a new approach to detecting traffic anomalies

based on pattern recognition. We took advan-

tage of graphical representations to break down

the dimensions of network traffic. Indeed, image

analysis provided us with powerful tools to reduce

the complexity of network traffic and extract rele-

vant data. Thus, we mapped network traffic data

to snapshots rather than traditional time series,

and we identified unusual distributions in the

traffic features through simple patterns (lines).

This technique was implemented and its efficiency

was demonstrated by comparing it with a recent

method based on statistical analysis. A variety of

network traffic anomalies were detected by using

our new method and we applied a clustering tech-

nique to classify them. Furthermore, pattern-

recognition presents interesting advantages in its

short detection delays, and its capabilities in iden-

tifying anomalies involving a small number of

packets. Consequently, our evaluation revealed

that the kinds of anomalies detected with the

pattern recognition-based method are slightly dif-

ferent than the ones found with the statistical-

based approach. However, a limitation in detect-

ing anomalies was observed, and was not specific

to our approach. Since the image-based technique

proposed in this paper does not take payload into

consideration and has no port/host specific infor-

mation, it detects all heavy traffic as anomalous;

therefore, dense http, ftp, or p2p traffics were
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reported.

One important future project is to add the capa-

bility of processing raw packets directly taken

from a network interface. Also, the current tool

only takes packets into account, but it would be

better to emphasizes connections to represent the

concept of flows. In addition, other graphical rep-

resentations have to be studied to detect network

anomalies. Further, more evaluations have to be

done; thus a closer inspection of obtained results

can lead to better tuning of the technique.
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第 5章 まとめ

インターネット研究において、計測データをいか

に表現するかは重要なテーマである。いっぽうで、

WIDEにはデータ表現を主テーマとするような研究

者がいないこともあり、なかなかワーキンググルー

プが活性化しない状況にある。来年こそは、グロー

バルなインターネットを見せる活動を盛り上げて行

きたい。
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