[X110

IPOOO0OOOOOOOOOO
o

0120
IPO0O0O0ODODOOOODODOOOOOOd

010 good

Traceback D0 O0O0O0OO0O0OO IP Traceback
goo0oooooooUoooooooOoooooo
goo0oooooooUoooooooOoooooo
gdooopooocooooo

OopDooAsSOOOOOoIPOOOODOOOO
gooboooooobbooboobobooboono
IpPO00O0O0OODOODOODOODOOOODOODOOO
goooooobobobbtoooooobobooooga
goooooobobobbbooooooooooo

gobz2oorooooooooooobboooon
000oo0oo0oooon InterTrackOOOOOOO
goooooooboboboooooooboooood
gooooooooo

2000 InterTrack OO0 OOO0OOO ASO
goooIpPO0O0DOOODODOOODODOOOO
0000000000000 IEEE Symposium on
Computers and Communications] ISCC’060 0 O
0go0000O00bOoDOo0obOoDOoOobOoDDO 30
O0OInterTrack OO0 OO ASOOO IPOODOO
goooooooboboboooooooboooood
J00O00oDoOo0obOOo3000b000 20000
goooooobobobobooooooboooood
goooooobobooboooooo

0 20 InterTrack Architecture

2.1 Abstract

The difficulties of achieving an inter-domain
traceback architecture come from the issues of
overcoming network operation boundaries, espe-

cially the leakage of sensitive information, the

violation of the administrative permission and the
cooperation among Autonomous Systems (ASes).
We have proposed InterTrack in [84] as an inter-
connection architecture for different traceback
systems and other Denial of Service (DoS) attack
countermeasures. In this document, we argue that
only disclosing AS status to others can reconstruct
the reverse AS path of an attack without the leak-
age of sensitive information or the violation of the
administrative permission. Comparing our archi-
tecture with other traceback architectures, we also
discuss the feasibility of our autonomous trace-

back architecture.

2.2 Introduction

In order to automate or expedite the manual
tracking against DoS attacks or Distributed DoS
(DDoS) attacks, many traceback techniques have
been studied and proposed. Traceback techniques
are techniques that reconstruct the attack path,
and locate the attacker nodes by correcting the
attack traffic, routing information, marked pack-
ets, or audit log of the attack traffic[16]. Sev-
eral traceback techniques are already available as
free softwares, vendor products or operation tech-
niques within one network domain[5, 7, 15, 36, 39].

Unfortunately, no traceback techniques, which
can reconstruct the attack path across several net-
work domains, are employed or practiced in the
real network operation yet. The difficulties of
deploying inter-domain traceback techniques are
derived from such operational issues as follows:
(A) The risk of exchanging sensitive information
about the inside of each network domain. Leakage
of detailed backbone topology is a serious prob-
lem on a network operation. (B) The fear of mis-
uses of the traceback technique on each network
domain by others. In addition to the leakage of
sensitive information, misuses of traceback sys-

tems waste resources on each AS. Furthermore,

125

P ROJETCT

ogoe

Oo0O00oOoOooOooOooOooOoOOd ge

2

t

reepor

a n n u a

P ROJETCT 2 0 0 6

E

D

e] 120 IPOOOOOOOOODOOOOOOOO

the traceback operation has been closely tied to
ISP backbone network security. Arbitrary tri-
als of traceback by unauthorized people would
not be acceptable to most ISPs. (C) The risk
of depending on an unique traceback technique.
Each traceback technique has pros and cons[16].
Even if a specific inter-domain traceback tech-
nique is well deployed, attackers will develop eva-
sion attacks sooner or later. Also, in order to run
a specific inter-domain traceback technique, sev-
eral ASes should deploy it at the same time. If
other ASes deploy another traceback technique,
operators have to contact other ASes after all.
In practice, many ISPs employ multiple detection
and traceback tools in their networks[140]. From
the viewpoint of the current traceback operation,
depending on a specific traceback technique is not
practical.

These operational issues arise when a trial of
traceback attempts to expand beyond the net-
work boundaries. Many proposed traceback tech-
niques lack or ignore the boundaries of network
operation and the difference of the operational
policies among different network domains. As
remarked in the Arbor network’s report[140], it is
sure that inter-domain traceback and attack mit-
igation mechanisms need to be deployed ubiqui-
tously across the Internet. Hence, an acceptable
traceback architecture to ISP operators that meet
operational requirements must be designed and
deployed.

In order to operate the inter-domain traceback
in practice, we have proposed InterTrack as an
interconnection architecture for traceback systems
to overcome the issues on the inter-domain trace-
back[84]. InterTrack automates recursive trace-
back attempts across several ASes, while at the
same time allowing each AS to hide sensitive infor-
mation, and to operate traceback system within
its own network domain along with its operation
policy.

The key ideas of InterTrack are as follows:
(1) a hierarchical architecture according to the net-

work operation boundaries, (ii) phased-tracking

126

and the federation of internal traceback trials
for the inter-domain traceback, (iii) concealment
of sensitive information on exchanging traceback
information among ASes, and (iv) components
and APIs for independence from a specific tech-
nique, for multi-layer tracebacks and for self-
defending mechanisms.

In this chapter, we present InterTrack, an
autonomous architecture in order to make the
inter-domain traceback practically usable. The
key ideas of InterTrack are as follows:

e a hierarchical architecture according to the

network operation boundaries

e phased-tracking and the federation of internal

traceback trials for the inter-domain trace-
back
e concealment of sensitive information on
exchanging traceback information among
ASes

e modular components and APIs for indepen-
dence from a specific technique, for multi-
layer tracebacks and for self-defending mech-
anisms

This chapter is organized by sections. First,
several assumptions on traceback are given in Sec-
tion 2.3. The goals of InterTrack are discussed in
Section 2.4. We also define the requirements of an
inter-domain traceback architecture in Section 2.5
along with assumptions and goals. Following the
overview of the architecture of InterTrack in sec-
tion 2.6, we elaborate the AS path reconstruc-
tion mechanism of InterTrack in section 2.7. In
section 2.8, the feasibility of InterTrack is dis-
cussed. In section 2.9, we describe the details
of the prototype implementations of InterTrack.
Next, in section 2.10, we evaluate the architecture
and the prototype implementation. We also com-
pare InterTrack with other inter-domain trace-
back architectures in section 2.11. Finally, we

summarize this chapter in section 2.12.

2.3 Assumptions

At the beginning of the discussion about

InterTrack, we assume several assumptions about

ASes on the traceback:

e Each AS has multiple tools of detection, of
traceback, or of prevention for its own net-
work domain.

e Each AS does not want to allow other peo-
ple to operate or investigate its own network
without permission.

e Each AS cannot investigate the inside of its
customer’s network without permission by
the customer.

e Each AS does not want to reveal inside infor-
mation to others without some reasonable
procedures.

e Each AS does not want to be bothered by the
traceback queries when the AS is not included
in the attack path.

The first assumption is in accordance with the
arbor network’s security report[140] and with the
fact that many implementations or techniques
for the inter-domain traceback have already been
made available[5, 7, 13, 15, 36, 38, 39, 40, 47, 71,
78, 81, 96, 180, 189]. The next two assumptions
speak to the administrative permission to oper-
ate a network domain. The fourth assumption
reflects the confidential or sensitive information
on a network operation. The internal information
of a network domain is likely to be secret, and if
other people want to get such secrets, they would
have to sign a non-disclosure agreement or file in
a court procedure. The last assumption is used
here because a traceback trial puts a high cost
on human resources, network resources, or server
resources; therefore, broadcasting a request mes-
sage or additional traffic for a traceback to other
ASes regardless of their status against the issued

attack is undesirable.

2.4 The Goals of InterTrack

On designing InterTrack as a practical intercon-
nection architecture for traceback systems or as an
inter-domain traceback architecture, we accom-
plish several goals. These goals include:

e Detecting the upstream neighbor ASes of the

attack.

e Reconstructing the reverse AS path of the
attack.

e Automating the procedures to request a trace-
back to other network domains.

e Interconnecting any countermeasures of DDoS
attacks to expedite attack protection.

e Protecting or isolating attacker nodes on an
attacker-side AS with the AS own decision
and operation policy.

e Achieving these five goals along with the five
assumptions mentioned in section 2.3.

The first three goals are for the traceback tri-
als on InterTrack. InterTrack employs various
traceback techniques to investigate inside an AS;
therefore, InterTrack must be effective in track-
ing attacks as a manager component for con-
trolling and working various traceback techniques
together in only one AS. Considering the leakage
of sensitive information, InterTrack must recon-
struct the reverse AS path instead of the actual
attack path expressed by router hops. The effec-
tiveness of aggregation router hops to AS hops
have already been mentioned in [179] and [62].
InterTrack must also automate the procedures to
request a traceback to other network domains.
The manual operation on the procedures required
to ask a traceback to other network domain spend
a lot of time and manual traceback is likely to be
finished before the attack finishes or the attack
pattern changes. If InterTrack automates these
procedures, the time spent for a traceback will be
shorter.

The fourth goal of InterTrack is to cooperate
with various countermeasures of DDoS attacks.
Recently, several attack mitigation products work
together in a single vendor environment[37], or
among several vendors through a specific data for-
mat or API[166]. In order to achieve the cor-
relation among multi-vendors’ attack mitigation
products, each vendor has to develop interfaces
or a new protocol for other vendor products. An
interface and several messages or protocols are
provided by InterTrack for reducing such devel-

oping overhead.

127

P ROJETCT

ogoe

Oo0O00oOoOooOooOooOooOoOOd ge

2

t

reepor

P R OJETZCT 2 0 0 6 a nnu a

E

D

e] 120 IPOOOOOOOOODOOOOOOOO

The last two goals come from the assumptions
about AS’s network operation policies. InterTrack
must be designed along with the assumptions

described in Section 2.3.

2.5 Requirements

According to assumptions and goals of
InterTrack, several requirements for the inter-
domain traceback architecture are provided as
follows:

e The architecture must leave each AS to decide
to inherit a request of tracking by each AS’s
operational policy.

e The architecture should leave each AS to
decide whether or not to investigate the inside
of each own network domain more deeply.
The architecture should also allow each sub-
domain of an AS to decide whether or not to
inspect each sub-domain’s network by each
sub-domain’s operation policy.

e The architecture should allow each AS to take
another action along with a tracking result
such as a filtering or another tracking.

e The architecture should not forward request
messages to ASes which have no relation to
the issued attack.

e The architecture should not reveal sensitive
information of an AS to others.

e A message exchanged in the architecture
should have its own traceability to prove or
to confirm the issuers of the message.

e The architecture should be independent from
specific traceback techniques.

e The architecture should track back an attack
on a dual stack environment, even when the
attack employs some address translation tech-
niques(24, 44, 234].

e The architecture should have the capability
to cooperate with detection systems or pro-
tection systems.

e The architecture should exclude human beings
as long as possible.

The first three requirements are essential

for keeping the network operation boundaries.

128

A routing operation reflects the contracts among
ASes or the contracts between an AS and its cus-
tomers. In order to keep such contracts and opera-
tional boundaries, network operators control each
network domain with responsibility and cooper-
ate with each other on the relationship of mutual
trust based on such contracts. A traceback trail
is a trial to confirm the routing path of unwanted
traffic; thus, a traceback operation should follow
the manner of other routing operation.

Next three requirements are used to block mis-
uses of the traceback architecture. The operation
of traceback will consume many resources on the
related ASes; therefore, the traceback architecture
should not generate or flood meaningless requests
if possible. In order to reduce the damage of mis-
uses, the message should not convey such sensi-
tive information that might cause the leakage of
secrets or confidence of an AS. Even when a mis-
use or a compromised action occurred, the trace-
ability of the message will identify the offender.

The next two requirements deal with evasion
attacks of each traceback technique. If the archi-
tecture depends on one specific traceback tech-
nique, attackers will develop evasion attacks and
hide the location of the attacker nodes. In addi-
tion to this, many operation systems come to sup-
port the IPv4/IPv6 dual stack[4, 143], and several
attacks come through a 6to4 IPv6 tunneling[256].
If the traceback architecture cannot track back
attacks on the IPv6 network or attacks through
some translators, the majority of attacks will shift
in such a complex attack[256]. Hence, the inde-
pendence from any specific traceback techniques
and the independence of the versions of IP are
required.

The last two requirements are supposed to auto-
mate the traceback operation. According to the
taxonomy compiled by Mirkovic et al.[147], many
DDoS attacks employ reflector nodes or step-stone
nodes; therefore, the attacker nodes which are
detected by a traceback trial might be just step-
stones or reflectors. In order to detect comman-

der nodes or true attacker nodes, the traceback

architecture should cooperate with detection sys-
tems to start further traceback trials. As a matter
of course, network operators will apply filters or
run attack mitigation techniques after a traceback
operation. To automate the process of attack mit-
igation, the architecture should be able to export
the result of a traceback trial as a trigger of
the attack mitigation. Then, an attacker may
change the pattern of attack traffic to avoid the
effect of such mitigating actions. Combating with
changes of a complex attack, the time spent to
trace an attack path should be as short as possi-
ble. Because the time spent by a person is remark-
ably longer than the time spent by a computer,
the architecture should exclude human beings if
possible. It is a challenge to construct an auto-
mated traceback procedure while network opera-
tors on each AS can control the traceback oper-
ation on its own network according to each AS’s

operational policy.

2.6 Overview of InterTrack

The main goal of InterTrack is to reconstruct
the reverse AS path, which is the true attack path
in AS hop level, and to detect the source ASes of
an attack if possible. Another goal of InterTrack is
to achieve the cooperation among traceback sys-
tems, detection systems and prevention systems
inside an AS. InterTrack also aims to expedite
the human operation and the cooperation among

ASes on tracking an attack.

2.6.1 Architecture

The architecture of InterTrack refers to the
Internet routing architecture. The reason why
InterTrack refers to the Internet routing architec-
ture is that the Internet routing architecture is
designed along with the boundaries among opera-
tion domains and the differences of operational
policies of each operation domains. For exam-
ple, BGP shows the boundaries and contracts
among ASes; on the other hand, OSPF sub-area
can express the boundary of the different oper-

ation domain on an AS such as the boundaries

among the network operation center and other
departments in an enterprise network. Usually,
a network operator cannot operate other network
domains. On the network boundaries, network
operators cooperate with each other to configure
their own network equipments for achieving the
proper routing. In a traceback trial, network oper-
ators cannot investigate other network domains as
well as other network operations; therefore, they
try to detect upstream neighbor ASes to ask them
for further tracking.

In InterTrack architecture, each AS has a set of
InterTrack components. A set of InterTrack com-
ponents includes; the Inter-domain Tracking Man-
ager (ITM), Border Tracking Manager (BTM),
Domain Traceback Manager (DTM), Decision
Point (DP), and Traceback Client (TC). Fig-
ure 2.1 shows the overview of InterTrack architec-
ture. A phased-tracking approach is applied on
inter-domain traceback trials through InterTrack.
InterTrack separates a traceback trial in four
stages along with network boundaries; the track-
ing initiation stage (Fig. 2.1(a)), the border track-
ing stage (Fig. 2.1(b)), the intra-AS tracking
stage (Fig. 2.1(c)) and the inter-AS tracking stage
(Fig. 2.1(d)). After accepting a traceback request
on the tracking initiation stage, each AS pre-
liminarily investigates its own status against the
issued attack on the border tracking stage. On
the border tracking, an AS judges by InterTrack
whether or not the AS is suffered from an
attack, whether or not the AS is forwarding mali-
cious attack packets, or whether or not the AS
is suspected of having attacker nodes on the
inside. Triggered by the investigated AS status,
InterTrack runs the inter-AS tracking stage and

the intra-AS tracking stage in parallel.

2.6.2 Behaviors of InterTrack Components

An inter-domain traceback on InterTrack is
composed of the federation of internal trace-
back trials on ASes through the phased-tracking
stages. Here, we explain the characteristics of

each InterTrack components and behaviors of

129

P ROJETCT

ogoe

Oo0O00oOoOooOooOooOooOoOOd ge

2

t

reepor

P R OJETZCT 2 0 0 6 a nnu a

E

D

e] 120 IPOOOOOOOOODOOOOOOOO

accept / refuse | DP |

4 N\
request request
| IT™ f
TC reply reply
(tracking Infomation j (Message D J request reply

infy BTM wt

(tracking Infomation j (Message ID J BTS result result BTS
accept / refuse | ITM Border Border e
Router backbone Router
<AS XXX > start tracking <AS XXX >
- J . J

(a) Tracking Initiation Stage

reply to the issuer

4 N\
<AS XXX > ITM | aggregate and prune
4 N N\ f\ N\
DTM [oTM | [oTM |
DTS [oTs | [oTs |
tracking tracking tracking
details details details
< sub domain > < sub domain > < sub domain >
& AN /2

(b) Border Tracking Stage

N

p
< AS (Origin Isuuer) >

flow-moniter

request

<Y

) reply L

request reply

request [~
DP |«—— i] | iTv [op

reply
ACL L (IPv4 Global)

Firewall 1
IT™ DP

(IPv6)

(IPv4 Private)

<AS XX >

(c) Intra-AS Tracking Stage

(d) Inter-AS Tracking Stage

Fig. 2.1. Tracking on InterTrack

components on each tracking stage.

ITM on each AS controls traceback trials on its
network domain along with the operation policy
of the AS. ITM also mediates neighbor ASes to
exchange the traceback information. Any trace-
back information from other ASes comes from the
ITM network. The ITM network is an overlay
network composed by a number of point-to-point
peering of ITMs between two ASes. ITM net-
work is mapped on the BGP-peering relationship
so that each ITM communicates only ITMs on
neighbor ASes according to the trust or the con-
tract on the BGP-peering.

TC is an interface of InterTrack to request
a traceback for network operators or detection
systems such as intrusion detection systems. In
the tracking initiation stage (Fig. 2.1(a)), DP

authenticates and authorizes TCs; on the other

130

hand, ITM assigns a message ID to distinguish
a traceback trial on the whole InterTrack archi-
tecture. DP is a separated module function of
ITM to authenticate TCs and to control request
rates from a TC. Because ITM not only deals
with attack requests from the inside and also
treat requests from neighbor ASes, the overhead of
authentication and rate limits of TC may obstruct
ITM in processing other requests. Therefore, the
authentication function and the rate limit func-
tion of I'TM are delegated to DP.

On the border tracking stage (Fig. 2.1(b)),
InterTrack preliminarily investigates the AS sta-
tus expressed by the directions of the issued
attack, by the possibility of the existence of an
attacker on the inside of the AS, and by the
information of address translation. When the

result of the border tracking stage reveals the

upstream neighbor ASes, InterTrack kicks off
inter-AS tracking stage and propagates the trace-
back request message to each upstream neigh-
bor AS through the ITM network. The neighbor
ASes recursively runs the border tracking stage,
and reconstruct the reverse AS path of the issued
DDoS attack. Each AS adds its own AS sta-
tus in the reply message and returns the reply
message to the issuer neighbor AS through the
ITM network. In parallel with the inter-AS trace-
back stage, an AS can start the intra-AS tracking
stage when the result of the border tracking stage
showed that the AS might have attacker nodes
on the inside (Fig. 2.1(d)). The intra-AS track-
ing stage is the deep internal inspection on each
sub-domains of the AS (Fig. 2.1(c)). The results
of tracking on each sub-domain are aggregated by
the ITM of the AS and stored in the AS’s DP.
The result of intra-AS tracking is not delivered to
other ASes through InterTrack because the result
of intra-AS tracking is an internal information
and may include personal information such as the
information of the owner whose PC was infected
by some worm.

On the border tracking stage and the intra-AS
tracking stage, each AS can use various traceback
techniques or traceback systems according to their
characteristics. Border Tracking System (BTS)
is a specified traceback system to investigate the
direction of the issued DDoS attack on the net-
work boundary and judge the AS status. On the
other hand, Domain Tracking System (DTS) is
a traceback system for deep internal inspection on
an AS. In other words, a DTS is a traceback sys-
tem to locate attacker nodes logically and physi-
cally (e.g., the logical location is the nearest edge
router or the incoming port on a layer 2 switch; on
the other hand, the physical location is the geo-
graphical location of the nearest router or switch).

Each traceback system communicates InterTrack
through a BTM or a DTM. Both BTM and DTM
are wrapper components to convert the traceback
request to the input values for employed traceback

systems, and translate the results of traceback

systems into the InterTrack message. BTM and
DTM can be implemented as a module or a proxy
to exchange the traceback information with the
manager server of a specific traceback system.
Each InterTrack component communicates with
only neighbor components through an IPsec
encrypted TCP connection[121] in order to reflect
the trust among network domains properly, to
protect abuses or attacks from unauthorized
nodes, and to keep the information of a trace-
back secret from others. In addition, each I'TM
sends heartbeat messages to neighbor components
in order to confirm the existence of each neigh-
bor component and in order to adjust the time

synchronization.

2.7 Reverse AS Path Reconstruction

In this section, we explain the detail of the
reverse AS path reconstruction and discuss the
feasibility of InterTrack. InterTrack reconstructs
the reverse AS path of a DDoS attack through
the border tracking stage and the inter-AS track-
ing stage. The border tracking stage on an AS
reveals the AS status against the attack. If the
border tracking stage judges that the AS received
the attack traffic from some of upstream neigh-
bor ASes, an I'TM forwards an ITM trace request
message to those upstream neighbor ASes which
may forward the attack traffic. Here, we explain
the detail of AS status and the consistency of I'TM
trace reply message which reveals the reverse AS
path to the original issuer I'TM. Figs. 2.2 and 2.3
show examples of an ITM trace request message

and its ITM trace reply message.

2.7.1 AS Status against a DDoS Attack

An ITM decides actions by the AS status
revealed on the border tracking. On the for-
warding an I'TM trace reply message, each I'TM
on the reverse AS path adds its AS status into
the I'TM trace reply message. The variations of
AS status against a DDoS attack are shown in

Fig. 2.4. On a traceback trial, an AS will have

one of twelve variations of the AS status. Eight

131

P ROJETCT

ogoe

OO0O00oOoOooOooOooOooOoOoOO ges

2

t

reepor

P R OJETZCT 2 0 0 6 a nnu a

E

D

e] 120 IPOOOOOOOOODOOOOOOOO

<?xml version="1.0"7>
<ITMTraceRequest>

<0rigin>v4-65001</0rigin>

<TTL>5</TTL>

<TransPacket>
<Border>6T04</Border>

</TransPacket>
</Footmark>
<ITMPathList>
<0rigin>v4-65001</0rigin>

</ITMPathList>
</ITMTraceRequest>

-

<DestinationITMID>v6-65002</DestinationITMID>
<SequenceNumber>10000</SequenceNumber>
<Footmark transform="yes">

<PacketDump iftype="0x86">XXXX XXXX XXXX XXXX </PacketDump>
<TimeStamp><sec>1132613480</sec><usec>159368</usec></TimeStamp>

<PacketDump iftype="0x86">XXXX XXXX XXXX XXXX </PacketDump>

<NextHop depth="1">v4-65002</NextHop>

Fig. 2.2. ITM trace request message

-

<?xml version="1.0"7>
<ITMTraceReply>
<SourceITMID>v4-65002</SourceITMID>
<Origin>v4-65001</0rigin>
<SequenceNumber>10000</SequenceNumber>
<TraceResult type="FOUND">
<ITMSubTrees>
<ITMSubTree depth="0" type="FOUND">
<ITMID>v4-65002</ITMID>
<NextHops>
<Incomings>
<ITMID>v6-65002</ITMID>
</Incomings>
<0Outgoings>
<ITMID>v4-65001</ITMID>
</Outgoings>
</NextHops>
</ITMSubTree>
<ITMSubTree depth="1" type="FOUND">
<ITMID>v6-65002</ITMID>
<NextHops>
<Outgoings>
<ITMID>v4-65002</ITMID>
</0Outgoings>
</NextHops>
</ITMSubTree>
</ITMSubTrees>
</TraceResult>
</ITMTraceReply>

4 N

(@) (b) To AS XX (©

)
&)
®

From AS X
[Not Found] [Attacker] [Victim]
(d) (e) ()
To AS XX To AS XX
ToASY
‘ ‘
From AS X From AS X
[Transit] [Amplifier] [Infected]
@ 0 To AS XX ®
To AS XX
NAT (IPv4 Global) Translator (IPV6)
N AN
@ @ refused
AS
From My AS From AS X
(IPv4 Private) (IPv4)
[NAT Traversal] [Translator] [Refused]

@

z

0}

Fig. 2.3. ITM trace reply message

132

[Unknown | [Busy] [Wait]

.
Fig. 2.4. Variations of state of an AS on an

attack

statuses can be expressed by the combination of
following informations: directions of the forward-
ing path of an attack, the necessity of the detailed
internal inspection, the notification of an address

translation. In addition to these combinations,

=—:=p Incoming

Outgoing
Fig. 2.5. Directions of traffic on an AS

there are four error statues.

First, we consider the relation with a neighbor
AS. Basically, an AS status is composed of the
status of the inside and each status on the point
to point (P2P) link between each neighbor AS.
The status on a P2P link can be described by the
packet directions, that is, incoming and outgoing
(Fig. 2.5).

If an AS find a packet or flow of the issued DDoS
attack on the incoming direction in a P2P link,
the P2P link is a Victim link, that is, the AS
receives the DDoS attack flow from the neighbor
AS. The status of a P2P link is Attack when the
DDosS attack is detected on the outgoing direction
on the P2P link. When the DDoS attack is not
detected either on the incoming direction or the
outgoing direction of an P2P link, the AS status
on the P2P link is Negative. If the DDoS attack is
found both on incoming and on outgoing direction
of a P2P link, it indicates a Loop has occurred.
Usually, Loop is an error state which indicates the
error of the BTS or some wrong routing so that
a more detailed investigation is required. There-
fore, a Loop link is defined as equal to the Attack
and Victim link.

Next, we consider about the AS status with
all relations between each neighbor AS. If all
P2P links shows Negative, the AS status is judged
as Not Found (Fig. 2.4(a)). When each bor-
der tracking on each P2P link judges either
Negative or Victim, an AS is in Victim state
(Fig. 2.4(b)). On the other hand, an AS has
Attacker state when the results of P2P links either
Attack or Negative (Fig. 2.4(c)). An AS status is

judged as Transit when the investigation results of

P2P links contains Negative, Attack, and Victim
(Fig. 2.4(d)).

Here, we consider the AS status with the inter-
nal status of an AS. If there is a possibility that an
attacker node is inside the AS, the AS is in Ampli-
fier state (Fig. 2.4(e)). The border tracking stage
judges the AS status as an Amplifier state in the
following cases:

e The number of Attack links is more than the

number of Victim links.

e The amount of traffic to some Attack link is
increased remarkably.

e One of P2P links shows Loop.

e When the AS connects to a neighbor AS with
several links, one P2P link is attack and the
other is Victim.

When an AS is in the Amplifier state or in the
Attacker state, the AS has to start the intra-AS
tracking. If there is a need to start intra-AS
tracking, a BTM adds an ASK_DTM flag in
the reply message to the ITM. A BTM also
adds an ASK_DTM flag when the border tracking
stage shows the Infected state (Fig. 2.4(f)). The
Infected state indicates that the AS is attacked
not from other ASes, but from the inside.

Some attacks employ address translation tech-
niques, such as IPv4/IPv6 tunneling or NAT[256].
If an attack comes from the IPv4 private segment
which is operated by an AS, the border track-
ing judges the AS is in a NAT traversal state
(Fig. 2.4(g)). The border tracking stage indicates
a Translator state when the attack comes through
an 4to6 tunnel or 6to4 tunnel (Fig. 2.4(h)). In
these translation cases, a BTM adds the informa-
tion of the translation. If an AS employs a logging
technique such as SPIE[15] for the BTS, the BTS
may store the previous packet information before
the packet was translated. If BTS has the previ-
ous packet information, then the BTM also adds
such previous packet information into the reply
message. When an ITM receives the information
of the translation from the BTM, the ITM adds
the information into the ITM trace request mes-

sage. Then, in order to start further traceback

133

P ROJETCT

ogoe

Oo0O00oOoOooOooOooOooOoOOd ge

2

t

reepor

P R OJETZCT 2 0 0 6 a nnu a

E

D

e] 120 IPOOOOOOOOODOOOOOOOO

trials in different address space, the ITM changes
the role to the I'TM on another address space, or
forwards ITM trace request message to another
ITM on the same AS.

Finally, we consider four error states on the bor-
der tracking. Each AS can refuse a traceback
request along with its operational policy. If an AS
refuses a traceback request, then, the ITM adds
a Refused state as its AS status into the ITM trace
reply message, and sends the ITM trace reply mes-
sage to the issuer neighbor ITM (Fig. 2.4(i)). If
an ITM, a BTM, or a BTS is busy because of
processing other traceback requests, the AS sta-
tus becomes Busy (Fig. 2.4(j)). When something
wrong has occurred in the border tracking stage,
the BTM replies with some error message. Then,
the AS status is judged as Unknown, the ITM
adds an error message from the BTM into the
ITM trace reply message (Fig. 2.4(k)). An ITM
will reply Wait as the AS status if an AS is in
the border tracking stage, but the AS needs much
more time to get the result due to the limitation

of the BTS (Fig. 2.4(1)).

2.7.2 Loop Detection on Forwarding an
ITM Trace Request Message

In order to avoid the loop in forwarding an ITM
trace request message, the ITM on each adds its
ITM ID into the ITM Path List field on the ITM
trace request message when the ITM forwards
the ITM trace request message to neighbor ASes.
Using the ITM path list and the message ID of
an I'TM trace request message, each I'TM judges
whether a loop on the message forwarding occurs
or not.

An ITM has ITM IDs which represent the
address spaces covered by the I'TM. The ITM
ID on each address space is represented by the
address space information and AS number. For
example, each ITM ID of AS 2500 is v4-2500
in the IPv4 global network, v4-2500-private in
the IPv4 private network, v6-2500 in the IPv6
network. The origin I'TM, which originates an

ITM trace request message, assigns a message 1D

134

to a traceback request on the tracking initiation
stage. A message ID is composed of the ITM ID of
the origin I'TM and the sequence number assigned
by the origin ITM.

When a result of the border tracking contains
a neighbor AS as the upstream neighbor and the
ITM ID of the neighbor AS is already included in
the ITM path list field, then, an ITM concludes
a loop occurs and the I'TM does not forward the
ITM trace request to the neighbor ITM. An ITM
also judges a loop when the received ITM trace
request message contains its own ITM ID in the
ITM path list field. In this case, the I'TM does
not reply with the ITM trace reply message to
the issuer neighbor ITM. The I'TM path list field
contains all ITM IDs which represent the partial
reverse AS path of the issued attack. Each ITM
ID indicates each traversal AS of the I'TM trace
request; therefore, an AS can refuse the traceback
request when an untrusted AS is included in the
ITM path list.

In addition to the ITM path list field, an
ITM trace request message contains Time-To-Live
(TTL) field in order to stop an endless forward-
ing. Each ITM decrements the value of the TTL
field on forwarding an ITM trace request message.
If the TTL value reaches zero or a negative value,
an ITM stops forwarding the I'TM trace request.
According to the analysis by team Cymru[248] or
by Geoff Huston[91], the observed maximum AS
path length was less than 40 hops, and the weekly
average AS hops is about 5 hops. Therefore, the
maximum TTL is settled in 64 with some provi-

sioning and the default TTL value is defined as 5.

2.7.3 Inconsistency among Tracking Results
of each AS

An ITM trace reply message may contain some
inconsistencies among each ITM result on the
Reverse AS path. The inconsistency will occur
in these cases as follows: When the ITM trace
reply message reports Victim or Infected state
on the result of other ITM, this inconsistency is

caused by two kinds of mistakes. One case is that

the BTM, whose AS is in several hops away from
the origin ITM, mis-judged the AS status as Vie-
tim or Infected. The other inconsistency is that
an I'TM request message was generated and for-
warded from a transit AS and the ITM request
message wrongly reached the true Victim AS by
the mis-judges in several ASes.

If the ITM trace reply message contains Not
Found on the results of other ASes, an I'TM made
an incorrect forwarding to neighbors that are not
in the real attack path, or the BTM of an AS
mis-judged the AS state as Not Found. The ITM
Subtree does not have the ITM ID of the former
issuer on the outgoings field when the result of the
border tracking on the deeper hop AS was wrong,
or when the mis-forwarding continuously occurred
in several hops.

The ITM trace reply message may contain
a loop in the I'TM Subtrees field. If the same ITM
ID is listed both on the Outgoings field and the
Incomings field of a ITM Subtree field, the ITM
Subtree would indicate that the border tracking
on the AS was wrong or the routing loop really
occurred between two ASes. When a shallower
hop ITM’s ID is contained in the Incomings field
on the result by the deeper hop ITM, the BTM on
the deeper hop AS mis-judged, or the wrong mes-
sage forwarding continuously occurred from the
shallower hop AS to the deeper hop AS.

Even when an I'TM trace reply message contains
some inconsistency, the network operator on the
original issuer AS can contact each AS by refer-
ring to the reverse AS path on the ITM trace
reply message. On the other hand, each AS on the
reverse AS path holds the partial I'TM paths both
on the received I'TM trace request messages and
on the ITM trace reply messages from neighbor
ITMs. Hence, each AS can confirm the inconsis-
tency on the reverse AS path by itself even when

the AS is not the original issuer AS.

2.7.4 Analysis of Attack Cases against the
InterTrack

Attack cases to the InterTrack architecture are

considered here, and the feasibility of InterTrack
against each attack case is then discussed, while
the defending techniques to cover the vulnerabil-
ities of InterTrack are explored.

Against the Numerous requests from a TC, DP
can limit or drop requests from TC in a unit time.
In addition to this, DP’s authentication and rate-
limit functions can be separated from I'TM; there-
fore, the I'TM network cannot be affected by the
processing rate-limits on DP and can treat other
requests while a TC attacks by numerous requests.

An attacker may try to hijack a TCP connec-
tion between components. In InterTrack, each
TCP session between two components is based on
IPSec authentication[121]; therefore, each compo-
nent will not accept the request of connection from
an unauthorized node. Moreover, network oper-
ators can easily apply filter rules on the nearest
routers for each component in the source address
and the destination address pair, because the
neighbor components of each component are fixed
or limited. Also, the IP address of a component
should be known by only neighbor components,
hence, it is not necessary to assign an FQDN to
the IP address of a component and to propagate
the FQDN by DNS. Therefore, network operators
can hide the IP addresses of InterTrack compo-
nents from unauthorized people. Furthermore, if
an ITM has several interfaces, each connection to
a neighbor component can be achieved on a closed
private network. By a combination of such tech-
niques, network operators can protect InterTrack
from SYN floods, or UDP floods, even when the
attacker spoofs the source IP address of attack
packets as the IP address of a component.

Since each connection of two components can
be constructed on the closed private network, such
a private network is not affected by the bandwidth
consumption on the main link of a neighbor AS.
Even when the connection of two components is
achieved as the on-line connection, priority queu-
ing techniques can turn down the effect of the
bandwidth consumption against the InterTrack

messaging. Also, the ITM network is an overlay

135

P ROJETCT

ogoe

Oo0O00oOoOooOooOooOooOoOOd ge

2

t

reepor

P R OJETZCT 2 0 0 6 a nnu a

E

D

e] 120 IPOOOOOOOOODOOOOOOOO

network. If other routing paths are prepared, the
ITM network can tolerate the influence of link-
downs or route flaps.

If an ITM is hijacked by an attacker, it becomes
a serious security issue over several ASes because
the attacker can steal the inside information of
the hijacked ITM’s AS and can attack by faked
ITM trace request messages and spoofed I'TM race
reply messages. By hijacking other InterTrack
components, an attacker can steal the inside infor-
mation or can dirty traceback results. There-
fore, each AS should protect the intrusion to the
InterTrack as strongly as possible.

When an ITM is hijacked by an attacker, the
hijacked ITM may send a faked I'TM trace reply
message which contains a spoofed reverse AS
path. In this case, if the network operator on the
original issuer AS contacts all ASes on the spoofed
reverse AS path to verify the reverse attack path,
then, the network operator on each AS will find
the inconsistency on the same traceback trial and

will detect the hijacked AS.

2.8 Discussion
2.8.1 A Multi-Layer Traceback for Complex
Attacks
Considering DDoS tools[147], the attacker

nodes on the Attacker AS are just the step-
stone nodes or the reflector nodes. In order to
detect commander nodes or the PC of an attacker,
InterTrack tracks the attack in multi-layers by
the cooperation of detections systems and contin-
uous trials of traceback. After the intra-AS track-
ing stage (Fig. 2.1(c)), the result of the intra-AS
tracking is stored in DP. According to the con-
figuration or AS’s policy, DP exports the result
to detection systems to correct the command
packets or the pre-reflected packets (Fig. 2.1(d)).
If a detection system catches these command
packets or pre-reflected packets, it starts another
traceback to the source of these packets. Proceed-
ing this process recursively, InterTrack can track
an attack on the layer 7 networks, that is, traces

back the attack from the step-stone node to the

136

the true source of the attack.

This continuous traceback trial is used to track
the attacker node on the inside of an AS. When
an Infected status AS requests a traceback, the
ITM of the AS starts the intra-domain tracking
stage soon after. The purpose of the intra-AS
tracking stage is not only revealing the reverse
path on the layer 3 network but also reconstruct-
ing a reverse path on a layer 2 network and locat-
ing the attacker node. There are several traceback
techniques on a layer 2 network|[7, 36, 75, 85, 180],
and most of them require not the IP datagram
of the issued attack but the Ethernet header to
get the source MAC address or VLAN infor-
mation as a key of tracing. In order to track
on a layer 2 network in the Infected case, we
design the PacketDump field of the trace request
message to include the packet payload with the
Ethernet header. The process of the traceback
on layer networks as follows: First, the opera-
tor or a detection system sends a whole Ethernet
frame to InterTrack through a TC. After judged
Infected, the ITM kicks the intra-AS tracking
stage and finds the nearest layer 3 gateway of the
attacker node. If the attacker node is in the same
layer 2 network of the victim node, then DTM
runs a layer 2 traceback technique and tracks the
location of the attacker node. When the attacker
node is in another local subnet, the DTM explores
the layer 2 subnet to detect the logical and physi-
cal location of the attacker node if the DTS on the
attacker’s subnet stores the source MAC address
of the issued packet. If not, the DP of the AS
exports the result of the initial traceback to the
detection system on the attacker’s subnet. And
then, the detection system triggers another track-
ing by catching an Ethernet frame of the issued

attack to get the source MAC address.

2.8.2 Privacy Issues

In order to start a traceback trial, a T'C has
to input the whole Ethernet frame of the issued
attack packet. Then, the privacy issue about the

packet payload comes into question. Focusing on

the DDoS attack, the packet payload is usually
meaningless information or the binary of a mali-
cious code; therefore, such packets do not include
any personal information. A single packet attack
such as SQL slammer does not have any personal
information either. Hence, the privacy issue of the
packet payload of a trace request will not matter
as long as InterTrack is employed for the trace-
back of attacks. Of course, if someone tries to
track other service traffic by InterTrack, the pri-
vacy issue comes to a head.

InterTrack can trace an attack in the multi-
layers. Running a multi-layer traceback requires
some auditing systems which store the layer 7/
application level audit log or bind a MAC address
to an IP datagram as its source. Using such audit
systems, privacy issues of the audit log must be

considered.

2.8.3 Certification on InterTrack Compo-
nents

Each component of InterTrack achieves IPSec
encapsulated TCP sessions[121] with all neigh-
bor components; consequently, the overhead of
exchange shared keys or certificate files among
ASes must be considered. The APNIC has a trial
of certification of IP addresses and ASes[90] by
X.509 Extensions for IP Addresses and AS Iden-
tifiers[134]. These X.509 Extensions are expected
to feed into sSBGP[14] or soBGP[270]. The certifi-
cate files for SBGP or soBGP can be used for the
IPsec Encapsulating Security Payload (ESP)[121]
between each neighbor InterTrack components as
well as the IPSec ESP among components of
SPIE[15].

The prototype design of the ITM trace request
message shown in Fig. 2.2 is simple and it does not
include the digital signatures of traversed ASes.
The digital signature is effective for proving or
verifying the issuer AS. The InterTrack messages
are designed in XML format; therefore, an exten-
sion of messages to include such digital signature
can be easily developed by adding a sub-element

in the ITM path list field. The extension for the

digital signatures is part of future research with

the public key sharing problem mentioned above.

2.9 A Prototype Implementation of
InterTrack

This section shows the detail of the prototype
implementation of InterTrack. The basic func-
tions of InterTrack have been developed in C lan-
guage on FreeBSD, except for the function apply-
ing the AS’s operational policy and IPSec encryp-
tion. LIBXML2[259] was employed for the XML
parser of InterTrack messages. We also devel-
oped a sample BTM implementation and a sample
DTM implementation as a proxy for PAFFI[96].
PAFFI[96] is an implementation of hash-digest-
logging traceback method by Yokogawa Electric
Corporation. The volume of the prototype code

was about 50,000 lines totally.

2.9.1 Library and InterTrack Components
We developed a library which contains com-
mon APIs used by each InterTrack compo-
nents. Fig. 2.6 shows the software architecture of
InterTrack. Basically, each InterTrack component
processes XML messages; therefore, each com-
ponent uses common APIs on message process-
ing, on reading or writing messages, on serializ-
ing InterTrack messages, on exchanging heartbeat
messages, or on managing connections between
neighbor nodes. In this software architecture,
each InterTrack component is modularized. Each
component can be implemented by changing the
algorithm of the traceback module. The charac-
teristics of each part in Fig. 2.6 are as follows:
e Connection
This part manages each connection between
neighbor nodes. According to the con-
figuration file or changes through com-
mand line, ConnectionManager connects
or accepts a TCP session to a neigh-
bor node. The DispatchLoop pools file
descriptors or sockets and calls ReaderWriter
to process each buffer stream or message.

ThreadManager controls the mechanism or

137

P ROJETCT

ogoe

Oo0O00oOoOooOooOooOooOoOOd ge

2

t

reepor

P R OJETZCT 2 0 0 6 a nnu a

E

D

e] 120 IPOOOOOOOOODOOOOOOOO

[lookup}
| register, read] _I
Neighbor
CommandLine Traceback HeartBeat Management |«—
module Module Module Module
I
[reiister]
{ TraceEntry}
{ NeighborNode }
TraceEntryManager
NeighborManager
NeighborTable
<<msg>>
{ Message Processing API}
<<msg>> { connection }
Message ConnectionManager
Message Dispather
Management
\ [Tookup]
[pooling]
XMLObjectMapping [translate |
DispatchLoop
Reader Writer ;
[read / write] I [Clontrol]
[poohnf] ThreadManager
FileDiscriptor

[invoke]

bootstrap

Fig. 2.6. The software architecture of InterTrack

policy on the DispatchLoop. We have devel-
oped only select-based DispatchLoop, how-
ever, a DispatchLoop implementation using
thread could be easily implemented in the
ThreadManager.

o ReaderWriter
ReaderWriter controls network I/O or file
1/O. Through Message Processing APIs,
ReaderWriter passes InterTrack messages to
MessageDispather or writes InterTrack mes-
sages into socket file descriptors.

e Message Processing API
We prepared several APIs to manipulate
InterTrack messages. XMLODbjectMapping
maps an InterTrack message in an XML

string to an internal structure for InterTrack

138

messages. We defined WITMSG as the inter-
nal structure for InterTrack messages shown
as Fig. 2.7. Message Management API is
a group of APIs to manipulate an InterTrack
message on WITMSG structure.

e Message Dispatcher
Message Dispatcher dispatches or discards
messages according to the types of messages
and the type of traceback module.

e NeighborNode
NeighborMannager manages the entries of
the NeighborTable. The NeighborTable con-
tains the information neighbor nodes which
are defined by configuration files or new
configuration through command lines. The

Traceback module or the Heartbeat module

W I D E P ROJETCT

\ 2.9.2 Sample BTM and DTM Using PAFFI

typedef struct witmsgi{ Besides the library and daemons, a sample
MSG_TYPE msg_type; . . R
. BTM implementation and a sample DTM imple-
union{
heartbeatReq *hbreq; mentation using PAFFI[96] were developed. The
heartbeatRep *hbrep; PAFFI architecture contains one manager node
heartbeatErr *hberr;)
clientTraceReq *clientTraceReq; (PAFFI Manager) and several capture point nodes
clientSeqRep *clientSeqRep; (Footmakers) which record captured packets in
lientT R *clientT Rep;
crientiracefiep telient-racenep a Bloom filter[20]. Each Footmarker has several
dpointTraceReq *dpointTraceReq;
dpointSeqRep *dpointSeqRep; Bloom filters. Each Bloom filter, called a cap-
dpointTraceRep *dpointTraceRep; ture point, is mapped with an interface or a MAC
itmTraceReq *itmTraceReq;
. . . address filter rule; therefore, a Footmarker can
itmTraceRep *itmTraceRep; ’ ’
btmTraceReq *btmTraceReq; distinguish incoming traffic and outgoing traffic
btmTraceRep *btmTraceRep; according to the identifier of each capture point.
dtmTraceReq *dtmTraceReq;
dtnTraceRep *dtmTraceRep; Hence, PAFFI can be used as BTS which can
} msg; reply the variations of AS status described in sec-
}WITMSG;

Fig. 2.7. WITMSG structure

looks up the information of neighbor nodes
through APIs of the NeighborManager.

o TraceEntry

TraceEntry is a table used to arrange sev-
eral InterTrack messages in one traceback
trial. The Traceback module registers a new
InterTrack message, looks up an existing
TraceEntry, or removes an old TraceEntry
through the TraceEntryManager.

o Module

The algorithm parts of each InterTrack com-
ponent were modularized. When developing
a BTM or a DTM, developers make the algo-
rithm and combine the library of a specific
traceback implementation on this part.

e bootstrap

The Bootstrap initializes each part and starts
an InterTrack component as a daemon.

Each InterTrack component was developed as
a daemon; itmd, btmd, ditmd, dpointd, and
witclient. As a sample TC, packetcapture was
developed, which captures packets by PCAP
library and passes the captured packets to
witclient through a ring buffer on the shared

memory.

tion 2.7.1. Fig. 2.8 shows a sample topology when
PAFFTI is used as BTS.

In sample BTM/DTM implementations for
PAFFI, we used the proxy type implementa-
tion style, that is, both BTM and DTM behave
as clients of a PAFFI manager and translate
from an InterTrack trace request message to the
PAFFI request message or a PAFFI reply mes-
sage to an InterTrack trace reply message. The
messages between the PAFFI manager and its
client are described in XML, and client sends
and receives messages over HTTP[73]. Unfortu-
nately, a PAFFI reply message does not contain
AS-number field in order to indicate an upstream
neighbor AS; therefore, we prepared AS mapping
table on the BTM implementation. The compo-
nents of the AS mapping table can be described
in Table 2.1. Using this AS mapping table, BTM
converts a capture point ID to the AS number
of a neighbor AS and the direction of the issued
packet.

2.10 Preliminary Evaluation
2.10.1 Expected Round Trip Time of an
ITM Trace Request

With InterTrack, users will wonder how much
time will be spent to get a reverse AS path.
Here, we consider the round trip time (RTT)

of an ITM trace request. For the sake of

139

OzOe

Oo0O00oOoOooOooOooOooOoOOd ge

2

t

reepor

P R OJETZCT 2 0 0 6 a nnu a

E

D

e] 120 IPOOOOOOOOODOOOOOOOO

To ASY
.
E g
capture point 1 In
pture p H] .
mirror
capture point 2 In
pture p . H]
mirror
Footmarker
border router
<—p PAFFI Manager
border router
mirror
capture point 3 H
mirror
capture point 4 In
pture p H]
g i
Footmarker ! 3
£ &
g E
ASX

ToASZ

Fig. 2.8. The topology of PAFFI as BTS

Table 2.1. AS mapping table on BTM for
PAFFTI in accordance with Fig. 2.8

Capture Point ID | AS number | direction
capture point 1 Y incoming
capture point 2 Y outgoing
capture point 3 Z incoming
capture point 4 Z outgoing

simplicity, we assumed that each AS employs
a hash-digest-logging method as the BTS on each
network. Because of the characteristic of hash-
digest-logging method, the reverse AS path always
becomes a liner topology.

If an ITM trace request message is forwarded
from Origin issuer AS to the AS in n hops, and
the AS in n hops is the Attack state, suppose each
parameters as follows:

® tgec(s): the time from when AS i received an

ITM trace request to when the AS ¢ decides

140

to start the border tracking stage or to refuse
the request.

® tyun(i): the time spent for border tracking
stage

®t,q): the time spent to forward an ITM
request message to neighbor ASes

® yait(i): the time spent to wait for all neighbor
ASes to return each ITM reply message

®t,p(i): the time spent to make and send an
ITM trace reply message

® t,u(s): the time out threshold of #.q (i)

o t,4(;): the RTT of a traceback, that is, from
the time when AS i receives an ITM trace
request to the time when the AS finished
sending the corresponding ITM trace reply
message.

Then, the maximum RTT and the minimum

RTT on the AS 7 are

W I D E P ROJETCT

ITM(0) ITM(1) ITM(2)
start
tdec(0)
tbtm(0)
treq(0)]
trtt(0) ---r
thtm(1)
twait(0)

tbtm(2) | trtt(2)

Fig. 2.9. The round trip time of a response of an ITM trace request with 3 ASes

tmaz(i) = tdec(i) + tbtm(i) + t'req(i) + tout(i) (1)

tmin(i) = tdec(s) T trep() (2)
trnin(i) < trit(s) < tmas(s) (3)

trit(sy = Cdec(i) T totm(s) T Lreq(i)
+ twait(i) + trep(s) 4)

On the original issuer AS (¢ = 0), the RTT is

tv'tt(O) = Z(tdec(i) + tbtm(i) + tr'eq(i) + t!F[)(L))
=0
(where treqny = 0) (5)

Next, we consider the expectation of RT'T on
AS i. Suppose the probabilities on each decision
of AS i as follows:
® Djcc(s): the probability with which AS i
decides to start the border tracking stage.
® Dyegiy: the probability with which AS i
decides to forward the ITM trace request to
upstream neighbor ASes as the result of the
border tracking stage.

® Pout(i): the probability with which the time
out on the waiting I'TM trace reply messages
occurs.

Here, the probability that AS i receives an ITM

trace request messages from all neighbor ASes is

described as:

Pwait(i) = Pdec(i) Preq(i) (1 - pnut(i)) (6)

The expectation of RTT in the original issuer
AS (1 =0) is

E(tmy(0)) = Z(tmin(i) + totm (i) Pdec(s)
i=0
+ (tTf‘q(l) + tout(i))pdec(i) pw’q(t))
(Ik=0, i Prwait(k))
(where treqn)y = 0) (7)

Next, we consider the RTT with the false posi-
tive rate and the false negative rate on the border
tracking stage. The probabilities of mis-detection
of the border tracking stage are defined as follows:

1. popiy: the false positive rate of the border
tracking stage. Here, AS i does not have an
upstream neighbor AS on the attack path,
but the border tracking stage mis-judges and
indicates an upstream AS.

2. Pym(iy: the false negative rate of the border
tracking stage. Here, AS 7 has an upstream
neighbor AS on the attack path, but the bor-
der tracking stage mis-judges and does not
indicate an upstream AS.

3. Puip(i): the true positive rate of the border
tracking stage. Here, AS 7 has an upstream
neighbor AS on the attackpath, and the bor-
der tracking stage properly judges and indi-

cates an upstream AS.

141

OzOe

Oo0O00oOoOooOooOooOooOoOOd ge

2

t

reepor

P R OJETZCT 2 0 0 6 a nnu a

E

D

e] 120 IPOOOOOOOOODOOOOOOOO

4. ppin(s): the true negative rate of the border
tracking stage. Here, AS i does not have an
upstream neighbor AS in the attack path, and
the border tracking stage judges properly and

does not indicate an upstream AS.

Poip(i) t Poin(i) + Pofo(i) T Pofn(iy = 1 (8)
Prea(i) = Pofo(i) + Poip(i) (9)
Ptwd(i) = Pdec(i) Preq(i)

= Pace(s) (Pofo(iy + Poip(i)) (10)
Puwait(i) = Pdec(s) (Pofp(i) TPoip(s)) (L =Pout(s)) (11)
Derr(i) = Pdec(i) (Pofp(i) + Doip(i)) Pout(s) (12)

n

E(trtt(O)) = Z(tmmU) + tbtm(i) Pdec(i)
=0

+ (treq(i) + tout(i)) Pdec(s) (Posp(i) + Potp(i)))
(szo,i pwm’,t(k))
(where Pwait(n) = 0, Preg(n) = O) (13)

2.10.2 Preliminary Experiments with
Implementation

To evaluate the basic workloads of the ITM net-
work, a preliminary experiment was conducted
with the prototype implementation of InterTrack.
For the experimental environment, 9 Dell Power
Edge 1855 blade servers were used as a testbed
network. The physical topology is shown in
Fig. 2.10.
a Pentium III 1.4 GHz CPU, a 1024 MB RAM,

Each blade server equipped with

and two gigabit Ethernet interfaces. These
9 blade servers were divided into two blade cages
and interconnected with each other through the
two layer 2 switches equipped on each blade cage.
In this experiment, we measured the overhead
on the message processing of ITM. A blade
server was regarded as an AS, an ITM on each
blade server was run with a dummy BTM func-
tion which judged all neighbor I'TMs except the
issuer one as upstream neighbors. On the Control
Network, each ITM synchronized its own time to
the NTP server and other ITM nodes. On the
Ezperiment Network, each I'TM connected to only
neighbor I'TMs in a liner topology according to
the assumption that each AS employed a hash-
digest-logging method. We measured the relation

142

[Control Network]

ITMO| [ITM 1 3
I
«s_—' «~_,' ~_.'A «__—’} ‘~_,I‘ *\-

[Experiment Network]

—" «~_—'A *\-—'A

Blade Server Cage 2

Blade Server Cage 1

Fig. 2.10. Testbed topology

8
S [:]
o
o
S
3
[
H
E 84
oa)
s
E
§ 8
o ©
£
E
2
c g
s g
2
Q
2
S ° o ° ° o o o
° ° ° ° ° ° (] (]
6 J et o e e O e e e

T T T T T T T T
1 2 3 4 5 6 7 8

of hops

Fig. 2.11. RTT of an ITM trace request in

a liner topology

between the RTT of ITM trace request messages
on the origin issuer ITM and the number of hops
forwarding the ITM trace request messages. With
over-provisioning about the average length of AS
hops[91, 248], we measured RTTs of the 1,000
ITM trace requests which were forwarded from
1 hop to 8 hops. Each trial ran independently with
5 second intervals. The average RTT of ICMP on
the Ezperiment Network between each neighbor
node was 0.197 milliseconds.

Fig. 2.11 shows the box-whisker plot of the
experiments. Including outliers, all messages
returned to the original issuer ITM within 1.2 sec-
onds, and most were less than 200 milliseconds.
Table 2.2 shows the data of the components on
Fig. 2.11, Fig. 2.12, and Fig. 2.13. Because the
value of the mean is higher than the 90th per-
centile on each column, each column of Fig. 2.11
draws a positive skew like Fig. 2.12.

In order to analyze the trend of the curve more

deeply, the variations of RTT which were less than

E PR OJEZCT

Table 2.2. The data of box-whisker plot on Fig. 2.11 and Fig. 2.13

1 2 3 4 5 6 7 8
max. 199.939 | 199.956 | 1202.139 | 200.032 | 105.224 199.9 200.141 | 199.968
(msec.)
mean 10.400 8.7806 13.155 12.604 12.124 13.348 14.903 14.887
(msec.)
90th
percentile 1.0180 2.0300 3.173 4.1960 5.4410 6.9200 8.1240 9.6870
(msec.)
75th
percentile 0.8125 1.7215 2.717 3.7720 4.8670 6.1725 7.4320 8.8835
(msec.)
median 0.7025 1.5890 2.542 3.5815 4.6245 5.8940 7.1310 8.5300
(msec.)
25th
percentile 0.6750 1.5120 2.406 3.4265 4.4650 5.6530 6.9295 8.2650
(msec.)
min. 0.5330 1.3360 2.131 2.9930 4.0200 5.1790 6.4980 7.7410
(msec.)
variance 931.24 679.67 4891.3 831.22 672.28 689.99 715.65 571.68
_ . !
§_ _]
8 E o
E 24 8
s | g o 8 Bl
; B : .o =
5 : i =
L o =
g1 3 =
2 7] | =+ =
: 1 =
§- i=
—
[
e~ ; ; i ; ; . T T T T T T T T
0 50 100 150 200 250 oz 8 45 87T 8
RTT on ITM 0 (msec.) # of hops
Fig. 2.12. Histogram of RTT on ITM 0 in Fig. 2.13. RTT of an ITM trace request (scope

a 9 hops length topology

15 milliseconds were plotted in Fig. 2.13. The dis-
tribution of RT'T on each hop length was folded
in a narrow box, but the outliers of each column
make the variance high. Fig. 2.13 focused on the
values between the 10th percentile and the 90th
percentile. The boxes in Fig. 2.13 show the curve
of an increasing function.

Figs. 2.14 and 2.15 draw the distribution of the
RTT on each ITM in the 9 hop length topology.
The tendency of the distribution was decreased
along with the distance from the original issuer
ITM as in the formula described in Section 2.10.1.
Fig. 2.16 shows the distribution of the processing

on the box)

time on the border tracking stage in the 9 hop
length topology. The distribution expresses the
time from receiving a request to forwarding the
request to the upstream neighbor (i.e., Ldec(s) +
totm() + treq(i)). In this experiment, the tracking
initiation stage on the original issuer ITM (ITM 0)
was cut, that is, t4..(;) = 0; therefore, the distri-
bution on the ITM 0 was lower than other transit
ITMs (ITM 1 to ITM 7). On the other hand, the
ITM 8 was seen as the attacker AS. Because the
attacker AS does not forward the request further
upstream, the ¢,) is zero. For this reason, the

distribution on the ITM 8 is lower than that of

143

ogoe

Oo0O00oOoOooOooOooOooOoOOd ge

2

t

reepor

P R OJETZCT 2 0 0 6 a nnu a

E

D

e] 120 IPOOOOOOOOODOOOOOOOO

@ @

Response Time on each ITM (msec.)
50 100
1 1

_!__L_ﬂ__ﬂ__g__.__i__i__._

T T T T T T T T T
0 1 2 3 4 5 6 7 8

of hops

Fig. 2.14. RTT on each ITM in a 9 hops length

topology
o
w0 | E °
— = °
S
] ° °
E
z o °
= o o
g 2 A (] 8 °
L T o
c
5 =& . .
g,
;g . -E. 8 o
8 = 8 o o
g v = _8_ o °
&
3 — o °
& _—
L0
o
*
o —
T T T T T T T T T
0 1 2 3 4 5 6 7 8
of hops

Fig. 2.15. RTT on each ITM in a 9 hops length
topology (scope on the box)

other transit I'TMs. The processing time on the
dummy BTM function was less than 400 microsec-
onds on each I'TM. Fig. 2.17 shows an example of
the distribution of the dummy BTM function on
the ITM 0. According Figs. 2.13 to Fig. 2.17, the
formula described in Section 2.10.1 is adequate
for expressing the response time of an traceback
query.

In this evaluation, the RTT of an ITM trace
request message with an actual implementation
of hash-digest-logging method could not be evalu-
ated because of the limited resource of the testbed
environment. As sample data, we measured the

response time of the software PAFFI[96], which

144

0.5
1

Time spent for BTM on each ITM (msec.)
0.3 0.4
| |
°
|»|]:| oo ©
- - JocommmmEmenmm © o
oo
i)
o
| © oo 0o
)I[I PO

of hops
Fig. 2.16. The processing time of the border

tracking stage

n
g—o
8 °
E o
o o
E ST o ° g
5 ° °o °
= o
E 9 o
o 3 o o © 8
2 ggge 8
=
Bel 00 ﬁﬁ i
& o 8
e i
R S e i o +
[e e e
_— e e =

o
i
—_
—

T T T T T T T
1 2 3 4 5 6 7

g
PP
8
i i
e -+ &
——=
T
8

of hops
Fig. 2.17. The processing time of dummy BTM

function

was run on a VMware Workstation 5.0[262]. We
measured PAFFI’s response time in 1,000 trials
both in the case of Found and in the case of Not
Found in the environment shown in Table 2.4.
Table 2.5 shows the results.

According to the Table 2.5, the order of the
response time of PAFFI is a thousand times as
large as the RTT of our ITM implementation;
therefore, the border tracking stage would become
the bottleneck point on the trial of the inter-
domain traceback. We estimated the RTT of an
ITM trace request using the result of experiments
and the formula described in Section 2.10.1. In

the case where each AS used PAFFI as BTS in

Table 2.3. The data status of the box-whisker plots on Fig. 2.17

hop length 1 2 3 4 5 6 7 8
max. 0.349 | 0.289 | 0.305 | 0.247 | 0.199 | 0.23 | 0.239 | 0.287
(msec.)
mean 0.087 | 0.087 | 0.088 | 0.888 | 0.087 | 0.087 | 0.088 | 0.088
(msec.)
90th percentile || 0.0980 | 0.103 | 0.100 | 0.103 | 0.099 | 0.099 | 0.103 | 0.103
(msec.)
75th percentile || 0.0885 | 0.090 | 0.089 | 0.090 | 0.089 | 0.089 | 0.090 | 0.090
(msec.)
median 0.0830 | 0.083 | 0.083 | 0.083 | 0.083 | 0.083 | 0.084 | 0.084
(msec.)
25th percentile || 0.0810 | 0.081 | 0.081 | 0.081 | 0.081 | 0.081 | 0.081 | 0.081
(msec.)
min. 0.0750 | 0.075 | 0.075 | 0.076 | 0.074 | 0.075 | 0.076 | 0.075
(msec.)
variance 0.0002 | 0.0003 | 0.003 | 0.0002 | 0.0002 | 0.0002 | 0.0002 | 0.0003

Table 2.4. The spec of PAFFI on VMware

Ttem Spec
Host PC PowerEdge 1550
CPU Pentium III 993 MHz

Host OS Windows XP SP2
Guest OS Red hat 6.2
Memory 768 MBytes
Network VMNAT

Table 2.5. Response time of the software ver-

sion PAFFI on VMware

Found case | Not Found case
Max (sec.) 3.27 3.99
Min (sec.) 0.58 0.19
Mean (sec.) 1.57 1.61
Median (sec.) 1.58 1.59
Var 0.04 0.10

the 9 hop length topology, the estimated RTT
was about 16 seconds in average. Along with this
preliminary evaluation result, it was concluded
that the bottle neck point of the traceback trials
through InterTrack would be the border tracking
stage on each AS.

2.11 Comparison among Other Architec-

tures

In this section, we compare InterTrack with
other inter-domain traceback architectures. For
comparison, we take the architectures which
have been discussed in IETF: iTrace-CP[250]
as one of the extensions of ICMP trace-

back message, SPIE[184], eIP/iIP[177], RID[158],

RID-MEW][113] and InterTrack. Tables 2.6
and 2.7 show the comparison among each archi-
tecture in the qualitative view and Table 2.8
describes that of the quantitative view.

Except for iTrace, each architecture is a hier-
archical structure. Each structure is char-
acterized by the message protocols for the
inter-domain traceback. On the reverse path
of a traceback result, except for eIP/IP and
InterTrack, each architecture reveals a topology
or IP/MAC address to others. RID, RID-MEW
and InterTrack are independent from a specific
traceback technique.

iTrace-CP and eIP/iIP need the cooperation
among ASes to collect traceback information for
the reverse path reconstruction because of the
characteristic of the traceback packet method. On
other architectures, each AS can collect traceback
information by itself only.

Authenticating and authorizing components,
SPIE, eIP/iIP, and InterTrack are based on the
certificate process of sBGP or soBGP and use
IPSec ESP to encrypt a TCP session. RID and
RID-MEW are authorized and authenticated by
the CAs operated by consortium and employ
SOAP or HTTPS for the message encryption. We
suppose that InterTrack is comparable or may be
superior with others in each item of the Tables 2.6
and 2.7.

On quantitative view (Fig. 2.8), several archi-

tectures have reported the expected time to finish

145

P ROJETCT

ogoe

Oo0O00oOoOooOooOooOooOoOOd ge

2

t

reepor

P R OJETZCT 2 0 0 6 a nnu a

E

D

e[1120 TPUOOUOOOODOODUOODDOODOO
Table 2.6. A comparative table on the qualitative view (1)
approach protocol structure purpose reverse path disclosed
information
iTrace-CP ICMP flat layer 3 router hops 1P, MAC,
traceback traceback topology
message of traffic
SPIE IP Packet single layer 3 agent (router) 1P,
Traceback level traceback hops topology
Protocol hierarchy of a packet
elP/iIP ITM two level layer 3 AS hops (eIP) AS number,
Protocol hierarchy traceback router hops (iIP) AS path
of traffic
RID IODEF consortium layer 3 AS hops AS number,
RID peering traceback, AS path,
extension Incident 1P
report
RID-MEW RID three layer 3 AS hops AS number,
MEW level traceback, AS path,
extension hierarchy incident P
report
InterTrack IT™ two level layer 2/3/7 AS hops AS number,
trace hierarchy traceback AS path
messages
Table 2.7. A comparative table on the qualitative view (2)
approach dependent cooperation traceability authentication based
technique with others of messages certification
to collect
evidences
iTrace-CP traceback needed router ID — —
packet
SPIE hash- not needed message 1D, IPSec sBGP
digest- signatures
logging
elP/iIP traceback needed HMAC, HMAC, sBGP,
packet signatures IPSec soBGP
RID independent not needed message 1D, SOAP/HTTPS consortium
signatures
RID-MEW independent — message 1D, SOAP/HTTPS —
signatures
InterTrack independent not needed message 1D, IPSec sBGP,
ITM path list soBGP
Table 2.8. A comparative table on the quantitative view
iTrace-CP elP/iIP RID-MEW InterTrack
experiment ns2 emulation with emulation with emulation with
implementation dummy function dummy function
average time 18.3 sec. 38 sec. 1.6sec. (test) 0.25sec. (test)
spent to trace 16 sec. (estimated)
hop length 20 (router) 4 (AS) 7 (AS) 9 (AS)
trees single tree 9 trees single tree single tree
CPU — Pentium IIT Pentium IV Pentium IIT
— 800 MHz 3.0GHz 1.4 GHz
tracing ns2 actual dummy dummy
implementation (fixed value) (flexible value)
tracing time — — 0.2sec. (mid. hop) | 0.083 usec. (test)
on each AS 0.4sec. (end hop) 1.6 sec. (PAFFI)

a traceback trial. Although each experimental
environment is different from each other, the aver-
age time to spend on a traceback trial was less
40 seconds on iTrace-CP, eIP/ilP, RID-MEW and
InterTrack. Even when the sample data on the
response time of PAFFT is considered, the average
time of a traceback trial on InterTrack is compa-
rable to others.

Through these comparisons, InterTrack can be
considered a competitive traceback architecture in

practical use.

2.12 Summary

Developing an automated inter-domain trace-
back architecture has long been viewed as imprac-
tical due to the barriers on the operational bound-
aries and the dependence on specific tracking
techniques. InterTrack’s key contribution is to
achieve the inter-domain traceback in a practical
way. Because of the phased-tracking apporach of
InterTrack, each AS can control a traceback oper-
ation on its operation domain by itself only, and
can track back an attack on its operation domain
with different traceback techniques regardless of
traceback systems on other ASes. The federation
of internal traceback trials on InterTrack enables
ASes to cooperate with others on an inter-domain
traceback trial automatically, while concealing the
sensitive information of each AS.

Through preliminary experiments, the time
spent for an inter-domain traceback in 9 AS
hop length was estimated to be 16 seconds
in the case where each AS uses hash-digest-
logging method. Through discussions and com-
parisons among other traceback architectures, we
explained InterTrack as the competitive traceback
architecture against attacks.

In future work, in order to confirm the feasi-
bility of InterTrack, more complex cases where
ASes employ various traceback techniques such as
specialized routing methods[39, 74, 82, 241], flow
sampling methods[40, 189], hash-digest-logging
methods[96, 226] etc., will be evaluated.

030 iPOOOOOODOOOODOOOODOOOO
gbooboooooog

goooboz200000I1P0O0OOOOO0COOO
00000000000 Inter'TrackD0000O000O
ooooooooooooooooooooooo
oooooooooooooz2000000o0o0on
ooooooooooooooooooooooo
oooooooooooo

oogg

IpO00000000000000O00O00O0OOOOO
gboboobooboooboobooboooboooodg
gbobooboobooooboobooobooobooa
gbobooboobooooboobooobooobooa
doooooooooooobobboooooboobd
dooooooooooooooooooboood
gbobooboobooooboobooobooobooa
gbooobobooobooboboooboobooo
gbobooboobooooboobooobooobooa
gboboobooobooboobooboooo

310000

oooooooooobooooooboIPOOO
dooooooooooooboboboobooboood
ooooooIpO0OO0OO0O0O0OODOOOO0OOCOO
gboboobooobooooboobooobooooa
oooooooooooooooorroooODOOO
gooooooooooOoOoboOoIPOOOOOODO
gbobooboobooooboobooobooooa
ooooooooboooooooobooooIpoOO
goooboooooo

IpOO0OO0OO0OOCOOODODOOOOOOOOOOO
gbobooboobooooboobooobooooa
oooOoOIpOO0DOOOO0OOOODOOOOOOODO
gbobooboobooooboobooooboooog
gbobooboobooooboobooobooooa
gbobooboobooooboobooooboooog
gbobooboobooooboobooooboooog
gbooooboooooo

gbooobooooooobooboooobooboobo

147

P ROJETCT

ogoe

Oo0O00oOoOooOooOooOooOoOOd ge

2

t

reepor

P R OJETZCT 2 0 0 6 a nnu a

E

D

e] 120 IPOOOOOOOOODOOOOOOOO

oooocoooIpoobOoOoOoOoOoOoooOonon
ooboboooooooooooIpoboooooOoon
gooooobooooooooooboooooooo
(4000000000000 OO0ODOoDOO
0000000 114, 18] 0000000 UOOOO
ooooooboobooooooooboooooooo
oboooooboobooooooooboooooooo
oooooooooo
gooooooooooooooooooooo
oooooobooooooooooboooooooo
oooooobooooooooooboooooooo
oboooooooooooboooooooIpPOOO
oooooooooooooooboooooooo
oooooooooooooooboooooooo
gooooobooooooooooboooooooo
ooooooooobooooo
gooooooooboooboobooooboooos2o
oooooIproobooboboooooooooooon
goooooooooooooooboooooooo
ooboooooooooooooobooossoon
IpOOOOOOOODODOOOOOOOOOOO0O0
oboooooooooboOooooooooooooon
ooooooboooooooooooboooooooo
InterTrack[84]0 0000000000000 0O0OO
oooooooooboobO 34000000O0O0ODODO

32Ip00oogoon
ooooIpooOOoOO0OoOoOooOOoOooocOoonn
oobooooooooooooIpPoOOOOOO
gbooobooboooobooboobooooboooboo
gbooobooboooobooboobooooboooboo
goo
e(l00000OOOOOODOOOODLOOODO
gbobooboooboobooooooooboo
gbooobooobooooo
e(lO000C00O0OOOOOOOODOOOOOO
gboooboooboobooooooooobooo
gbobooboooboobooooooooboo
gboooboooboobooooooooobooo
gbobooboooboobooooooooboo
el00000OOOOODOOOOOOODO
gboooboooboobooooooooobooo
gboooboooboobooooooooobooo
goooooo

148

ejO00O0O000OOODOOCOOOOOODOODO
goooooooobooooboz2ooco0 30000 7
oooooooooooo

321 IPO000OO00OOOOO
DoSODDoSOOO0OO0OOOOOOO0O0O0OO
ooooooooOoooOooooooooDpoooo
[241,254)000000000000O0O0OOODOO
00o0o0o0oooU0oOooooUoooooooo
0000000000000 beSOOOOOODO
00o0o0o0oooU0oOooooUoooooooo
00o0o0o0oooU0oOooooUoooooooo
00o0o0o0oooU0oOooooUoooooooo
00o0o0o0oooU0oOooooUoooooooo
poboooboboobobbobooboobo
00o0o0o0oooU0oOooooUoooooooo
poogooboboobooboon
00000000 2500000000000
00000000000o0oDn BloomOOOO [20]
goooooooglpooooboooobooon
poboooboboobobbobooboobo
goboooooobooobooooooboobooono 3
gboooo20000000D000b0O00b
000000 Trajectory Sampling0O0 00000
poboooboboobobboboobooobo
poboooboboobobboboobooobo
000000000000000 0000000
poboooboboobobbobooboooo
poboooboboobobbobooboooo
gooooooooooooo3poooboooonb 2
pooooooboobooo
goooooooobooooooooooIpboO
pobooobobooobobboboobooobo
pobooobobooobobboboobooobo
gooooboobobboboboboooobooooo
gobooboo3oboooboooorbooooo
gobogooboboooboboboboobooobo
ogooooooon
00000000000 1700000000
[187,211,231|000 IPOOO0ODOO0ODODOOO
googoobobooobobboboobooobo
googoobobooobobboboobooobo
O0IETFOODOOOOOOOOODOODODOOO
pooooboobobooobooo

3zz2Ip00OoUOoOoooobooOoooon
ooooIpoooooobooooooobooon
gooooooooooooooboooooooo
gobooooobooooboooobooooIPOOOO
gooooooooooooooboooooooo
goooooooooooooobooOoooooo
30000000000000000 DoSOOODO
gooooooooooooobooboooooooboo
gooooooooooooooboooooooo
gooooooooooooooboooooooo
gooooooooooooooboooooooo
oooooooooooo
ooooooooooooooooboooooo
gooooooooooooooboooooooo
gboobooooboboobooooboooboo
gooooooooooooobooboooooooboo
goboooboobooboooobobooobooo
gboobooooboboobooooboooboo
gboobooooboboobooooboooboo
gboobooooboboobooooboooboo
gboobooooboboobooooboooboo
gbooboooobobooboooobooooboo
gboobooooboboobooooboooboo
gbooboooobobooboooobooooboo
gbooooo
gobooooobooboooobooboooboooo
gbooboooobobooboooobooooboo
gbooboooobobooboooobooooboo
gbooboooobobooboooobooooboo
gbooboooobobooboooobooooboo
gbooboooobobooboooobooooboo
gbooboooobobooboooobooooboo
gboobooooobobooboooobooooboo
gobooIrroooooboooobooooboooo
gboobooooooboobooobooooo
gobooooobooboooobooboooboooo
gboobooooboboobooooboooboo
goooooooooooorpooboboboboboboo
gboobooooooboobooooobooooboo
gbooboooooboboobooooobooooboo
gboobooooboooboooobooboo

3221 000000000000
000000 Trajectory Sampling0O0 00000

ooooooooooooooooboooooooo
ooooooooooooooooboooooooo
ooooooooooooooooboooooooo
oooooooooooo pO0OOOOOOOCGO
00 H,O0DODOOOOUODOOO S=Hs(P,)ODOO
ooobo rROOOOOOOOOOOODODODOOOO
U p 00000000000 H;O000000O0
ID H;(P,) 000000000 O0ODOOODOODOO
OOoROOOOOOOOOOOOOOOOOODOO
ooooooIipoooooooocoooooon
Oo000oo IETF PSAMPOODOOOOOOO
ooooooooooooooooooooooo
000000000 PSAMPOOO Cisco NetFlow
version 9400 000000000000 OODOO
gbobooboobooooboooboooboooon
oooooo pSAMPOODOOOOOCOOODOO
0O BOBOIPSX[286)J 000000 OOO0OOOO
gbobooboobooooboobooobooobooa
gbobooboobooooboobooobooobooa
oooooooooooooooobobooon 1bo
0P 00000000000DO0OO B3|O0O0O0
gboboobooobooooboobooobooooa
goooboobooboooooboboooooooboooooo
OO0 [1h3)000000000000O0DO0ODOO
gboboobooobooooboobooboooo
IPSXOO0O000O0160000BOBOO 3200
goooooooooooooooboboobooooaa
gboboobooobooooboobooobooooa
gboboobooobooooboobooobooooa
OO0 pSAMPOOOOOOOOOOOOOOOOO
gbooobooobooobo
PSAMPOOOOOOOODODOOOOOIDOO
oooop00000ooooooobobbobboo
gboboobooboooobooboooobooooa
gboboobooboooobooboooobooooa
gbobooboooboobooooooooboo

3z222000000000000000
ooo0oOoooooo MD50 SHA1OOOOO
gbobooboobooooboobooobooooa
gooobooboooooooobooooooboobooooon
gboboobooobooooboobooooboooog
gooobooobo
goooooodoob BleomOOOOOOOOO

149

P ROJETCT

ogoe

Oo0O00oOoOooOooOooOooOoOOd ge

2

t

reepor

P R OJETZCT 2 0 0 6 a nnu a

E

D

e] 120 IPOOOOOOOOODOOOOOOOO

00000000000000000000000
00000000000000000000000
000 Hi(Py) =H(i||P)00<i<n0000 n0
000000000000000000000000
000000000000000000000000
00000000000000000000000
000000000000000000000 [18]0
0000000000000000000000
00000000000000000000000
00000000000000000000000
00000000000000000000000
00000000000000 5400000000
00000000000000000000double
hashingD0 000000000000000000
0ooo

00000000000000 SPIE[150000
00000000000000000000000
000000000000000000000000
00000000000000000000000
000000000000000000000000
00000000000000000000 [226]0
00 [242] 00 Bloom Filter 0000000000
00000000000000000000 IPv40
00O00IPv6O0O0000000000000000
000000000IPvA00000000IPO0
0000000 8000000TCP/UDPOODOO
OmMIPv6 00000000 IPO0O0OODO0
000000000000000SPIEOODOO
00000000000000000000000
00000000000000000000000
00000000000000000 IPSec ESP O
00000000000000

3z223000000000000
gboobooooobooboobooooboobo
oooooooIpPoOOOOO0ODOOODOOOOO
gboobooobooooobooobooooboooboo
gboobooboooobooboooboooobooobooo
gbooobooboooooboooboooobooobooo
gboobooboooobooboooboooobooobooo
[123,135|0 0000000000000 000OO0
oooooooooooboboooogoooooo
gbooobooboooooboooboooobooobooo
000000000000 00DO00000 [129]0

150

information harvesting
(a) deliberate exposure
(b) eavesdropping attack
(c) spoofing attack
(d) redirection attack
(e) traceback request forgery
(f)
031 IPO00OODOOOOODOOOOODOOOO
goooogoo

false reply attack

gboooboooboooobobooboooooon
gobooobooobooboooooooobooooo
gbooooooboooboooooooobooooo
gobooobooobooboooooooobooooo
gbooooooboooboooooooobooooo
gbooooooboooboooooooobooooo
gbooooooboooboooooooobooooo
gbooooo

goboobooobooooboboobooooooo
gbooooooboooboooooooobooooo
gbooooooboooboooooooobooooo
gboooboooog

33lp00000000000000
331IPO0000OOOCOOOCOOOOODOO
od
gooooooooooooboobooooooooo
gooooooooooooooooooooon
gbooooooooooooooOoooooooon
goooooooooooooooOoooooon
ooooooooooooo
oooooooooooooooobooooooo
goooooooooooooooOoooooon
gooooooooooooobooooooon
oooooooooooooooooooooon
goooooooooooooooOoooooon
oooooooIpo0b0O0O00OO0OO0OOoOOOOn
gooooooooooooobooOoooooon
oooo31000ooduo(d)oooooon
goooooooooooooobooooooon
goooooooooooooobooooooon
OO0 eYuoooooooooooooooooon
gooooooooooooobobooooooon
goboooooooOooOoOoooOooOoOoooooo

initiate
traceback
request

o 3.2.

gooooooooooooooogd

()0000000000000000000000
0000000000IPO0O0O0OO0O0OO0
00000000000000000000000
00000000000000000000000
000000000000000000000

0000000 (d)~(f)000000000000
00000000000000000000 3.20
00000000000000000000000
00000000000000000000000
000000(O00000000000000
000000000000000000000000
00000000000000000000000
00000000000000000000000
00000000000000000000000
0000000000000000000(e)000
00000000000000000000000
00000000000000000000000
00000000000000000000000
000000000000 0000000000
00000000000000000000000
00000000000000000000000
00000000000000000000000
000000000

(~()0000000000000000000
00000000000000000000000
00000000000000000000000
00000000000000000000000
00000000000000000000000
000000000000000000000000
(2)(b) 00D0D000D000D0O0D00 (d)—(f) 0
0000000000MO0000000000000
00000000000000000000000
00000000000000000000000
00000000000000000000000
000000000 (d)—~(f)0000000000
0000 3323000000

3320000000000000000000
3321000

00 [18) 00000 O group cipherd 00000
000000000000000 BloomOOOODO
00000000000000000000000
00000000000000000000000
00000000000000000000000
000rap000000000000000000
00000000000000000000 Pohlig
Hellman 000 00000000000000000O
00000000000

3322000000

gbooobooooooobooboooboobbuobo
gooooooooooboobooooouoooooo
gooobooobooboobbooboobooooog
Joooooo0ooobDbOoodUIKE] Internet
Key Exchange(118] 0 00000000 DOOO
gooobooobooboobboopbooboobooog
goboooboooo IKeOooOoooooood
gooobooobooboobboopbooboobooog
gooobooobooboobooboobooobooog
gooobooobooboobboopbooboobooog
gooobooobooboobooboobooobooog
gooobooobooboobooboobooobooog
gooooooo

gboobooooboboobooboobbobo
O pre-computation attack D 0 0000000000
0000000000000 0000000 SHA-1
goooboooboobooboopbooboobooo
goooboooboobooboopbooboobooo
gooobooobooboobooboobooobooog
goooobogooob8suboobuooboboo
000000000 SHA-1OOOoooooooo
gooooo

NISTO IETFOOO0O000O0OOOOOOODOO
0000000000000 00D000 SHA-2560
000000000000 000 [162)0 SHA-256
IpPOO0O0OCOO0ODOOOOODOODOODOO
gooobooobooboobooboobooooog
00000000000 00000 SHA-25600
goooboooboooobobooboooo

151

P ROJETCT

ogoe

Oo0O00oOoOooOooOooOooOoOOd ge

(Q\]
—

t

reepor

P R OJETZCT 2 0 0 6 a nnu a

E

D

e] 120 IPOOOOOOOOODOOOOOOOO

332300000

00000000000000000000000
000000000000033.100000000
0000 (d)-()000000000000000
0ooo00o0o0

00000000000000000000 ID
H(P,)0ODOODO0OODO HOODOO SHADOOO
000000000 kD k00000000000
0 /000000 ROODODOO P, 0000000
000kOk O00000000000000000
00000 k000000

I — R:k;

000000k OO0O0OODODODODOOO 00
goooooooooo pO0000O00O00O
Oo00000k00000000O0D0O0O0O0O0O0

R — I:{x, ki, R}k,

k, 0000000z, k,R)D00D000000ODO
000000000000000000 ()ooo
000000 (o,k,R)00000000000OO
00000000000000000000000
00000000000000000000

()00 k. 00000000000000000
00000000000000000000000
000000000000 I0RODOOOOOO
0000000000000

000 (¢)0000000D000000000DO
{,ki, R}, 000000000 0000000
00oooooooo0

000D [308) 0000000000000 AS
00000000000000000000000
00000000000000000000 ASO
00000000000000000000000
00000000000000000000000
00000000000000000000000
00000000000000000000000
00000000000000000000000
00000000000000000

333 InterTrack DO OO0O0OOOO0O
goooobobooooooooobobbooo

InterTrack D00 O0000000000O00O0OOAS

O00ASOO0OASODO 4000000000000

152

oooooooASOOOOOOO0O03.323000
gooooooooooooooboooooooon
goooooocoooooooboooo
InterTrack 00000 ASOOOOOOOOOO
00oboo0O HOoASOOOOOooooooooo
0QO0ASOO0O0C0O0O000000O00 Q0000
goboooooooobooooooood RyUReO
goooooooooooooboooooooon
gooooooooooooon

Ry (H(p)) = Qu(p)
Ra(H(p)) = Qa(p)

000 pO000000000D000000O000
00000000000000000000000
00000000 H(p) = R(Qu(p)) 000000
00000000000000000000000
000000000000000000

00 QO0Q0000000000000000
000ASOOOOOOOOOOOOOOOOOO
00000000000000000000000
00000000000000000000000
000000000000 ASO00O0O0O0O000
00000000000000000000000
00000000000000000000000
ooo

34000
dooooooooooooooooooooo
gboooboooobooboooooobooobooobooon
gboooboooobooboooooobooobooobooon
gboooboooobooboooooobooobooobooon
gbooobooooboobooooobooobooobooon
gobooooooobooboooooobooobooooo
goboooooooobooooobooboooooboobooao
oo0ooooooooooooooooogo AS
oooASO0OO0OOoOO0OooOoooOoooOooo
gbooooooboobooooobooobooobooon
gboooboooboobooooobooobooobooon
goooooooooboooooooooboboboooo
gboboooobooooboooooboboooobooboao

oo
gboboobooboooobobooboooooo
gbooobooooboooboooooobooobooooo

gooooooooooooooboooooooo
gooooooooooooooboooooooo
gooooooooooooooboooooooo
goooooooooooooooboooooo

ooooooooooooooooboooooo
gmoobobooooooooobooboooooo
gooooooooooooooboooooooo
gooooooooooooooboooooooo
gooooooooooooooboooooooo
ooo

040 0O0OOO

2006 000 Traceback 00 O0O0O0O00O0O0ODO
goIlpOo0oooooObOO0O0oOoooobOOoOoooon
gboobdoooobobooboooobooooboo
0o00o0ooO0ooo0ooo0oooobNsSOOO
goobooobocooooboboooooooboobooao
gbooboooobobooboooobooooboo
gobooooooooboooobooooboooo pO
gbooboooobobooboooobooooboo
gboobooboooooooobo

2070000000b0ooooobooboooo
goboobooooooboooooboboooooboobooo
InterTrack 0000000 IPOOOOOOOCOODO
o wibEOOUOOoooooooOoWwIDEODODO
goboooIipoooOobOboOobOboOoOooOboOoOn
oooooooooooooIp0O0OO0OoOoooon
glpooooooooboboOoboboooobOoon
gboooooogo

D

E

P ROJETCT

153

ogoe

Oo0O00oOoOooOooOooOooOoOOd ge

2

