[ XXV [

Integrated Distributed
Environment
with Overlay Network






W I D E

0250
Integrated Distributed Environment with Overlay Network

0 10 Introduction

1.1TDEON revisited
IDEON (Integrated Distributed Environment

with Overlay Network) is a working group of
researchers who try to approach realization of
the integrated distributed environment (IDE)
through construction of overlay networks (ON).

IDEON focuses on research, development and
operation of overlay networks as an infrastructure
to realize free and creative rendezvous, location
and routing (Table 1.1).

Our research topics include, but not limited to,
the following:

e Application-layer multicast

e Operable distributed hash tables
e Self-sustained trust management for dis-

tributed autonomous systems

1.2 Projects

Table 1.2 shows the list of specific development
projects in IDEON as of January 2005.

For the detailed plans of those projects, please
refer to the web pages of each project. The list of
pages can be found in the URL below.

http://member.wide.ad.jp/wg/ideon/

7en’,2FProjects

1.3 Activity plans

Activities in IDEON can be outlined as follows:
{understand — build — try }x — deploy

(where * denotes repetition.)

Currently we are primarily at “build — try”

Table 1.1. Redefined terminology in IDEON

Terms Meaning

Free Having no restriction whatsoever as to with which peers one can communicate.

Creative Being able to select a set of peers according to one’s objectives, requirements,
needs and contexts so that communication becomes most valuable for the
participants.

Rendezvous To identify such a peer.

Location To locate such a peer in the overlay networks by the acquired identifier.

Routing To deliver a message to such a peer on the acquired location.

Overlay Network | An application-specific virtual network of peers over the IP network to realize
rendezvous, location and routing over an appropriate abstraction of entities.

Table 1.2. Specific development projects in IDEON (January 2005)

Project Name

Description

wija A pluggable XMPP /Jabber client intended to be a testbed for pursuing

all possibilities of communication.

libcookai

A Pastry-based distributed game library.

enhanced eigentrust | A trust management.

mchord

An implementation of Chord.

PuchiChord

An implementation of Chord as a research platform.

n_chord (provisional) | Dynamic optimization of distributed hash tables.

403

P ROJETCT

SI0MION AR[I0A(Q) (I JUSTIUOTIAUL POINLIISI(] pajeidoqu] DI e

25




t

reepor

a n n u a

P ROJETCT 2 0 0 4

E

D

e [J 250 Integrated Distributed Environment with Overlay Network

phase. Our goal is to bring all development
projects into “deploy” phase by the end of fiscal
year 2005.

1.4 Topics covered in this report

The rest of this report covers the following
topics:
1. Discussions on Multi-Overlay Architecture
over the Internet
e Clarification of the philosophy put forward
in IDEON.
2. Efficient Searching Using DHT Over the
Unstructured Name Space on DNS
e An application of DHT (Distributed Hash
Table).
3. Distributed Scalable Multi-player Online
Game Servers on Peer-to-Peer Networks
e Description of the design of libcookai.
4. WOT for WAT: Spinning the Web of Trust
for Peer-to-Peer Barter Relationships
e Reasoning behind i-WAT, a complemen-

tary currency plug-in for wija.

0 20 Discussions on Multi-Overlay Architecture

over the Internet

abstract

We argue that the overlay network approach
is a solution to numerous issues concerning the
Internet such as mobility support, identification
of entities without computing resources, security
and multi/anycasting. The major advantage is
that an overlay solution is essentially independent
of other overlay solutions. Thus, there is no risk
of conflict between solutions. Moreover, overlay
can introduce tailor-made addressing and routing
schemes for each application.

To realize overlays in the form of modular com-
ponents for network applications, we focus on the
interface between overlays. We propose an inter-
connection model that enables an overlay network

for network exchange to act as a market for other

404

networks.

We conclude that overloading the network layer
to resolve issues is not only difficult, but also inim-
ical to other solutions. To let the network layer
as commons for future innovations, it will be nec-
essary to consider alternative approaches such as

an overlay model before we decide to overload.

2.1 Overlay Networking as a Solution

This chapter discusses employment of overlay
networks to resolve contemporary issues concern-
ing the Internet. The issues include the mobility
of entities that do not fit in a physical node, iden-
tification of targets without computing resources
such as people, security in an untrustworthy net-
work, trust management among a multitude of
unknown nodes, and node-finding (rendezvous) in
an ubiquitous networking environment.

Fundamental to our overlay approach is the
management of identifier spaces that are indepen-
dent of IP addresses. Such identifier spaces should
be capable of providing applications with appro-
priate ways for rendezvous, location and routing.

We argue that decoupling identifiers and the
Internet protocols is preferred to resolving the
above issues within the network layer, which
sometimes contradicts against the design of the

layer and/or overload it.

Our Communication Model

The following is a description of the commu-
nication model we use at IDEON (Integrated
Distributed Environment with Overlay Network),
a working group in the WIDE Project that
pursues autonomy in the designs of distributed
systems.

We think that network designs should encour-
age self-generation of activities which utilize
resources spread among different locations (hence,
integrated distributed environment) by allowing
spontaneous creation of layers of abstract net-
work over the network layer (hence, with overlay
network).

Putting more stress on autonomy changes



how the three ingredients of communication are
performed:

1. Rendezvous (or how to identify the peer)
The word “rendezvous” means a prearranged
meeting place. In computer communica-
tions, such a meeting place can be a name
space or a space for identifiers. Rendezvous
performed autonomously allows spontaneous
naming and resolution among the participat-
ing nodes.

2. Location (or how to locate the peer)

This is to locate the node that represents
the identifier. The node is typically iden-
tified by the identifier in the lower layer of
the network, an IP address in most cases.
Autonomous location involves identifying the
closest copy of information among redundant
copies spread over the network with help from
participating nodes in the vicinity.

3. Routing (or how to reach the peer)

This is to traverse the topology of the network
so that a message can reach the peer. Loca-
tion and routing can be done in the same pro-
cedure because it is necessary to traverse the
topology of the network to locate the peer.
Autonomous routing will involve creation of
topology in an ad-hoc manner.

We propose alternative networking designs so
that each of these can be performed in unre-
strained and imaginative ways.

By “unrestrained and imaginative” we mean
that no restraint should be imposed by the net-
work as to which object can become the target
for communication, without intervention of any
authorities or privileged intermediate nodes, and
that new ways of communication can be devel-
oped by the creativity of the participants of the
network.

Since autonomy implies that there is no author-
ity to guarantee the truthfulness of information
(or that such an authority is weak), trust becomes
an important issue.

In addition, the recent ubiquitous network envi-

ronment makes the Internet heterogeneous and

W I D E

connected with real space. The only network we
know of that has a variety of nodes is the cur-
rent Internet, and the trend toward greater variety
will continue as the mass of nodes increases. Real
space is also integrated in the network. At least at
1991, we had a sensor connected to the worldwide
network, the famous coffee pot[113] in Cambridge
University. Many other projects, such as tangible

bits[148], integrates real space and network.

2.2 Issues concerning the Internet

We think that an integrated distributed envi-

ronment with overlay network constitutes an effec-
tive way of redesigning the current Internet.
Thus, We consider issues concerning the current
Internet to be opportunities to introduce new
designs. In this section we focus on such prob-
lems and solutions.

2.2.1 Endpoint Naming, Locating, and

Routing

There are many issues concerning message rout-
ing and endpoint granularity. In the current Inter-
net architecture, almost all messages are routed
into a physical network interface card (NIC), and
the computer on the NIC hands the payload of
the message to a process to which a port number
is assigned.

Binding between message routing and physical
NIC is an essential constraint of the Internet. To
overcome it, Roma Project[291], for example, cre-
ates its own routing scheme to route the message
to a person regardless of its connectivity. This
is an outstanding example of an application that
uses the overlay network to decouple the endpoint
of a message from the underlay network endpoint
to satisfy the needs of applications.

Another kind of application introduces a more
symbolic and abstract location such as “temper-
ature of the room” or “energy consumption of
this building.” In many cases, endpoints of this
kind do not exist. Some works of sensor fusion,
eg. IrisNet[106], create virtual and abstracted

nodes (organizing agent nodes) decoupled from

405

P ROJETCT

SI0MION AR[I0A(Q) (I JUSTIUOTIAUL POINLIISI(] pajeidoqu] DI e

25




t

reepor

a n n u a

P ROJETCT 2 0 0 4

E

D

e [J 250 Integrated Distributed Environment with Overlay Network

physical sensor nodes. The virtual nodes collect
data from one or many physical node dynamically.
The data can be altered or integrated in the vir-
tual node. And an overlay network structure pro-
vides naming, locating, and routing between client
and such virtual nodes.

Decoupling of identifier spaces is a fundamen-
tal approach for node mobility, too. Mobile IP
(MIP)[244] and LING[171] are efficient approaches
for mobility and they decouple node addresses
and network addresses. Although MIP is a stan-
dard of the Internet Protocol suite, MIP does not
decouple name spaces of nodes and networks com-
pletely. On the other hand, LING is designed to
decouple node identifiers and network identifiers.
MIP and LING6 are efficient because their routing
is tightly coupled with the IP routing.

For mobility, there are many alternative
approaches that satisfy various needs. Due to
strong relation with the IP-layer routing, MIP and
LING are not applicable to non-node mobility. For
example, processes, contexts, or sessions can not
move in the case of these solutions.

Some of contemporary approaches to node
mobility uses an overlay network. Internet Indi-
rection Infrastructure (i3)[287] is one of the best
approaches for mobility using an overlay network.
Their approach creates a concrete overlay network
that is capable of naming, locating, and routing.
In i3, each node forms a network of a distributed
hash table and works as a message router over the
network. Any nodes can “listen to” any points in
the network. This approach decouples not only
naming, but also locating and routing.

The major advantage over other mobility
approaches is its flexibility. Because it has an
independent routing and naming mechanism, not
only physical hosts but also processes or other
objects can handle its session as an overlay node.
Moreover, ROAM (Robust Overlay Architecture
for Mobility)[333], a mobility extension of the i3
approach, introduces a control mechanism of
tradeoff between efficiency and privacy by con-

trolling trigger insertion randomness.

406

2.2.2 Security and Overlay

Security and trust involve numerous issues that
are difficult to resolve. In this chapter we focus on
two issues concerning security and trust, namely,
node quarantine to keep infected or malicious
nodes out of the network, and service selection
among unfamiliar and unknown nodes.

A node quarantine model for IPv6 node security
was proposed in an Internet Draft[168]. It involves
control of the datalink layer such as VLAN or
Internet layer association (route advertisement in
IPv6) to quarantine dubious nodes and protect
other nodes from attacks. The approach is tightly
coupled with the IP or datalink layer. Using some
security audit mechanism, a node will be certified
as “clean.” And then it can enter the network.

Our approach can be applied in the same man-
ner, but it utilizes a higher layer and decouple the
secured state from the network layer. The regular
network layer “outside” is considered to be dirty
and the overlay network inside is kept clean.

Another issue concerning security and trust is
service selection. To select a trustworthy service
provider from all the providers around a client
node, some sort of trust management among
providers is necessary. At the same time, a ser-
vice provider needs to distinguish malicious client
nodes among accessing client nodes.

To satisfy these requirements, each node must
be able to manage its own trust and that of oth-
ers. A trust network, i-WAT[272], creates a peer-
to-peer style overlay network to maintain and
exchange trust between nodes. Using such a net-
work, a node can decide which nodes to trust, or

select a better one among unfamiliar nodes.

2.2.3 Overloading Causes Contradiction

As pointed out in the previous sections, the
Internet involves numerous issues and needs.
Clearly, the Internet Protocol is incapable of sat-
isfying all those needs simultaneously. For exam-
ple, mobility on or above the transport layer and
addressing and locating a non-IP object such as

a person are solved beyond the network layer.



Although design of network layer is limited to
identification, locating, and routing of network
interface, there are many demands to overload the
Internet Protocol and IP addresses.

For example, an [Pv6 address is a unique iden-
tifier in the Internet. Thus, re-using an IPv6
address as an identifier of a device, node, or person
is an attractive idea. But such overloading is an
abuse of the IPv6 address, which is not designed
to support it.

Meanwhile, multicasting and anycasting over-
loads addressing and routing of IP. In multicast-
ing, an address is shared among some set of inter-
faces and a special routing protocol is required
to send messages to all of the interfaces. This
essentially means that identifier of NIC is over-
loaded as a group of NICs, and the overloading
enforces special handling of the identifier in every
node participating in the Internet.

For example, multicasting requires PIM or
another multicast routing protocol to be usable
between sender and listener. Because not all
routers support PIM and there is no evidence that
PIM scales well against Internet-size, enabled area
of multicasting is somewhat limited, or tunnel-
ing, a very primitive overlay, is applied to bridge
between those enabled areas.

Anycasting is similar but involves more complex
overloading against addressing and routing. In
anycasting, interfaces share an address, as they
do in multicasting. The difference is that only
one interface at a time can receive a message sent
to the address.

In [231], it is pointed out that anycasting essen-
tially involves issues of security and scalability.
Although well-known anycast addresses for well-
known services is an attractive idea for a service
finding scheme, it also causes overloading of the
IP routing.

Overloading is not always undesirable. How-
ever, it sometimes causes contradiction between
two or more overloading technologies.

For example, ingress filter[98] conflicts with

the earlier version of Mobile IP. Ingress filter

W I D E

prevents malicious attackers from spoofing its
source address. However, a node with the ear-
lier version of Mobile IP sends messages with its
home address, and the messages are dropped by
the filter. Due to this contradiction, Mobile IP for
IP version 4 is required to use tunneling between
a home agent and a mobile node to communi-
cate. With redesign involving the network layer,
Mobile IP version 6 behaves well against ingress
filtering.

Great care must be exercised in overloading
the network layer. Otherwise, contradiction with
other technologies will undermine efficiency or, in
the worst case, result in failure of deployment. At
the same time, we believe this kind of overloading
technology requires long and difficult standardiza-
tion process (at present, mobile IPv6 draft revi-
sion is 24) to make sure that the technology is safe
and harmless to other technology. Moreover, once
standardized, the overloading technology becomes
another obstacle to the introduction of new tech-

nologies.

2.3 Coordination of Multi-Thin Overlays
2.3.1 Multi-Thin vs. Single-Ultimate

It is necessary to investigate two architectures,
namely, multi thin (MT) overlay network and
single ultimate (SU) overlay network, and select
whichever is better. The advantage of MT overlay
network is its extendibility. For each new applica-
tion, an overlay network can be created that has
a naming and routing system optimized for the
application.

At the same time, MT overlay introduces com-
plexity. Lack of interconnectivity between MT
overlays would be inconvenient. The resources
on the overlay cannot be accessed from outside
the overlay. To overcome this restriction, a syndi-
cation mechanism or a set of syndication mecha-
nisms would be needed.

Pros and cons of SU overlay network are the
verse of those of MT overlay. Since SU overlay
introduces a widely applicable naming and rout-

ing framework, most applications would perform

407

P ROJETCT

SI0MION AR[I0A(Q) (I JUSTIUOTIAUL POINLIISI(] pajeidoqu] DI e

25




t

reepor

a n n u a

P ROJETCT 2 0 0 4

E

D

e [J 250 Integrated Distributed Environment with Overlay Network

well within the framework. At the same time,
however, a user wishing to use an application
beyond the framework must modify the appli-
cation or construct a new framework suitable
for the application. One outstanding example
of SU overlay network is Project JXTA (see
http://www.jxta.org/).

2.3.2 Future Network Architecture with
MT Style Overlays

To envision future network architecture, we
believe MT style overlays are required in order
to solve issues without introducing any contradic-
tion. However, isolated multi-thin overlays do not
utilize resources on the net well. With MT over-
lays a node on an MT overlay cannot use resources
on another overlay.

Thus, interconnection of MT overlay is required
to enable users to find better resources from all
over the network. There are two approaches to
interconnect MT overlays, namely the gateway
approach and the client-side approach.

A gateway approach such as FLAPPS[192]
introduces a protocol translation gateway or
a proxy node in an overlay to gain access to other
overlays.

Although gateway approaches are advantageous
in that interconnection is transparent to clients,
and thus implementation of a client software
becomes easy, there is also a disadvantage.

There is a risk of contradiction as same as over-
loading. If an application’s requirement spoils
another application’s requirement for the gateway,
implementation of the gateway becomes difficult.

In a client-side approach, everything is left up
to the client process. There is nothing to inter-
connect multi overlays except user and pointer.
URP (Uniform Rendezvous Pointer)[61] is a uni-
form pointer format for overlay networks. A URP
is sufficient for a client to indicate which net-
work to connect, how to search a resource in the
network, etc. A URP has sufficient messages to
make network be connected, to perform effective

resource search, and so on.

408

A client program is capable of accessing
resources on overlay network with plug-in soft-
ware. When a client (or user) requires resource
pointed by a URP, and it requires access to a net-
work other than that which the client is currently
on, it can obtain a new connection via correspond-
ing plug-in. To trigger the interaction, resources
in the overlays can contain URP to other net-
works.

The following is an example of a URP sce-
nario. In the scenario, nodes A and B are on file
exchange network X, and nodes A and C are on file
exchange network Y. There is an i-WAT network
to exchange values.

As node A gives its own work to node B, node A
requests a certain amount of payment over the
i-WAT network. The request contains a URP that
describes how node B can access i-WAT node of
node A. With the URP node B can complete its
payment.

Then, node A wants another file from node C.
Because node A has received a payment from
node B, node A can pay for the file with node B’s
payment. With those interaction, i-WAT works as
a market regardless of which file exchange network
is used.

Another set of networks would be integrated
to another kind of application. The advantage
of client-side interconnection over the gateway
approach is that an application developer can
select a set of overlays including a newly cre-
ated tailor-made network. Also, unlike in gate-
way approaches, since the interconnection point
is isolated in client software, there is no risk of

contradiction arising.

2.4 Conclusion and a Vision of the Future

Internet

In this chapter we discussed a vision of the
future Internet. Our model of the renovated Inter-
net consists of many kinds of independent overlays
to fulfill requests for applications in a satisfactory
manner.

We have described our communication model,



which is a fundamental model of overlay, and have
applied it to resolve various issues concerning the
Internet.

Although overloading the network layer is an
efficient way of resolving issues, we argue that
overloading sacrifices innovation to some extent.
Contradictions will arise between other technolo-
gies and the overloading technology, dictating the
choice of an ineffective way of finishing the stan-
dardization process.

From our perspective, the Internet is sufficient
if the followings are satisfied.

e Routability: messages sent to an interface

should arrive at the interface

e Efficiency: routing between each interface

reflects the structure of the datalink layer
configuration as precisely as possible

e Scalability: more than 10 to 1000 times the

Earth’s population are able to connect to one
another

The final item is rough estimation of the ideal
ubiquitous network environment and sensor net-
work scenario. In the ideal scenario, every loca-
tion has intelligence to support the user’s activity.

Technologies to overload the Internet Protocol,
particularly in regard to routing, are inimical to
such tremendous scalability. Prior to clarifying
an approach capable of realizing scalability of this
order, it will be necessary to consider alternative
approaches such as an overlay model.

The software development process requires
a modular structure to enable readability and
suppress maintenance costs, rather than mono-
lithic efficiency. Spurred by the recent introduc-
tion of more powerful computer hardware, net-
worked applications can become more modular-
ized to enable flexibility and simplicity. If the
modularized approach proves to be effective, it
will be necessary to focus on the interface between
protocols, not on the protocol itself. The overlay
approach is found to be highly effective for mod-
ularizing protocols. Thus, thorough investigation
of the interface between overlays can facilitate the

sound development of the Internet.

W I D E

030 DHTOOOODNSOOOOODOOOODOO
gboooooogo

od

oooIb0oo0oooo0oooooooooo
00000000o000oDO0U0oO0ooooooooo
gooobooobobooboobobooobon
goboobooobooboooboboobbooobo
000000 DNSO Domain Name SystemO 0 0O O
goboobobooobboooboboooboooboooo
gooobooobobooboobobooobon
0000 100 DHTO Distributed Hash Tabled O
gooobpHTODOOOODODOOOOODoDOOOoOog
gooobooobobooboobobooobon
gobHTOOOOOOOODOO1000bDDOOO0d
00000 2000000000000000DNS
00000000 DHTOODDODDOOOODODNSO
gooobobbooooooobbboooobobobo
00000 DNSOO DHTODOOOODOO 200
gooobooobobooboobobooobon
gboobobooboobooooobooobooboo
200000000000 DHTODOODOODODO
goooboooboboobooboboobon
O00000O0DNSO bHTOOOOOOOGOoOO
goooboooboboobooboboobon
gobo0oboooooooooo 1ooooooooag
gobooboboooboooboobbooobnobo
goooboooboboobooboboobon
goooogo

310000

311 1Ib0O0000oooooooooonoo
gbooboooboobobooboooboobooobo
gbobooboobooooboobooboooodg
gboooboooboobol1oooooooooog
gboooboobooooboobooboooog
gboooboobooooboobooboooog
gboooboobooooboobooboooog
gbooooboooboooooboobooobooooog
goooboooboooooboobooog
goooooboboobobooboboobon 31

409

P ROJETCT

SI0MION AR[I0A(Q) (I JUSTIUOTIAUL POINLIISI(] pajeidoqu] DI e

25




t

reepor

a n n u a

P ROJETCT 2 0 0 4

E

D

e [1 25 Integrated Distributed Environment with Overlay Network

03.1. OJ0O0OO0OO0OO0OOOoOOoOoOOOboOO

gooboboobooooobobooboooobobooaoo
gbooobooboboooboboooboooobooooo
gbooobooboboooboobooobooobooo
gbooobooboboooboobooobooobooo
gbooobooboboooboobooobooobooo
goboooboooobooobooobooooo
0000000000000 000D [333)000O
goo
gobooooooooboboooooobooboooo
oooooooooooooooboooonb 20010
ooooooooobo4200000b0b0b0OOOOO
gboooboobobooobooboooobooooo
ooooooooibi1boooooooboObOoOoOn
gboooboobobooobooboooobooobooo
good
gbooboooooboobooboooboobouobo
IDOODOO0O0Ooooobooooooooooooon
gboooboooooooboooboooobooobooo
gboooboobobooobooboooobooooo
gboooboobobooobooboooobooooo
gboooboobobooobooboooobooooo
gooobooooo
gbooboooooobooboooobouobo
gboooboobobooobooboooobooooo
Oiboboooooooooooooooooooo
ooooo Iboooooooooooooboooon
gboooboobobooobooboooobooooo
oiboooooooobooooooooboooon
ooboooooobooobooooobooooo Do
gooooooolboooooooooboobooboo
gboooboooboobooobooobooobooooo
gboboobooobooobo

410

goooooooobooooboobooobooboooboon
obooooobooboobooboobooboooo
ooooooooIbooooooooooooon
oboooooboobooboboobooboooo
ooooocoooIboOooobooooooboooon
oboooboobooboobooboobooboooo
oooooooiboobooooooobooooon
goboboooboobobooooboooooboooo
oboooboobooboobooboobooboooo
oboooboobooboobooboobooboooo
oboooboobooboobooboobooboooo
oobool1gooooboooooobo

dlz20000000000000
gbobooboobooooboobooboooooon
oooboooooobbooooobbooo
3.1.1000000
O000000oo0o00o0oooooO0oon DNS
gboooobobobobooboboobooo
DNSOOOOOOOOO000O000000ooo0on
oboooooboobooboboobooboooo
oooooooooooboobooooobo 20000
oboooooboobooboboobooboooo
gooobobooooooboobooooooobooboooo
oboooooboobooboboobooboooo
obooobooboooboobooboobooboooo
oboooooboobooboboobooboooo
uobdoooobooobooboooo
gbobooboobooooboooboooooon
000000 1000Stoicad 000 Chord[288] O
ooooooooooooooobHTOOODODOD
oobooooobooooboobooobooboooo



00 key — value 000000000000000
00000000000000000000000
00000000000DHTOOOOOOO DHT
000000000000000000000000
00000000000000000000000
00000
DHTOOOODOOOOO00O0DO0O DHTODO
00000000000000000000000
00000000000000000000000
00000000000000000000000
0000000000000000
O0O0ODHTOOOOOOODOO0O0O0O0O000
000000 NDODOOOOOOOOOOOOOO
O(log, N) 00D0ODK00000000000D0 M
00000000NDOOODOOODODOOOOOOO0
000000000000D000000000000
00000000000000000000000
00000000000000000000000
0oooooooo

OD0O0O0ODHTOO 2000000000000
OODHTOOOO DNSOOODOODOOOOOOO0
00000000000000000000000
00000000000DHTOOOOOOOOO
00000000000DNSOOOO0000000
00000000000000000000000
00000000000000000000000
00000000000000000000000
000000000 DHTOOOOO0OOOOO
000000O0O0O0DHT D0O000Chord 00
00000000000000000000000
0DHTOOOOODDOO000O0O0O0O0O0O0000
0ooo

313000000
obodooooboobooobooboboooboooo
00 UEPCglobal Inc. 0 000000 ONS[13]00
ooobNSOOOOOOOoOoooooIboooo
goooooooooooboooboooODODOD31.20
0o000oo0ooobNSOOoOoOoooooooo
gbooboooobooboooooboooboo
oo0O0oooOobNSOOOoOOoOooooooo
gboobooooooobooooooboooboo
gboobooboooog
oooooooooooooobHTOOOOO

W I D E

ooooooboooooooooooooooooo
ooooooboooooooooooooooooo
ooooooboooooooooooooooooo
ooboooboooooobooooobHTOOOO
Oo0ooOoOoboooooNSOoOOooooOooono
DNSOOOOODOOOOO0O0O00O00000000
goooooOopHTOOOOOOOOOOODBOOO
O000o0000000DbNSOOOOoO0O0OO0o0oOO0
oooooo
00000o0O0o0o0o00ooOooobNSOOoOoOo
000 1000000DNSOOOO0O0O0OO0o0oo0
oooooobHTOODODOOOOOOIboOOOO
oooooooooOO0O bHTOOOOOOOODOD
goooooooboboobooooooooboooobog
goooooobooooooooooobooboooooaa
gbobooboobooobooboobooboooog
good
goooooooooooos2oboooooboon
0000000000330 000DNSOO DHT
gbobooboobooooboobooboooog
gobooooboboooooboooboobooo
34000000000000O0ODODOOOO0O0O
gspo0o0o0oo000000003600000O
gbobooboobooooboobooboooog
oooo3roooooooooossoobooon
gbobooboooboooboooooooo

320000

00000000CoxOO0O00O0DNSOOOO
Chord 0000000000 47000000 Cox
O0OO0ChordJOOOOOODNSOOOODODOO
gbobooboobooooboobooboooog
DDNSOOOOO0OO0O00O0O0O0O0DDNSOOOOO
gooobooobooo

OO0ODDNSOOOChordOOOOOOOODOO
gbobooboobooooboobooboooog
gbobooboobooooboobooboooog
gbobooboobooooboobooboooog
gooooo

00000000000DNSO bHTOOOOO
oooooooooobHTOOOOOOOOOOO
gbooobooobooooobooboobooooog
gbooobooobooooobooboobooooog
gbooobooobooooobooboobooooog

411

P ROJETCT

SI0MION AR[I0A(Q) (I JUSTIUOTIAUL POINLIISI(] pajeidoqu] DI e

25




t

reepor

a n n u a

P ROJETCT 2 0 0 4

E

D

e [J 250 Integrated Distributed Environment with Overlay Network

oooooobooocoooooooboobooooooo
Ooo0ObNSOOOOOOOO0oOOO0ooOoO0oooOo
oooooooooo0o0ooooooooobooboooo
oooooooocooooooobobooooooo
oooooooocooooooobobooooooo
oooooooocooooooobobooooooo
oooooooocooooooobobooooooo
oooooooooooooooobobooo
OooOoODDNSOOOO0OO0O00O00O0000o000
O00o0O0o0o0oo0o0oo0ooooDbDNSOOO
gbooboobobooobobooboobooooo
gbooboobobooobobooboobooooo
goooooooOobHTOOOOOOOOOOOO
gboooboobobooobooboooobooooo
O000oo0oooo0ooooobNSOOOoooo
gbooobooboboooboobooobooooo
gboboobooboobooooobooooboo
goooooooobooobooboooboobHTOO
O000oo0O0oo0o0o0oooooooObNSoOO
gboooboobobooobobooboooobooobooo

33DNSODHTOOOOOOOOOO000O0O

3.1000000000DNSO0O0O0OO0O000
ODNSOOODOOOOOOO bHTOOOOOO
gboooboobobooobobooboooobooobooo
gboooboobobooobobooboooobooobooo
gooboboobooooobooboobooooboobooaoo

O - stam

DHTO DNSOOOOOOOOOOOOOO0O00O
ocoooooooopHTOOoOoOoOoooooooo
ooooooooooooooooo
ooooooooooooobo200000000
coooooosioooooooboboooooooo
0000000000 00000000O0DNSOO
oooooboooobHTODOOOOOOOOOOO
ooooooooooo
obloobooooooooooooooooo
0000000 DNSODHTOODOOOOOOO
O00O00ODNSO DHTOODOODOOOOOOO
uobooobooboobobooboobooboooo
ooooooooooooobHTOOOOOOO
oooooooooo
O0O0O0DNSODHTOOOOOOOOOOO
obooobooboobobooboobooboooo
oooooooobHTOOOODOOOOOODO
0000000000 0000000DNSOOO0OO
000000 name delegation00 00000000
obooobooboobooboboobooboooo
obooobooboobooboboobooboooo
ooooOoooooooooooboOobHTOOODOD
uoboooobooobooobo
032000000000000O0O00000OO
oboooooboobooboboobooboooo
oooooooooooooboOoOooOooobooOOo bHT
obooooobooboobooboobooboooo

Applications

BEDY VN

Bottle Neck!

dht.example.com

03.2. JooooooooOoooooobOoOooooooobobooOooooDon

412



gobHTOOOOOOOOOOOOOOOOOObO
gooooooooooooooboooooooo
gooooooooooooooboooooooo
ob01o000o0oo0oo0o0o0oooooobooooooo
gooooooocoooooooon

340000000000
O000O0DHTOODODO DNSOOOOOOOO

000000000000 bNSOOoOoooooo

ooooooooooooooobooooo

341 DNSOO0O
DNSOOOOODOOOOoooooooooooo
oo l1o0o0b0ooobooooobooooo 110
gboobO100000000bO0O0000b00n
gbooboooobooobooooooooboo
ODNS-NSOOOOOOOO0O00o0000o0o00
OoOoOoDNS-RSOOOOOOOOOODOOOOO
gboobooooboobooboooooooboo
gboobooooboobooboooooooboo
gboboobooboooboooboooolobooooo
ODNS-RSOOOOODOOOOOOOOOO
DNSOOOOOOoOOoOoooooooooog
Odelegation00 0000000000 00O00O0O
gboobooooboobooooooooboo
00000000 DNS-NSOOOONSOOOOoO
ooooo0oRROODOOOOOOOOOOOOOOOO

W I D E

0000000 0O000000000 DNS-NSOO
0000000000 IPOODODOO Glue A RROO
O0000D0O0OODNS-RSOOOOOOOOODOO
oooooooocoooooooobobooooooo
oooo
O0O0ODNSOOOOOOOORFC1034[206]) OO
oooooooooooo

3422000000000000000
gooooobooobo200000000000O0O0
gooboobooooooobooooooooboooooo
gbobooboobooooboobooboooog
gbobooboobooooboobooboooog
gbobooboooboooobooboooboooog
gboooboobooooboobooboooog
oooz20000000000000
l.oogoocooooobooooobooobooon
uobooobooboobooboooo
2.000000000DHTOOOOOOOOCOO
oooooooobo
goooooboobo200000000000D0A0
O000D0O0ODNSO DHTOOOOOOOOOOO
o2000000000000000D0OO0 2000
00000000 DNSO bHTOOOOOOOOO
gbobooboobooobooboobooboooog
g33boboooooobooooboooboon
00000 DNSO DHTOOOOOOOODOOOO

DNSIC & B
BATARR

DHT Network
(FSVRAL—4%ET)

03.3. 200000000 b0O0OoOoooOoOb0O0O0boooooOoOobobObOOoOoOoOOobOOOoooOoObobO

413

P ROJETCT

SI0MION AR[I0A(Q) (I JUSTIUOTIAUL POINLIISI(] pajeidoqu] DI e

25




t

reepor

a n n u a

P ROJETCT 2 0 0 4

E

D

e [J 250 Integrated Distributed Environment with Overlay Network

0000 DNSOOOOOOOOODOOOODNSO
oooooobooocooooooobobooooooo
ooboobooooooooboooooboooo bHTO
oooooobooocooooooobobooooooo
ooooooooooooboboOoooooooooo
1000000000000000000000G0C0O
oooobocooooooo20000000000
oooooooocooooooobobooooooo
O0000000O0DNSOO DHTOOOOOOO
gboooboobooooboboobooobooobooo
gobooboooooboobooboooooooooobooo
DNSOOOOOOOOO0O0000o0o00o0o00d
doooooooooooobobbobobooood
gbooobooboboooboobooobooobooo
gbooobooboboooboobooobooobooo
gbooobooboboooboobooobooobooo
gbooobooboboooboobooobooobooo
gbooobooboboooboobooobooobooo
DNS-RSOOOOOOOOOODO
goooooooooooooobooooooo
goboooboboooooooobobooooboboo
00000 DHTOODOOODDO DNS-RSOOOO
o0 bHTOOOOOOOOOOOOOOoOoOO
OODNS-RSOOOOOOOOOOO DHTOOO
gobooooooooboooooooooooobooo
goboobooooooboooooooboooooobooo
gbooboooboobooboooo
DHTOOOOOO0OOOOO0OO0O0DOO0O0O00O
gboooboobobooobooboooobooobooo

45— bz
H—

0000000000 00O0DNSOOOOO0O0O0O
ocooopHTOOOOOOOOOOOOOOOOO
bDHTOOOOO0OO0O0O0O0COOOOOO0O0O0O000O0
oooooooooobooooooo

34300000

example.com. 00 DNS-NSO [0 dht . example. com.
O00o0o0Oo00oo000oo00ooO00o0o00o0oono
300000000000000000000O0
gboobgooboobooboboobobobon
gboobgooboobooboboobobobon
dht.example.com. DO OO DOOODOOOOOOO
goood

gobbooooboooooooooboboooooo
o000 DbHTOOOODOOOOODHTOOODOOO
gooooooooobobooobHTODOODO
ooobooobooobooboobOoboobDOg DHT
gboobgooboboobooboboobobobon
gobooogoooo

goooooobo bHTOOOODODODDODDOD
O000000D0O0OODNSO 300000 0OO
gboobgooboobooboboobobobon
00000000oooooooooooooDNS
goooooooooobobo bHTODOOODO
OO00O0OO0ODHTOOOOOOOO DNSOODOODO
gooobooo

gbooboopoobobbobOo 3400000
OO0o0O0O0ORFIDOODODOOOOODODOOODO
0000 IDODOONAPTR RR[190]0 0000

(S

i

v

3
\ DNS-RS §_>

rSvaL—%

— RF-1D & % L &

]0 @ N—a—F

e

034. D0O0ODOOOOOOOOOOOOOOOOOOOOO

414



gooooooooooooooboooooooo
1.000001Iboobooooo
2.000000000 RROODOCOOOOCOOO
3.0000000000000DNS-RSO0O0O
ooooooo
4.00000000000000000ODNS-RSO
gooooooocoooooooboooooo
500000 bHTOOOOOOOOOOOOO
gooooooocoooooooo
6.DNS-RSOOO0000000000000O0O
od
r.00oooooobooooooobobooooo
goooooobHTOOOOO0OO0OO0
§.DHTOOODOODO
9.00000000000DNSOOOOODOD
O000O0OO0DNS-RSOOOOOOOOOOO
ooooo
10.DHTOOO0O000O0O0O0O0O00000000O
goooooooooooooooooo
0000123456780 000000000 RFIDO
goooooooobobo 4000 1moobobooo
0000000 NAPTRRROODOO[12345678.q.
dht.example.comJ U O O00O0O0OOOOOONO
gooooooobooooboobooooooooon
gooooooooooooooboooooooon
000000 DNS-RSOOOOO0DOO 2000 3
example.com. IN NAPTR 10 10 "" ""\
"/(.*)/\1.q.dht.example.com./"
gobooz200000000000100000
example.com. 0000000000 OOMDNS-RS
0ob0o00dbObOO0Od dht.example.comJ 00
00000o0o0ooO0o0oo0oO0oo0 DNS-NSOOO
000000000 0O0ODNS-RSOOO 12345678.
q.dht.example.com. UOOOOOOO0OOOODOO
oooooooooooon 4m
00000000000DNS-RSOOOOOOO
Oo0obo0o0o0bbO0000q.dht.example.com.
0000000000000000NSRROOOO
oooosmo0o0o0oo0ooog NSRROO
ooooODbHTOOOOOOOOOOOOO0Oo0OO
gooooooooooooooboooooooon
O0OONSRROODOOOOOOOOOOOOOOO
oooooboooo
oooooooooooooooooboooooo

W I D E

O000O0O0DNS-RSOOOOOOOOOOOOO
ooooboemOOOOOOOOOOOOODOO
ooooopHTOOOOOOOOODO 7000 8
oooooooooooooooobooooooo
oooooooooooooooobooooooo
oooooocoooooboooobHTOOOOO
00000 keyOOOOOOOOOODOOOOOO
ooooooooooooooobobooooooo
ooooooooooooooobobooooooo
goooobpHTOOOOOOOOOOOOOOOO
goooboooooo

00o0o0o00ooooo0o0ooo NAPTR RR
ooooooooooooooboooooomon
gboooboobooooboobooboooog
goo

00000 DNS-RSOOOOOOOOOOOO0OO
O000OODNS-RSOOOOOOOOOODOOO
gbobooboobooooboobooboooog
goooooooooobboO0ooo RROTTLOO
00o00o0o0o0o000o00o0000000ODNS-RS
gbobooboobooooboobooboooog
gbobooboobooooboobooboooog
oooooooooOoTTLOOOOOOODODOO
ooooO TrLoooooooooooooboooon
oo34400000000

000000 DNS-RSOOOOOOOOOOO0OO
o0 bHTOOOOOOOOOOOOOoOobOOoODOD
gboooboobooooboobooboooodg
gboooboobooooboobooboooodg
gooao

344 00000000000000O0

gbooboooboooooboobooboobouoDbo
O0O0O000ODNS-RSOOOOOODOOOTTLO
gboooboobooooboobooboooog
gboooboobooooboobooboooog
o0 TrLoooooooooobooooooon
bHTOOOOOOO0OOOO0OO0O0DOOOO0O0OO
goooooobogoo

000 XO0Ooooooooo cooopooococo
TTLOOODO CcOoO000000000 XO0O0O00o
000 X#CcOOOOOOoOoOooooooooo
gboooobooobooooobooboobooooo
OO0000000OstalecacheDODO0O0O0O00O0DODO

415

P ROJETCT

SI0MION AR[I0A(Q) (I JUSTIUOTIAUL POINLIISI(] pajeidoqu] DI e

25




t

reepor

a n n u a

P ROJETCT 2 0 0 4

E

D

e [J 250 Integrated Distributed Environment with Overlay Network

oooooobooocoooooooboobooooooo
oooooobooocoooooooboobooooooo
00000 39)0po0oooog
gooooooooooooooboooooooo
OO0 DNS-RSOOOOOOOO0OO0OO0OO0OO00O0
oooooobooocooooooobobooooooo
oooooobooocooooooobobooooooo
oooooobooocooooooobobooooooo
ooooooooooooooooboboooooo
bDHTOOOOOOO0OO0OO0O0O0OO0O0O0O00000
gboooboobobooobooboooobooobooo
gboooboobobooobooboooobooobooo
goboobooooooooobobbooooobooboobooo
DHTOOOOOOO DHTOOOOOOOODOO
oobOoooooooooobHTOOOOOOO
O00000000000DNS-RSOOOO0O0O0OO
ooooooooOoOoOONSRROOOOOOO
Glue ARROOOOOOOOOOOOOOOOO
gooao
Oo0oOoOoNSRROOOOOOOOOODOOO
gooobooooobooboobooobooooooooooa
Oo0o00000ooooo0ooooooooon I1sC
bind 9.23000000000000000000
0000000000 DNS-NSOOOOOoOOoooo
gboooboobobooobooboooobooooo
gbooobooboooobooboooboooo

5000000000000
j440000000000O0O0O0OO0OO0O0OO
gbooobooooboobobooobobooo
bDHTOOOOOOOOOO0OOOOOCOOOOOO
O0000OO0OONSRRO TTLOOOODOOOOO
gbooobooboboooboobooobooooo
good

35100000
gbooobooooobooboobooobooboobo
Ooooo0o0o0o0000O00 DNS-RSOOO TTL
gboooboobobooobooboooobooooo
gboooboobobooobooboooobooooo
gboooboobobooobooboooobooooo
gbooobooooooboobooorboonbodg
gooobooobo
oobooobOoooooo0oooD RyOooboOOooOo

416

ooooooooooooooooobooooooo
0000000 DNS-RSOOODOOOO0O0OO0BOO0OO
ooooooooooooooooobooo

35200000000000
obobooooooooooooooooOoDbHaTO
ooooooooooooooooobooooooo
ooooboooooooirocobHTOOOOOO
cooooooooooooooooboooooooo
obooobooboobobooboobooboooo
obooobooboobobooboobooboooo
oobooooboooooooobHTOOOOODO
ooooboi1oooooOoOODODODOOOOOODHT
uoboooooooobooboobol1o0oo0o0oo0og
oobooooobooobo
gbobooboobooooboooboooboooon
0000 DNS-RSOOOOOOOOOOOO0O0O0O0
0000000000000 DNS-RSOOOOOO
00000000000 DNS-RSO 1000000
oobooooobooobo
DNS-RSOOOOOOOOO0OO0O0 1000000
uobooooobooboobooboobooboooo
O0O0O0ODNS-RSOOOOOOOO0O0OOO00O0O0
obooooobooboobooboobooboooo
utooooooooooooooobooboboog
obooooobooboobooboobooboooo
obooooobooboobooboobooboooo
obooooobooboobooboobooboooo
obooooobooboobooboobooboooo
oood
gooooobobobooobooooooooooboon
obooooobooboobooboobooboooo
oooooo

35300000000
gobobobooboooboobooboooobo
e/ 00000OO0OO0DOOOOOOOOODO
e N, OOODODOOOOODHTOOOOODOODO

gbooogao

e ;000 DHTOOODOOOOODODODOODODO
ooo

e MODODOODOOOOOOOOODODDOODOD
gbooboooooooobooooboooooon
gboooboooooooog



W I D E

0.3 T T

P ROJETCT

M=3 X
M=5 $
X M=10
0.251 b
E 0.2 1
#
2
3 X
f—é 015 ]
E
L
ja)
= 01[ Tl
£ X + b
0.05f X .t
X +
X +
0 MBI 3K . .
0 100 200 400 500
TTL (T)
035 000000000000O0RO0070000000

03.1. 00o0oOoooooooo

00000 | o |
L | 25000
N, | 5.0
Ra | 0.004 (51
M| 305010
T]25... 500
N, |01

e7TO00D0ODOOOODODOOOOOO NSRRO
TTL
e N,OOOO DNS-RSOOOOOOOOOOO
goooooooooooooooooooo
od
ooooooooOoOoOoboosaoobooooooono
oooooooooooooo2o0b0000L00
ooboooooowooooooooOoboOReO
ooooooooooooooobHTOOOOO
oo0d1ooboooooooooob N,ODODO
ooMOOUDPODOOOOOOOOOOOOOO
ooooooM =1000000000000 DHT
0000 2000000M=300000000
O0OM=5000000000000T000O0O
oooooooobooooN, 0000 DNS-RS
gooooooooooooooboooooooon

oooobHTOOOODOOOOoOoOoOoOoooOo

ooi10000

gboobooooooboobooobooooo

lL.ooobooboooooooobooooon

2.00000000000D0O0CO0O0O0ODOAO
ooooooao

3.0000000 DNS-RSOOOOOOOOOO
gobodoooobooboboooobobooon

4.00 300 LOoOoOoOoooooOooOoo

3540000000000
goooooooooooooboobooooo 3.5
gooooooooboobboobooooooooo
gbobooboobooooboobooboooog
ooooooboooooooooTroobooo

3600

361000000000
33000000000000000O0O000000
gbobooboobooooboobooboooodg
gboooboooboooooobooboooon
gbooboooboobobooboooboobooobo
oooobooooooooobboo20000000
gbooobooobooooobooboobooooog
gbooobooobooooobooboobooooog
OONSRRO TTLOOOOOOOOOOOOO

417

SI0MION AR[I0A(Q) (I JUSTIUOTIAUL POINLIISI(] pajeidoqu] DI e

25




t

reepor

a n n u a

P ROJETCT 2 0 0 4

E

D

e [J 250 Integrated Distributed Environment with Overlay Network

DNS-RSOOOOOOOOO0OO0 10000000
O000O0ODNS-RSOOOOOOOOOO0O0OO
oooooooocooooooobobooooooo
oooooooooooo
goooooooocooboooobooooooobooon
0000 DNS-RSOOOO0O0OO0O0O0O0O0O0O0O00O0
ooooooooooooooooboo
goooooooooooobHTOOOOOOO
0000000000 DNSOO DHTOOOOO
gbooobooboboooboboobooobooooo
oooooo bHTOOOOOOOOOOOO0OO
gbooobooboboooboobooobooooo
OobHTODOOOOOOOOOoOooooooooo
gboooboobobooobooboooobooobooo
gooooo
gboooboooooooboobooobooboobo
gboooboobobooobooboooobooobooo
gboooboobobooobooboooobooobooo
gboooboobobooobooboooobooobooo
gbooobooboooobooboooboooo
lL.g0b00ooooooooooboobooooooo
goooooooooOoooooobooon TTL
goboooooboobooooooooboo
goooooao
2.00000000000D0C0CO0O00O0O0DAO
goboooooboobooooooooboo
goooooooooooboobooooooon
goboooooboobooooooooboo
0000000 DNS-RSOOOOOO0O0O0OO
goboooooboooooboooo
oboooboboooooooooooboOoobond 3.6
gboooboobobooobooboooobooooo
O000o0oO0O0oo0o00oobNSOOoOoOooooo

oooobpHrooooooooboobooooboDooDo
ooooooooo2000000000000O0
002000000000000080 NSRRO TTL
ooooooooTrLooooooooooooo
ooooooooooooooooobooooooon
ooooooooooboooo
DNSOOOOOOO0OO0OO0O0O000000000D0
cooobOooooooooooOoOooooooooo
ocooooooooooooooobooooooo
gobooboobobbobooobooo
gooooooooooboooboOoOoo bHTODO
goobobbooooobobobooooobobbog
DHTOOOODODOODOODOODOODOODOObOOO
gbooboooboobooboboobobbon
gbooboooboobooboboobobbon
goooboobooobobooboooboooboobog
gbooboooboobooboboobobbon
0oodooooooopooOooo RTTO TCP
gboobgooboboobooboboobobobon
ooooobHTOOOODODODODOODDOODbODO
gooboooooooboobHTOODOODODO
Onode/secJ 00000000000 query/secd
goooooooooo bHTOODODOOODO
ooooboooooo0 bHTOOODOODOODO
oooooooooobHTOOOOODDODOOO
gboobgoobooobooboboobobobon
oooOooOoooooobobo bHTODOOODO
gboobgoooboobooboboobobbon
ooobHTOOOOOOODOOOOOoooDDOobOOoO
gbooboooboobooboboobobbon
goooboon
O0000000000000DNS-RSOO0O NS
RRO TTLOOOOOOODOOOOOOOODOD

F=—bOIAH-—N

J— FiE®H
REED 21—

DHT Network

DNSH—E X
ETa—)

rS VAL —41ER

BEEY1-

TILRE
EVa—)b

03.6. DOoOooooooooOono

418



goooooooboooooooboboooooooo
000000 TTLOOOOOOO0OOOODNS-RS
goooboooooooooooOoooOooonooo
gooooooorrLoobooooonboon 3440
gooooooboooooboOoooooboOooooo
gooooooooooooooboooooooo
gobooooooboooo TrILooooooooDo
gooooooooooooooboooooooo

3620000000000
T=25000000000000O000008M =3
00 88%OM =500 28%0000000000
oM =100000000000000000O0
gboobooooboooboooooooboo
TOoo0000O0o0oo0O000 M=5000T=1250
M=3007T=30000000000
ooooooooooooo MOOOooTODO
joooooooooooM=300000000
0000oO0oooD 1B% 0077000000000
gobooooMOOOOOOOOODO TOO
gooooooM=100000000000D0O
o000 1w00% 000 TOOD0D0D00OD00OO
uboboobooboobooobooboooooo
Toooooooooobooooooooooobooo
oooooo RgOooobOOOoooobooooono
goooooooooo RgkOoooooOboOooDo
gboobooooboooboooooboooboo
gboobooooboooboooooboooboo
ObooooRr,000000000O0O0O0OO0O0OO
goboooooooobbooooooobooobooao
Tooooooooobooooooroooboooo
gooooooooooooobooono RgOODO
gboobooboooooon

3.700
ooooooooobooobOOO0o03440000
gboobooooobooboobooooobooooboo
gboobooooboooboooobooboo
00000000000 000000RFC2181[74]
0000000 RRSetDOOOOOOOOOOOO
00 TYPEO RROOOOOOO TTLOOOOO
gboobooooooboobooooooooboo
gboobooooooboobooooooooboo
oobooooooooDoo TTLooOo0O00DOn

W I D E

obooooooooooooOoOoOoOoOooooboooon
ooo0O000O00 RFCOOOOOOOOO
000000 NSRROOOOOOOOODOOOO
00 DNSSEC[69) 00D 000O0U0OOONS RRO
oooooooooooooooobooooooo
oooooooooooooooobooooooo
0O00000000000000000B00ONS RR
ooooooooooooooooooooooo
ooboooooooooooooooooooooo
gbobooboobooooboobooboooog
gbobooboobooooboobooboooog
O000000O0ODNSSECOO0OO0O0O0O0O0 DHT
gbobooboobooooboobooboooog
goooooobogoo
gbooboooboooboobooobooboobooDbo
ooooooooTTLOOO0OO0O0OO0O0O0O000o0O
gbobooboobooooboobooboooog
gbobooboobooooboobooboooog
O000000000000000000 RRSetO
TTLoooooOooooooooooooooo
ooTrTLoooooooooooooooboooon
oooooooooooboooobobooono TTLO
gbobooboobooooboobooog
O0o0oOoDNSOOOOOOoOooooooooo
gboooboobooooboobooboooodg
O00000000000000000 DNS-RSO
O0O0ONSRROOOONSRROOOOOOOO
gboooboobooobooboobooboooog
0000000 DNS-RSOOOOO NSRROOO
gbobooboobooooboobooboooog
gbobooboobooooboobooog
O0OO00OO0OODNS-RSOOOO NSRROODOO
O000000000000000O00DNS-RSO
OONSRROOOOOOOOOOODOOOOOO
gboooboobooobooboobooboooog
gboooboobooobooboobooboooog
ObHTOOOOOOODOOOOoOooOooOoooo
oooooooooOo0oO0O0O0 NSRROOOOO
goooooooooooboobobobooMmMOD100
00000oo0oo0o0o0ooooosSoA0Odoooono
ooooooooooooobHTOOOOOOO
O0000o0o0ooooooooooooooO SOA
gboooboooboooooboobooboooog
good

419

P ROJETCT

SI0MION AR[I0A(Q) (I JUSTIUOTIAUL POINLIISI(] pajeidoqu] DI e

25




t

reepor

a n n u a

P ROJETCT 2 0 0 4

E

D

e [J 250 Integrated Distributed Environment with Overlay Network

3.80000

goboocoooo Iboooooooooooo
oooooooobooooooooobobooo1o
OO0 DHTO DNSOOOOOOOOO0O0OO0O00O0
oooooooocooooooobobooooooo
000000 DNSOOOOO0OOO0o0o0O0oo0ooo
ooboooooooooboooobHTOOOOO
ooooooooo
gooooooooooooooboooboooo
ooooooooobo200000000000D0AO
gboooboobobooobooboooobooobooo
gboooboobobooobooboooobooobooo
gboooboobooboooboooboooog
0o0O0ooo0ooo0oooOobNSOOoOO
gbooobooboboooboboobooobooooo
gbooobooboboooboboobooobooooo
gbooobooboboooboboobooobooooo
goboobooooobooooooooooooobooo
gbooobooboboooboboobooobooooo
goboooboooooobooboooooooboooboobooo
gbooobooboboooboboobooobooooo
gooooo
oooosrooooobOOoOoooooboooboon
gbooobooboboooboobooobooooo
gbooobooboboooboobooobooooo
gbooobooboboooboobooobooooo
oooooooooooooooNsOooooono
OobHTOOODODOOOO IDOOOoOooooooo
gbooobooboooooobooon

0 40 Distributed Scalable MOG Servers on P2P
Networks

abstract

Today’s Multi-player Online Games (MOGs)

are challenged by infrastructure requirements
because of their server-centric nature. Peer-to-
peer overlay networks are an interesting alter-
native if they can implement the set of func-
tions that are traditionally performed by cen-

tric game servers. In this paper, we propose

420

a Zoned Federation Model (ZFM) to adapt MOGs
to peer-to-peer overlay networks. We also intro-
duce the concept of zone and zone owner to
MOGs. A zone is some part of the whole game
world, and a zone owner is a game sever of a spe-
cific zone. According to the demands of the
game program, each node actively changes its role
to a zone owner. By dividing the whole game
world into several zones, workloads of the cen-
tric game server can be distributed to a federa-
tion of zones. In order to reduce response latency
overhead on data exchanges between a zone owner
and its clients, we limit the use of a Distributed
Hash Table (DHT) to the rendezvous point of
each zone; actual data exchanges are carried out
through direct TCP connection between a zone
owner and its members. We also use the DHT
as backup storage media to cope with the resig-
nation of a zone owner. We have implemented
this zoned federation model as a middle layer
between the game program and the DHT, and we
evaluate our implementation with a prototypical
multi-player game. Evaluation results indicate
that our approach enables game creators to design
scalable MOGs on the peer-to-peer environment
with a short response latency which is acceptable
for MOGs.

4.1 Introduction

Today’s Multi-player Online Games (MOGs)

are constructed in a server-centric model. To
achieve scalability, MOGs usually employ clus-
ters of game servers. In spite of scalability, clus-
tering technologies cost game creators co-location
fees. Therefore, starting a new MOG for small or
medium enterprises is difficult. Also, in today’s
server-centric solutions, users cannot play the
game when the centric game server stops its
services.

In this chapter, we try to achieve an alternative
MOG infrastructure by using peer-to-peer overlay
technologies. The peer-to-peer overlay network is
a highly distributed network or computing envi-

ronment. Nodes on a peer-to-peer overlay network



W I D E

Overlay Networ

Fig. 4.1. Zones on the overlay network

compose a network on the application layer and
share resources of each node.

To construct a peer-to-peer overlay infrastruc-
ture for MOG, we model a “Zoned Federation
Model (ZFM)”. ZFM is a latency optimizing
approach based on peer-to-peer overlay technolo-
gies. The key idea of the ZFM is as follows:
numerous participating user nodes on an peer-
to-peer overlay network compose a large game
server cluster. The ZFM creates several client-
server groups on a peer-to-peer overlay network,
as shown in Figure 4.1. Constructing a small-
scale client-server model in each zone, the ZFM
can achieve as short a response latency as that of
the server-centric MOG solutions.

In the ZFM, the tasks of a centric-server are
distributed into a peer-to-peer overlay network.
We partition the game world into several zones
by the locality of the game world or the local-
ity of the game data’s features. In addition, we
let participating nodes play a cluster of the game
server on each zone. The node playing a clus-
ter of the game server establishes a direct connec-
tion to each client node in the same way that the
direct connection between the server and clients in
the client-server model is connected. Hence, each
server node can serve the latest game status with
almost the same performance as that of a centric-
server. Each zone is independent from each other;
therefore, a user node can become the server on
several zones and play the client of some zones.

The cluster of the game server in the

ZFM is maintained by participating user nodes

autonomously.  According to the peer-to-peer
overlay environment or the game sequence, each
participating user node changes its role to either
a cluster of the game server on some zone,
the client of the game on other zones, or to
resources for constructing a large network or stor-
age. Of course, each participating node can eas-
ily resign from the game server task, stop the
client role, or leave from the peer-to-peer overlay
network. Employing a peer-to-peer overlay net-
work as a backup storage media, the ZFM pro-
vides a mechanism for all participating nodes to
record the latest game status serialized by the
game server role node, to inherit the tasks of the
old server role node or the game sequence com-
pletely, and to continue serving the game data.

We have implemented the ZFM as a library of
a zoning layer, a middle layer between a game
program layer, and a TCP/IP stack, or between
the game program layer and the Distributed Hash
Table (DHT), which is a technique for construct-
ing a peer-to-peer overlay network. We also evalu-
ated the performance of the ZFM implementation
with a prototypical multi-player game.

The rest of this chapter is organized as follows:
we describe the features of today’s MOGs and
server-centric solutions in section 4.2. We men-
tion details of the ZFM, and describe its imple-
mentation in sections 4.3 and 4.4, respectively.
Section 4.5 shows the evaluation result of our
ZFM implementation with a focus on the response
latency.

We refer to related work in section 4.7, and

421

P ROJETCT

SI0MION AR[I0A(Q) (I JUSTIUOTIAUL POINLIISI(] pajeidoqu] DI e

25




t

reepor

a n n u a

P ROJETCT 2 0 0 4

E

D

e [J 250 Integrated Distributed Environment with Overlay Network

finally, we discuss future work and conclude this

chapter in sections 4.8 and 4.9.

4.2 Multi-player Online Games

MOGs are such games such that several game
users share a game world and play on the game
world by exchanging shared game data. We
call such shared game data, Global Status Data
(GSD). There are several types of MOGs, such
as racing, First Person Shooter (FPS), Real Time
Strategy (RTS), or Role Playing Game (RPQ),
etc. Some MOGs, called Massive Multi-player
Online Games, are played by thousands or even
tens thousands of users.

Typically, a MOG requires a short response
latency and a consistency of GSD among users.
Short response latency is needed to provide a com-
fortable game response without stress for users[10,
11, 16, 114, 238, 253], and the consistency of GSD
is required to produce the same game world for all
users, as well as to prevent cheating or unfairness
in play[116]. Today’s MOG is usually constructed
in the client-server model to manage the consis-
tency of GSD, and several clustering or distribut-
ing techniques are employed to achieve a short

response latency and scalability.

4.2.1 Global Status Data

In MOG, users have to share GSD to play in
the same game world. GSD can be changed
according to the game players’ demands or the
game sequence. Changes of GSD should be seri-
alized and should be synchronized among game
players to keep to the consistency of the game
world. Therefore, MOG requires some author-
itative nodes to provide serializability of state
changes and to ensure the consistency of changes.
In the client-server model, a centric game server
works as this type of authoritative node.

The GSD of the MOG has several localities
of interest, and several large-scale MOGs employ
interest management techniques[214]. The exam-
ples of localities of interest on a game world are

as follows: locality of the network infrastructure,

422

locality of part of game world, locality of the
group sharing specific GSD, locality of personal
information, etc.

Distributing or clustering techniques use these
localities to partition the tasks of a single centric
server or the whole GSD. In other words, parti-
tioning GSD or server tasks into several groups by
locality enable a reduction in overhead on a single
server machine, to achieve scalability or respon-
sibility. Contents Distribution Network technolo-
gies focus on the locality of network infrastruc-
ture, and SimMud[165] partitions the game world
into several regions with focus on the locality of
the area of the game world. Server clusters are
constructed by the locality of the group sharing
specific GSD, the locality of personal information,
or the locality of the numbers of access.

In modeling the ZFM, we focus on the locality
of GSD, that is, the locality of the group sharing
specific GSD, the locality of personal information,
and the locality of the number of access.

Also, GSD should keep its consistency by using
an authority to produce the same game world
for all users. In the client-server model, a cen-
tric server or centric server clusters judge con-
flicts among users, modify the GSD according
to game sequence, serialize changes, synchronize
updated GSD on all users to prevent a mismatch,
and audit GSD to find cheating or unfairness.
Processing these tasks on a distributed environ-
ment such as on peer-to-peer overlay networks is
difficult. Some distributed agreement protocol[62]
can resolve inconsistency on peer-to-peer overlay
networks, but such distributed agreement proto-

col is likely to be complex.

4.3 Zoned Federation Model
We design the Zoned Federation Model (ZFM)

as a model of a MOG on an overlay network by
employing five techniques to construct the ZFM:
zone, the Distributed Hash Table (DHT), zoning,
mapping, and zoned federation. A zone is a judg-
ment and data transfer block of the GSD to dis-

tribute whole GSD into a peer-to-peer overlay



network. DHT is a peer-to-peer overlay network
technique we employ to construct the ZFM. Zon-
ing is a framework of partitioning whole GSD into
several zones to use the DHT as a backup stor-
age media and as a rendezvous point to zones.
Zoned federation is a mechanism to let participat-
ing user nodes manage each zone and the whole

game world autonomously.

4.3.1 Assumptions
Before describing the ZFM in detail, we assume
the following;:
e GSD on the DHT overlay network never dis-
appears
e No malicious user nodes join to the MOGs
e Network infrastructure provides short and
stable network delay over the inter-domain

networks.

4.3.2 Zone

First, we introduce the concept of a zone.
A zone is a piece of the whole GSD partitioned
by locality of interest. When dividing the whole
GSD into zones by locality, the GSD on some
zones is required by some of all the participat-
ing nodes. We define a zone as a judgment block
and a data transfer block. According to this def-
inition of zone, we define a server role as existing
on each zone, and design a mechanism to manage
the server role and the GSD on each zone.

As in the ZFM, the SimMud[165] partitions
whole GSD by locality of interest. However,
SimMud divides the game world into several
regions only by locality of area in the game world.
The ZFM partitions whole GSD into several zones
not only by locality of area in the game world, but
also by locality of group sharing specific GSD or
the locality of personal information. The ZFM
can produce a flexible data structure for any type
of MOG.

Along with the concept of zone, we introduce
node status. Basically, each user node has one
of three statuses for each zone: independent, zone

member, and zone owner.

W I D E

The zone owner represents the server role on
a zone, and the zone member represents the client
role on a zone. When a user node wants to receive
updates of the GSD of a particular zone, the node
changes its status as a zone member. A zone mem-
ber node can request the zone owner node to mod-
ify some GSD on the zone. If a user node wants
to modify the GSD on the zone when there is no
zone owner, then the node tries to change its role
to zone owner. Although the zone owner node has
a right to change all GSD on the zone, the zone
owner node has responsibility for judging con-
flicts among requests from zone members, modify-
ing GSD along with the requests, serializing GSD
according to the game sequence, and announcing
any updates of GSD to all zone members.

If a user node is not interested in the GSD of
some zone, the node then has an independent sta-
tus to the zone. Next, we add a new definition
for “zone.” When we describe “a node joining to
a zone” or “the zone owner leaving from the zone”,
we use “zone” to represent the membership who
manages the zone owner role and GSD.

Along with the basic three node statuses, we
add one extra node status: data holder. In the
ZFM, whole GSD is distributed into a peer-to-
peer overlay network representing several zones.
Futuremore, some nodes contribute their own
local storage to part of the shared storage on the
peer-to-peer overlay network. We call the node
contributing its storage for storing GSD of some
zone, a data holder. Therefore, a data holder node
has all GSD of some zone. Data holder nodes
are selected by the data sharing algorithm of the

employed overlay technique.

4.3.3 Distributed Hash Table

In the ZFM, we employ the DHT as at technique
to construct an peer-to-peer overlay network. The
DHT is a distributed data placement and a data
lookup algorithm for an overlay network. Basi-
cally, the DHT stores the mapping between a key
and a value, and the DHT appears as an ordi-

nary hash table for each user node. When a node

423

P ROJETCT

SI0MION AR[I0A(Q) (I JUSTIUOTIAUL POINLIISI(] pajeidoqu] DI e

25




t

reepor

a n n u a

P ROJETCT 2 0 0 4

E

D

e [J 250 Integrated Distributed Environment with Overlay Network

tries to search some data, the node looks up its
own DHT as a hash table. A key points to the
identifier of some node, then, the node pointed to
by the key contains true data on the hash table.
Therefore, a user node refers the true data to some
other node whose identifier is obtained through
the DHT. Variations of DHT, e.g., Chord[289],
CAN[254], Pastry[265], Tapestry[332], etc, exist.
Using the DHT, all nodes on the same DHT
overlay network use one hash table, that is, all
nodes share the same data. DHT ensures the pair-
ing of a key and the corresponding data or the
identifier of some data holder node; therefore, the
mismatching of data among nodes never occurs.
However, DHT has several drawbacks. First,
the DHT has accessibility to data, that is, every
node can modify every piece of data on the DHT.
Therefore, some nodes can modify some data
when the data is not a match for the node. The
DHT does not have a judge to avoid conflicts
of changing data among user nodes. Also, the
DHT ensures every node will share the same data;
hence, the accessibility of the DHT can easily pro-
vide inconsistency of data on a time sequence.
Second, the DHT has a tradeoff between the
size of the routing table and routing hops. If
the order of the routing table size is O(log N) at
most, then the order of the routing hops becomes
O(log N)[265, 289]. Hence, read or write opera-
tions to the DHT require O(log N) routing hops.
Several Application Layer Multicast (ALM) meth-
ods using the DHT are proposed|[35]; these ALMs
require several routing hops on the application
layer. Therefore, using the DHT as a data transfer
method may provide long network latency when
the overlay network topology is large. Such long
network latency may be a critical overhead for
some MOGs, racing games or first person shooter
games.
To reduce the number of nodes access the GSD
through the DHT, we use the DHT as a backup
storage media, and as a rendezvous point of zones;

that is, as the routing map to zones.

424

4.3.4 Zoning and Mapping

We introduce zoning and mapping methods for
using the DHT as the rendezvous point to zones.
To reduce message forwarding through the DHT,
an independent node should know the latest mem-
bership of each zone by using only a single access
to the DHT. In other words, the ZFM requires
a mechanism by which an independent node can
learn which node is the zone owner and which
nodes are zone members when the independent
node accesses to the zone data on the DHT overlay
network.

Zoning makes each zone a judgment and a data
transfer block of GSD by adding the information
about the membership on each zone. Each zone
contains some piece of the whole GSD (see sec-
tion 4.3.2). We add candidate list and members
list to each zone by zoning. The candidate list
shows which node is the current zone owner, or
tells which nodes are the candidates for a new
zone owner. On the other hand, the members’
list expresses which nodes have the zone member
state for the zone. Figure 4.2 shows how the infor-
mation about each zone looks on the user side of
the DHT.

Data of each zone and data holder nodes on
the DHT overlay network correspond to mapping
methods. A DHT algorithm selects data holder
nodes randomly, and assigns the key of each zone
to the identifier of a corresponding data holder
node (Figure 4.3). Because each key on the user
side of the DHT points to the identifier or the
address of the corresponding data holder node,
the user node can use the DHT as the routing
map to each zone.

Figure 4.4 shows message forwarding on the
DHT. On the user node side, when a user node
wants to read zone data, the user node gets the
key generated by an employed hash function and
a key word, and then user node can look up the
identifier of the data holder node pointed out by
the key. The user node then sends a message
to the data holder node via several routing hops,

and receives the zone data from the data holder



< whole GSD >

datal
data2

= ﬁ
- zoning

datay
dataz

Fig. 4.2.

< DHT (user side view) >

key zone data
zone 1 data 1, datac
zone 2 dataa

zone Y data 11 to data 33
zone Z datab, datam, datay

W I D E P ROJETCT

< DHT (user sideview) >

key zone data

zone1l candidate list,
member list,
datal, datac

zone”Z candidatelist,
member lit,
datab, datam, datay

Zoning

< DHT Network>

Fig. 4.3. Mapping

key identifier
zonel node A
zone2 node B
zone3 node C

zone4 | _, node D
-
zone node E

== : forwarding path

: return path

Overlay Networ

Fig. 4.4. Message Forwarding on DHT

node. If some user node wants to change some
zone data, the user node sends a message to the
data holder via several forwarding hops, and the
data holder node changes the zone data according

to the received message.

4.3.5 Zoned Federation
A zoned federation is a mechanism to manage
the information of membership and consistency

of the GSD on each zone. Zoning and mapping

methods enable each participating node on the
DHT overlay network to access each zone and to
grasp the zone data of the accessed zone. For
the nature of the DHT overlay network, the ZFM
should let each participating user node join and
leave the DHT overlay network easily. There-
fore, the procedures to inherit the information of
the zone data on the zone from the zone owner
node must be tolerant of the frequent changes of

the zone owner role node. The zoned federation

425

SI0MION AR[I0A(Q) (I JUSTIUOTIAUL POINLIISI(] pajeidoqu] DI e

25




t

reepor

a n n u a

P ROJETCT 2 0 0 4

E

D

e [J 250 Integrated Distributed Environment with Overlay Network

provides a mechanism to inherit the current sit-
uation of each zone and to manage each zone

autonomously.

Data backup

To succeed in taking the current GSD from the
old zone owner, the ZFM uses the DHT over-
lay network as a backup storage media. A zone
owner is the centric game server on particular
zone; therefore, the zone owner accepts zone mem-
bers’ requests, judges conflicts among requests,
modifies GSD, serializes the changes of GSD, and
announces any updates of GSD to all zone mem-
bers. Also, the zone owner updates the cur-
rent GSD on the corresponding data holder node
whenever any updates about GSD occur.

By recording the current zone’s GSD on the
DHT overlay network, all participating user nodes
can get the latest information about each zone
from the DHT even when no zone owner exists
in a specific zone. If a participating user node
changes its status to the zone owner on some zone,
the node can know all zone member nodes and
the latest GSD from the zone data on the cor-
responding data holder node; therefore, the new
zone owner node can accomplish all the tasks left
by the old zone owner.

Requests about changes to GSD and announce-
ments of the latest GSD are transmitted between
the zone owner and zone members directly; in
other words, no intermediate hop on the appli-
cation layer level is employed in transmitting
GSD-related messages in the ZFM. On the other
hand, updating GSD on the data holder node is
processed through the message forwarding mech-
anism on the DHT overlay network. Using the
message forwarding of the DHT requires several
routing hops; however, the updated zone data
on the data holder node is processed in paral-
lel by announcing the latest GSD to each zone
member. Hence, backing up the zone data to
The DHT overlay network doesn’t influence the
response latency of message exchanges between

the zone owner and the zone members.

426

Zone membership management

In the ZFM, each user node accesses zones
where the GSD required by the user node is
stored. Also, the node playing the zone owner
role is changed dynamically. The candidate list
and the member list on each zone provides man-
agement mechanism of the zone owner role and
grasping current zone members.

Each user node changes its status regarding
each zone as illustrated in like Figure 4.5. An user
node becomes the zone owner from the indepen-
dent state or the zone member state by the step
up procedure. An independent state node can join
the zone as a zone member by following the join
procedure. The zone member state node leaves
from the zone by the leave procedure, and the
zone owner role node can resign its game server
task by the step down procedure and change to the
independent state. Basically, these status changes
and procedures are announced to other nodes by
the candidate list and the members’ list of each
zone.

The candidate list shows which node is the cur-
rent zone owner, or which node has the right to
play the zone owner role. When there is no zone
owner in a zone and a user node tries to become
the new zone owner of the zone, the user node
writes its identifier into the candidate list of the
zone and reads the latest zone data through DHT
message forwarding. If the identifier of the user
node is listed on the top of the loaded candidate
list, the user node can become a new zone owner,

and then the user node can start working as the

zone owner

step up

step up

zone membe

joi

Fig. 4.5. Node Status Changes

step down
leave



zone owner. When the zone owner wants to leave
the zone, the zone owner has to remove its iden-
tifier from the candidate list on the data holder
node. After removing its identifier from the can-
didate list, the zone owner can leave the zone.

On the other hand, when a user node wants to
join a zone as a zone member, the user node writes
its identifier into the members’ list on the data
holder node, reads the latest situation about the
zone from the DHT overlay network, and sends
a join message to the zone owner who is listed
on the top of the candidate list. When the zone
owner receives a join message from a new zone
member, the zone owner adds the identifier of
the new zone member into its own members’ list.
Next, the zone owner and the new zone mem-
ber establish a connection and exchange messages
directly. When a zone member node tries to leave
the zone, the zone member node removes its iden-
tifier from the members’ list on the DHT, that is,
the members’ list on the data holder node. The
zone owner can realize the disappearance of the
zone member when the connection between the
zone owner and the zone member is closed.

The details of the procedures for managing the
membership of zones and GSD on each zone are

described in section 4.4.3.

4.4 Implementation

In this section, we describe our implementation
of the Zoned Federation Model (ZEM). We have
inserted a zoning layer as a middle layer between
game programs and TCP/IP stacks, and between
game programs and the DHT layer.

The zoning layer covers both the DHT layer
and the TCP/IP stacks (Figure 4.6). By using

the zoning layer, game programs don’t have to

game program

zoning layer

DHT layer
network layer

Fig. 4.6. Zoning layer

W I D E

consider whether a message should be exchanged
through the DHT or not.

Our ZFM optimizes the response latency on
a MOG. In the implementation, we introduced
several techniques to reduce or to optimize
response latency.

We implemented this zoning layer as a C library;
we call this zoning layer library a libcookai, and
a C library of Pastry customized for the ZFM. We

also implemented a sample MOG using libcookai.

4.4.1 Pastry for ZFM

Table 4.1 shows APIs of our pastry implementa-
tion in C language. These APIs are the interfaces
of the Pastry DHT overlay network for the zoning
layer (Table 4.1).

Each user node also participates in the Pastry
DHT overlay network by the join function. By
using the query API, the zoning layer reads cur-
rent zone data from the data holder node on the
Pastry DHT overlay network. If any node tries to
change the same zone data asynchronously, some
inconsistency of the zone data may occur. To
avoid inconsistencies of data, we divide the ‘write
operation’ of the zone data into set and delete.
The zoning layer calls the set function to add
a new data value of zone data on the DHT, and
calls the delete function to remove the old value

of the zone data.

Table 4.1. APIs of Pastry for ZEM

function definition
join() join to DHT network
query(key) get the current

zone data pointed out
from the hash key to DHT

add new data
to zone data on DHT

delete(key, data) | delete the specific data
from zone data on DHT

set(key, data)

4.4.2 Zoning Layer
The zoning layer controls network access. When
the game program on a user node tries to

send a message, the zoning layer chooses Pastry

427

P ROJETCT

SI0MION AR[I0A(Q) (I JUSTIUOTIAUL POINLIISI(] pajeidoqu] DI e

25




t

reepor

a n n u a

P ROJETCT 2 0 0 4

E

D

e [J 250 Integrated Distributed Environment with Overlay Network

Table 4.2. Zoning layer API

function definition

initialize()

to connect to the game world

step_up(zone)

to step up to zone owner

join(zone)

to become zone member and listen to update messages

update(zone, data) | to updated modified GSD

commit(zone, data) | to send a commit message

release(zone)

to release direct connection
to the zone owner

step_down(zone)
to zone members

to step down from a zone owner and close all connections

4 N N
enum{ zone data{
OWNER, OWNER({
MEMBER, data_length
DATA, “nodel.example.com:8472”

b

struct DHT_DATA({
unsigned int type;
unsinged int data_length;
char data[];
struct DHT _DATA *next;

b

- J
Fig. 4.7. Data Structure of Zone

message forwarding or the end-to-end TCP con-
nection according to the node status and the data
type of the message. On the game program side,
the zoning layer represents the interface neces-
sary to control its node status for each zone, as
well as the interface of the network layer includ-
ing the Pastry overlay network. Game programs
access the zoning layer by using the APIs listed in
Table 4.2.

Data Structure of Zone

The data structure of the zone is described in
Figure 4.7. DHT_DATA is the basic data struc-
ture, and it constructs a one-way list. If the data
type is OWNER, the DHT_DATA contains the
identifier of the zone owner or that of a candi-
date for a new zone owner. The DHT_DATA is
used as a part of the members’ list when the data
type is MEMBER. Each GSD is contained in the
DATA type DHT_DATA.

428

}
MEMBER{

data_length
“node2.example.com:8472”
}
DATA{
data_length
binary_data
}
MEMBER/{
data_length
“node3.example.com:8472”
}
}

\ %
Fig. 4.8. Example of Data on Zone Data List

New DHT_DATA is added in the tail of the zone
data list by the set function of Pastry for the ZFM.
Focusing on OWNER type data, the zone data list
is attached to the candidate list of the zone. The
zone data structure is a one-way list; therefore,
when a user node searches the zone owner on some
zone, the zone owner is the node whose identifier
is contained in the first OWNER-type data listed

in the zone data.

Latency Optimizing Techniques
Most types of MOGs require a short response
latency of less than 200 ms[238]. We designed the

ZFM to optimize response latency. In addition,



we add two latency optimizing techniques onto
the implementation of the zoning layer; namely,
data caching, and connection caching.

The zone owner has the permission to write to
the master data of GSD on its governing zone.
However, updating data on a data holder node
through the DHT forwarding paths causes more
latency than the modifying data on the local stor-
age of a zone owner. Therefore, by using a local
cache of the zone data list on a zone owner as
master data of the GSD on its zone, the local
cache is able to cut the response latency caused
by searching the data holder node to modify the
GSD through DHT message forwarding.

Along with data caching on each zone owner,
we combine connection caching to reduce the
response latency on the announcing updated
GSD. Each zone member of a zone is listed on the
zone data list of the zone; therefore, a new zone
owner can understand all current zone members.
When a user node becomes a new zone owner, the
new zone owner establishes an end-to-end TCP
connection to each zone member, and the zone
owner keeps these TCP connections until the zone
owner leaves the zone. We call each TCP con-
nection between a zone owner and a zone mem-
ber a transfer path. When a zone owner changes
the GSD on its local cache of the zone data, the
zone owner announces updated GSD for each zone
member directly through transfer paths. In par-
allel with updating zone members’ GSD, the zone
owner also updates GSD on the data holder node
through DHT message forwarding to avoid loss
of the current GSD of the zone. Hence, every
node can understand new zone owner by follow-
ing in sequence the latest GSD from DHT overlay

network.

4.4.3 Procedures

Our zoning layer implementation provides sev-
eral APIs for game programs (Table 4.2). Using
these APIs, game programs should only be con-
cerned about their own node status for each

zone. On the assumption that game programs

W I D E

are written in an event driven model, we have
designed and implemented APIs. Figure 4.9
shows pseudo codes of a zoning layer API.

Initialize function is used when a user node joins
to the DHT overlay network where a MOG runs.
Initially, for the user node just joining the DHT
network, the user’s node state is an independent
state for all zones. The node tries to participant
in several zones which have the GSD that the user
node must read or change according to the game
sequence.

When a user node wants to change the GSD
of a zone, the user node tries to become the new
zone owner of the zone. Next, the user node takes
a step up procedure. First, the user node adds
its identifier to the zone data list on the data
holder node through the DHT forwarding path,
and reads the current zone data list from the data
holder node. If the user node finds the OWNER-
type data it wrote by itself first when the user
node searched the current candidate nodes, then
the user node changes its node status to zone
owner, reads the current zone data list again,
comprehends all current zone member nodes, and
establishes a transfer path to each zone member.
Establishing a transfer path tells each zone mem-
ber about the arrival of a new zone owner. If
the user node finds an other node’s identifier first
when searching the candidate nodes, the user node
realizes that the other node is the zone owner,
then the user node removes the OWNER-type
data it committed by itself from the zone data list.

If the zone owner already exists when an inde-
pendent node wants to modify the GSD, or when
an independent state node wants to just read the
current GSD or to receive the updated GSD from
the zone owner, the independent node changes its
status to zone member by a join function. Join-
ing steps are as follows: an independent node
changes its status to zone member, writes its iden-
tifier in the tail of the zone data list as MEM-
BER-type data, and reads the latest zone data
list from the DHT overlay network. Next, the new

zone member checks the zone owner identifier and

429

P ROJETCT

SI0MION AR[I0A(Q) (I JUSTIUOTIAUL POINLIISI(] pajeidoqu] DI e

25




t

reepor

a n n u a

P ROJETCT 2 0 0 4

E

D

e [] 25[1

430

Integrated Distributed Environment with Overlay Network

/
function initialize(){
DHT _join();
}
function step_up(zone){
DHT_append(zone, mydata.hostdata + type::OWNER);
data_list = DHT _get(zone);
foreach element (data_list){
switch(element.type){
case MEMBER:
regist_member(zone, element.hostdata);
break;
case OWNER:
if(element.hostdata == mydata.hostdata){
return success;

if(alive_check(element.hostdata) == alive){
DHT _delete(zone, mydata.hostdata + type::OWNER);
return fail;
telse{
DHT _delete(zone, element.hostdata + type:: OWNER);
}

break;
}
}

return fail;

}

function join(zone){
DHT _append(zone, mydata.hostdata + type:MEMBER);
data_list = DHT _get(zone);
foreach element (data_list){
switch(element.type){
case OWNER:
regist(zone, element.hostdata);
break;
case DATA:
mydata.zone.data = element.data;
break;
}
}
}

function commit(new_data.zone.data){
send(owner.hostdata, new_data.zone.data);

}

function update (mydata.zone.data){
foreach member (zone.member_list){
send(member, new_data.zone.data);

DHT _delete(zone, old_data.zone.data);
DHT _write(zone, new_data.zone.data);

}

function step_down(zone){
DHT _delete(zone, mydata.hostdata + type::OWNER);
foreach member (zone.member_list) {
disconnect(member);
}

}

function release(zone){
DHT _delete(zone, mydata.hostdata + type::MEMBER);
disconnect(zone::owner);

}

o

Fig. 4.9. Zoning API



tries to establish a transfer path by sending a join
message to the zone owner. When the zone owner
receives the join message, the zone owner adds the
new zone member’s identifier to the zone data list
on its own local cache, and establishes the new
transfer path.

When a zone member node wants to change
some GSD value, the zone member sends a commit
message with new GSD to the zone owner. When
the zone owner receives a request for modifica-
tion from some zone member or the zone owner
wants to modify some GSD on its own zone, the
zone owner calls an update function. After judg-
ing the conflict or the consistency of the GSD,
the zone owner modifies the GSD on its local
cache, announces new GSD to each zone member
through transfer paths, and sends the new GSD
to the data holder node via the DHT message for-
warding for the purpose of backup.

If a zone member leave the zone, the zone mem-
ber shuts down the transfer path and removes the
MEMBER-type data which contains its own iden-
tifier from the data holder node through DHT for-
warding path. When the transfer path has been
closed by some zone member, the zone owner real-
izes that the zone member left from the zone, and
the zone owner removes the zone member’s iden-
tifier from its local zone data list.

A zone owner steps down to the independent
state when the zone owner wants to leave from
the managing zone or just wants to resign from
the zone owner role. In this case, the zone owner
removes its identifier from the OWNER-data from
the zone data list on its local cache and on the
data holder node respectively. Next, the zone
owner closes all transfer paths, and changes its
status to an independent state. All zone mem-
bers realize the zone owner has just left the zone
by the closed transfer path. If some zone mem-
ber simply tries to commit after the zone owner
leaves, the zone member tries to become the zone

owner by calling the step up function.

W I D E

Recovery from Failure

In this section we describe the error processing
procedure that occurs when a node is suddenly
isolated from the peer-to-peer network because of
a network failure.

When a zone member is isolated from the net-
work, this event of isolation looks for the “leave”
action called by the zone member. The zone
owner is the only node which knows that the zone
member has left, so the zone owner removes the
zone member’s entry from the zone data list on
its own local cache. If the isolated zone member
comes back to the DHT overlay network, then the
zone member realizes that the transfer path has
been closed. In this case, the zone member must
send a join message to the zone owner again.

When a zone owner has been disconnected from
the network, its zone members notice that the
zone owner has been isolated from the network
due to an absence of heartbeat messages from the
zone owner. Next, each zone member sends an
owner-lost message to the game program by itself.
After sending an owner-lost message, one of these
zone members deletes the zone owner entry from
the DHT. If the game program on some zone
demands a change of the GSD, the zone member
tries to “step up”.

If a zone owner disappears from the network
by a network accident when no zone member is
listed, the entry of the zone owner remains on the
DHT. In this case, a node becomes a zone member
because of the remnant of the zone owner entry on
the DHT, but the new zone member cannot estab-
lish the transfer path to the registered zone owner,
so the zone member notices that the zone owner
doesn’t exist. Then, the zone member deletes the
old zone owner entry from the DHT and tries to

step up.

4.4.4 Sample MOG Program

To evaluate the zoning layer, we have imple-
mented a MOG program.

Our sample MOG is “get the game flag” similar

to “rally-x”, but extended to a multi-player game.

431

P ROJETCT

SI0MION AR[I0A(Q) (I JUSTIUOTIAUL POINLIISI(] pajeidoqu] DI e

25




t

reepor

a n n u a

P ROJETCT 2 0 0 4

E

D

e [] 25[1

Each player drives a small car and players struggle
to get flags distributed on a two dimensional world
map. Each player can disturb other players by
a smokescreen. If a player’s car hits a rock or
another player’s car, the player has to restart.
To divide the whole world into several zones on
this MOG, we used maps and positions as features
of the zones. A zone of a map image contains
a map image which is 128 x 128 square when one
square is defined as the size of a car image. On
the other hand, each zone of positions contains the
positions of cars, flags, and smokescreens on a spe-
cific map image are defined by a zone of the map
image. These zones are distributed onto a DHT

overlay network.

4.5 Evaluation

In this section, we evaluate our zoning layer
implementation of the zoning layer described in
section 4.4. For evaluation, we employed a sam-
ple MOG program and examined it by focusing

on latency overhead as a performance metric.

4.5.1 Order

We clarify the tradeoff between the order of
message forwarding hops on an application layer
level and the order of messages to be sent by
a node in several models. We describe the ZFM in
Table 4.3, in the client-server model in Table 4.4,
and in Scribe[35], which is an Application Layer
Multicast (ALM) based on DHT message forward-
ing in Table 4.5, respectively. Scribe is employed
by SimMud[165] which is another DHT overlay
infrastructure model for MOGs.

Because the DHT overlay network can be
accessed on all actions but commit, ZFM appears
to be a hybrid model of a client-server model and
scribe. Therefore, the ZFM appears to provide at
least the same response latency as Scribe although
the recovery steps of the zone owner (step up) may
become a bottleneck point for the ZFM.

Comparing the recovery steps of the game
server, the ZFM, and the client-server model

requires O(N) when sending messages to all

432

Integrated Distributed Environment with Overlay Network

Table 4.3. communication overhead of ZFM
num of messages | hop counts
step up O(N) O(log N)
join o(1) O(log N)
step down 0(1) O(log N)
leave o(1) O(log N)
commit o(1) o(1)
update O(N) O(log N)
Table 4.4. communication overhead of client
server model
num of messages | hop counts
recovery O(N) 0(1)
join 0(1) o(1)
leave o(1) o(1)
request 0O(1) 0O(1)
update O(N) o(1)
Table 4.5. communication overhead of Scribe
num of messages | hop counts
create O(1) O(log N)
subscribe 0(1) O(log N)
unsubscribe 0(1) O(log N)
publish O(N) O(log N)

clients. The ZFM also needs O(log N) hop counts
to inherit the latest zone data list from the DHT
overlay network.

When joining or leaving from a zone, the ZFM
requires O(log N) hop counts to add or to remove
its identifier from the zone. In addition, the Scribe
needs O(log N) hop counts to add or to remove its
entry from a multicast group.

Updating the GSD, Scribe and the ZFM
requires O(N) message forwarding and O(log N)
hop counts. However, the Scribe needs O(log N)
hop counts because the Scribe employs the DHT
as the message forwarding path for all messages.
On the other hand, the ZFM requires O(log N)
hop counts to back up the current GSD on the
DHT overlay network. If only some nodes play the
zone owner role of a zone, backing up the current
GSD into the DHT overlay network may not be
necessary for the zone owner node. Also, updating

each zone members’ GSD through the direct TCP



connections is processed in parallel by backing up
the GSD on the DHT overlay network. Therefore,
a zone owner works with O(N) message forward-
ing and O(1) hop counts from the standpoint of

zone members (game clients).

4.5.2 Response Latency Overhead

We have evaluated response latency over-
head caused by our zoning layer implementa-
tion. MOGs need low latency overhead on mes-
sage exchanges and on updating the latest GSD
in order to provide stress-free interactions among
game players. On the evaluation of response
latency overhead, we examined two kinds of
response latency used by the zoning layer: one on
a step up action, and the other on update action.
In section 4.5.1, we described how the step up
action may be a bottle-neck point because the
step up action requires O(N) message sending and
O(log N) DHT forwarding hops to inherit and to
recover zone owner tasks. Also, we mentioned
how update action may achieve a short response
latency to zone members without concerns about
back up on a DHT overlay network.

Response latency on step up action is influ-
enced by two actions: a node becomes a zone
owner and establishes direct connections to all
zone members. To become a zone owner, a node
has to search a data-holder node twice. The first
search is needed to write its entry as an owner
on the zone-data list, and, after becoming the
zone owner, second search is required to fetch all
zone data from the data holder-node to use as
master GSD, and to comprehend all zone mem-
bers. Therefore, response latency on step up is
affected by the time needed to search a data holder
through the DHT forwarding path. Also, response
latency on step up is influenced by the number of
zone members because of establishing TCP con-
nections between a zone owner and each zone
member. In section 4.5.2, we describe the rela-
tion between the number of zone members and
the response latency of step up action.

On the other hand, response latency on update

W I D E

action is affected by updating a GSD on all zone
members and on the data holder. We measured
response latency on update action as update time,
which is influenced by the number of zone mem-
bers. Through experiments described in section
4.5.2, we try to clarify the relation between update
time and the number of zone members on a single
zone.

For each evaluation of response latency, we
employ a test code which is constructed by
libcookai. On the test code, a zone-owner node
sends a packet with a 1024 bytes payload to each
zone member node over each TCP session. Each
zone member node simply receives the test packet.

The threshold of response latency which users
can accept without stress is different among MOG
types[10, 16, 238, 253]. Our sample game program
needs the same response latency accepted by the
First Person Shooter (FPS) game. For the evalu-
ation, we set the threshold of the response latency

to 200 ms which is acceptable for users on FPS[16].

Response Latency on Step Up

First, we evaluated the overhead of response
latency on the step up procedure. In this evalu-
ation, we used an experimental environment con-
sisting of 7 FreeBSD PCs, 3 with 500 MHz pro-
cessors and the other 4 with 850 MHz, intercon-
nected by a 100base-TX switch. All PCs have
256 M bytes memory. To increase the number
of zone members, we simulated multiple zone-
member nodes by running zone-member processes
on PCs.

We estimated the response latency by divid-
ing several time ranges, for example, DHT
Looking-up Time (DLT), Establishing Connec-
tions Time (ECT), and Total Stepping-up Time
(TST). The relationship among these time ranges
is as follows:

¢ DLT

The time spent for fetching a zone-data list
from the DHT overlay network.

e ECT

The time spent for establishing each

433

P ROJETCT

SI0MION AR[I0A(Q) (I JUSTIUOTIAUL POINLIISI(] pajeidoqu] DI e

25




t

reepor

a n n u a

P ROJETCT 2 0 0 4

E

D

e [J 250 Integrated Distributed Environment with Overlay Network

1.2 T T T T T T T
TST  + +
DLT X +
1k ECT X 4+ a
L+ +
+
+F +
. +
0.8 | o ++ «
+
n + ++
2 | + x X .
g oo +++++++ X X
X XX X ox
= SO0 SO0 T OO
*
*
0.4 | w X -
* X X X%
% ¥x* XX 5 X XX
0.2 X**ﬁ
. o « ¥
XX x K
e
0 Lo KX ! ! ! ! ! !

0 100 200 300 400

500 600 700 800 900

number of members

Fig. 4.10. Response Latency on Step up

connection between a zone owner and a zone
member.

o TST

The total time spent for stepping up to a zone
owner.

In the test-bed environment described above,
the zone owner was placed in only one PC. The
scenario of this experiment was as follows: First,
only zone members run; next, a new independent
node steps up to the zone owner. We evaluated
these response latencies while increasing the num-
ber of zone members gradually. The result of this
experiment is shown in Figure 4.10.

Obviously, the topology of the Pastry forward-
ing path is affected on by the TST. The ECT
draws the liner curve of O(N), but the DLT draws
an incontinuous line. When the number of zone
members was 700, the TST was less than that on
600 zone members. This was because that the
difference of the ECT on 600 zone members ver-
sus on 700 members was shorter than the differ-
ence of the DLT. Figure 4.10 shows that a longer
Pastry forwarding path is the bottleneck point of
response latency on the step up action. The maxi-
mum number of zone members which satisfied the
threshold was 100 zone members; therefore, a sin-

gle zone owner can deal with 100 zone members

434

by keeping the TST at less than a 200 ms time
threshold.

Response Latency on Updating GSD

Next, we evaluated wupdate time. To evalu-
ate the response latency overhead of the update
time, we used the experiment on Starbed which
is a large scale network emulation test-bed envi-
ronment constructed in Hokuriku IT Open lab-
oratory[229]. On Starbed, 512 PCs are divided
into five partitions and inter-connected through
several switches. Each PC has Intel Pentium III
1 GHz, 512 MB main memory, two 100 Base-TX
network interfaces, one of which is connected to
the control network and the other to the exper-
imental network. We ran FreeBSD 4.7 for the
operating system on each PC.

For the evaluation of update time, we used
296 PCs on Starbed with a simple network topol-
ogy such that each PC connected to the same
layer 2 network. In this experimental environ-
ment, we did two experiments about update time.
We estimated update time on each experiment.
The start of the update time was defined as the
time when a zone owner sends a test packet, and
the end of the update time was when a zone mem-

ber received the test packet. In the experiments,



W I D E

025 030 035 0.40
| | | |

delay time [sec]

0.20
|

]
I
j

0.10
|

—_

100 200 300 400 500

T T T T T
600 700 800 900 1000

number of members

Fig. 4.11.

140 —

120

100 —

80

60

number of nodes

40

20

0 -

Update time

© ©® MmN YT O ® ¥ N T O D W
i N N g @m0 0 g 3% 3 3 % o
S o S o o o S o S o

delay time [sec]

Fig. 4.12. Histogram of update time

we measured the update time on each zone mem-
ber node, and drew the results using a box-whisker
plot (Figure 4.11, 4.13).

First, we evaluated the effect of the number of
zone members on a single zone. In this experi-
ment, we used a PC to run only one zone owner
process with a 100 ms delay caused by dummynet,
Zone member processes ran on other 295 PCs
uniformly.

Figure 4.11 shows the trend of distribution for
the update time, and Figure 4.12 represents the

distribution of the update time when the num-
ber of zone members was 1000. According to
these figures, although dummynet caused a 100 ms
delay, the minimum update time was 240 ms and
all update times on each zone member were less
than 440 ms, even when the number of zone mem-
bers was 1000. The maximum number of zone
members which a single zone owner can treat by
satisfying the 200 ms threshold was 500 members.

In the second experiment, we measured the

effect of the number of zones needed to update

435

P ROJETCT

SI0MION AR[I0A(Q) (I JUSTIUOTIAUL POINLIISI(] pajeidoqu] DI e

25




t

reepor

a n n u a

P ROJETCT 2 0 0 4

E

D

e [J 250 Integrated Distributed Environment with Overlay Network

—— - - - - X

delay time [sec]
0.06
1

<
S PR
S | g o
! F(
|
S ] : . ——— T g
S | E— JE——
' ——
. o o
) o
S [}
© T T T T T
1 2 4 6 8

number of zones

Fig. 4.13. Effect of the number of zones to the update time

time when the total number of zone members
was fixed on 297 nodes. We changed the num-
ber of zones from 1 to 8, and we distributed zone
members to each zone equally. Figure 4.13 shows
the result of this experiment. In Figure 4.13, we
divided a zone which has many members into sev-
eral small size zones to enable the reduction of the
response delay and to stabilize the distribution of
the update time.

From the results of these experiments, we can
say that a single zone owner can deal with user
nodes as well as a single, not-clustered centric
MOG server, and zoning can reduce the overhead
on a zone owner and provide MOG the scalability

necessary for at number of users of each zone.

Bandwidth Requirements

A zone owner has to update all zone members’
GSD through unicast; therefore, our zoning layer
implementation consumes bandwidth when a zone
owner updates the GSD. Also, a single user node
can become the zone owner on several zones, and
if a single user node becomes the zone owner
of all zones, the single node requires the same
upstream bandwidth as the downstream band-
width required for a single centric MOG server.

Required bandwidth of a user node is described

436

as follows:
about some node j (j =1,2,...,m) in zone &

(i=1,2,...,n), node j updates GSD as the
zone owner

® a;j: whether or not node j is an owner on
zone i, that is, a;; is 0 or 1

e IV;: the number of members on the zone ¢

e Fj: frequency of updating GSD on zone 17

e (G;: average size of updating GSD per node
on zone %

e M;: required number of messages sent by the
zone owner on zone i

e B;: required upstream bandwidth consump-
tion on the zone owner on zone ¢

The total upstream bandwidth consumption on

node j (Br;) is:

BTj = Z aijBi

4.6 Other MOG models based on P2P
overlay network

SimMud[165] and the PP-CA model[242] are

other approaches to MOG infrastructure based
on to peer-to-peer overlay network. These ap-

proaches provide audit mechanisms for GSD



consistency by a third person or by an authority.

SimMud employs Pastry[265] and Scribe[35]
as base components of its architecture. In the
SimMud approach, the authoritative role is given
to a data holder node, which is called “coordi-
nator”. By randomly mapping data holder nodes
on the DHT, SimMud prevents game players from
cheating global states because the coordinator is
rarely interested in the GSD stored in its local
storage. Also, by preparing several replicas of
a coordinator, SimMud provides fault tolerance.

Pellegrino et al. has proposed the PP-CA
model, which is a peer-to-peer overlay MOG
infrastructure with a central arbiter server[242].
In the PP-CA model, a central arbiter server only
audits inconsistencies of the GSD and resolves the
inconsistencies. Other messagings such as updat-
ing the GSD are processed by user nodes through
a peer-to-peer overlay network.

Pellegrino et al. analyzed three different models:
the client-server model, the peer-to-peer model,
and the PP-CA model by using an open source
MOG program, BZFlag[260]. The analysis shows
that the PP-CA model can reduce the bandwidth
requirement of the central arbiter and resolve
inconsistencies of the GSD without a complex
distributed agreement protocol.

Next, we try to compare ZFM, SimMud, and
the PP-CA model (Table 4.6. Durability of GSD
on each model is affected by the employed peer-
to-peer overlay network.

MOG, ZFM, and PP-CA models are superior to

SimMud, because SimMud is a customized model

Table 4.6. Comparing Three Models

ZFM | SimMud | PP-CA
durability o o o
adaptability o X o
scalability o o —
response latency o X AN
bandwidth X o AN
cheat proofing A o
incentive to serve X o

W I D E

only for a Massive online RPG and MOG, ZFM,
and PP-CA models are more adaptable.

SimMud has scalability ensured by a simula-
tion. ZFM also has scalability; however, we have
not evaluated ZFM in a simulation with a size as
large as that of SimMud. PP-CA has been evalu-
ated only in a small LAN environment; therefore,
we cannot discuss the scalability of the PP-CA
model.

ZFM is a more latency-optimized approach than
SimMud because SimMud uses Pastry[265] as the
DHT, and Scribe[35] as the message exchange
method based on an application-layer multicast
(ALM). While ALM reduces the bandwidth con-
sumption of the coordinator, it incurs network
delay by crossing several hops on both the DHT
and the ALM. In our zoning layer approach, each
node exchanges messages directly; therefore, ZFM
can achieve a shorter response latency than the
ALM, except for the initial rendezvous by the
DHT. But ZFM consumes more bandwidth than
Scribe because ZFM updates the GSD through
unicast connections.

The PP-CA is a hybrid model of the peer-to-
peer and client-server. Of course, the bandwidth
consumption of the central arbiter server is low.
However, in user nodes, the response latency and
bandwidth consumption are affected by the data
transfer protocol among user nodes.

The ZFM distributes arbiter servers if every
zone owner works with fair play. If we assume
that malicious users join in the ZFM as malicious
zone owners, then the ZFM has the drawback of
cheating or unfairness. Although SimMud equips
cheat proofing through a third person, SimMud’s
cheat proofing can be overwhelmed by overriding
numerous malicious nodes. The central arbiter
server on the PP-CA is the authority or certifi-
cate server of the game; therefore, the PP-CA is
tolerant to cheating or unfairness.

The SimMud third person check employs a coor-
dinator who is not interested in the GSD of the
managing zone. The game server tasks highly con-

sume the resources of a user node; for this reason,

437

P ROJETCT

SI0MION AR[I0A(Q) (I JUSTIUOTIAUL POINLIISI(] pajeidoqu] DI e

25




t

reepor

a n n u a

P ROJETCT 2 0 0 4

E

D

e [J 250 Integrated Distributed Environment with Overlay Network

an incentive is needed for the user nodes to pro-
cess the game server tasks. However, a third per-
son check of SimMud employs a coordinator who
is randomly selected and may be not be interested
in the GSD of the managing zone; hence, no incen-
tive or interest for the randomly selected third
person exists. If a user is not interested in a par-
ticular zone, the user cannot grasp what is needed
by most other users on the zone correctly. If sev-
eral MOGs run on the same DHT overlay network
of the SimMud, this forces user nodes to act as the
game server for several MOGs. In such a situa-
tion, no merit exists on the user’s machine. Deal-
ing with several MOGs on the same DHT overlay
network is difficult for SimMud.

On the other hand, in both the ZFM and
PP-CA, the data transfer and judgment are pro-
cessed by nodes interested in the same game
world. In other words, an incentive to serve GSD

in both models exists.

4.7 Related Work

The scalable data dissemination problem has
been addressed in the application-level multicast
literatures[35, 334], where large receiver groups
are of particular concern. In contrast, our work
focuses on zone-local data dissemination with low
latency.

A large number of small groups can be sup-
ported in small-group multicast protocols[314];
our work can exploit such infrastructure support,
for the purpose of efficient data dissemination
from the zone owner.

While we have looked only at the application-
layer a topology in this paper, topology-aware
overlay[255] will further reduce the latency of
intra-zone communication by optimizing the
network-layer topology.

The API described in this paper resembles the
CAST interface which is part of the common
API effort[49]. However, the underlying semantics
have notable differences: zone-local serializability,
and the presence of multiple roles. Typical any-

source multicast protocols are not serializable,

438

in the sense that one particular receiver cannot
ensure the same order of packet arrival as other
receivers. In the MOG context, we believe that

the serializability is of particular importance.

4.8 Future Work

We evaluated the ZFM by focusing on response
latency, and showed the scalability of the ZFM.
However, our experimental environment was con-
veyed on a local subnet; therefore, we have to mea-
sure the scalability of the ZFM on Internet size
topology. Also, we have not had subjective evalu-
ations, so we plan to have several subjective eval-
uations using our sample game program shown in
section 4.4.4.

We have constructed the ZFM on the DHT in
order to achieve data consistency on the assump-
tion that the employed DHT has strong durabil-
ity. However, our implementation of Pastry is not
durable. When the data holder node leaves the
DHT overlay network, no other node can refer
to the GSD backed up on the disappeared data
holder node until the data holder node returns
again to the DHT network. In future work, we
need consider the durability of GSD; a method
such as OceanStore[170], which uses the DHT
overlay network as its largest storage, would be
useful.

In our model, increasing the number of zone
members increases the CPU and bandwidth over-
head on the zone owner. To solve this problem,
increasing the number of zone owners in a zone
actively is necessary, in order to distribute a zone
owner’s tasks. In this case, achieving consistency
of the global state is difficult; we should consider
a the synchronization of data between multiple
zone owners in a specific zone. We may have
to consider workaround to reduce the overhead of
a zone owner with numerous zone members.

Basically, for our design policy of the ZFM,
we assume that the protection for cheating or
unfairness on the ZFM is managed by partici-
pant users. In section 4.6, we discussed how the

third-person check employed by SimMud[165] is



not suited for the ZFM. Reputation techniques
on a peer-to-peer overlay network[158] meets the
ZFM requirements, because such a reputation sys-
tem is based on interests.

However, most peer-to-peer overlay network
have congenial defects that apply to malicious
user nodes, such as catastrophe by a betrayer,
hijacking by numerous malicious nodes, or under-
mining a chain of vouchers from forged multiple
identities[63, 158]. A central arbiter server may
resolve these threats by providing a consistency
check and certificates of the users. Therefore, the
hybrid model of the ZFM and PP-CA can be con-
structed. Such a hybrid model can present short
response latency and scalability with consistency

and authentication.

4.9 Conclusion

In this chapter, we have proposed the Zoned
Federation Model, which adapts MOGs to peer-
to-peer overlay networks. In this model, the whole
game world is divided into several zones; each zone
is maintained by a federation of nodes: an owner
and one or more members. The zone owner plays
two critical roles. First, it provides zone-local seri-
alizability of state changes by aggregating modi-
fications from all members, and by sending state-
change notifications to all members. Second, the
ZFM ensures the consistency of changes commit-
ted by other member nodes. The DHT harnesses
this zoning layer by providing rendezvous capabil-
ity and by working as a backup storage medium
for zone data.

We have applied this model to our prototyp-
ical MOG implementation, with which we have
evaluated latency and scalability. Our experimen-
tal results show the relation between latency of
update time and the number of zone members on
a single zone, and represents the effectiveness of
distributing the functions of a centric authorita-
tive node to several zone owners. Moreover, we

have compared other models with ours according

W I D E

to the number of messages and the order of hop
counts, and we have described the upstream band-
width consumption of a zone owner node.

On our zoning layer implementation, the whole
game world can be divided into several zones
with no restrictions. Therefore, by considering
the appropriate number of zones and the permis-
sible number of zone members on a single zone
according to our experimental results, we showed
how game creators can design scalable MOGs on
peer-to-peer environment with the short response

latency required by each type of MOG.

0 50 WOT for WAT: Spinning the Web of Trust for
Peer-to-Peer Barter Relationships

abstract!

Peer-to-peer complementary currencies can be
powerful tools for promoting collaborations and
building relationships on the Internet.

i-WAT[272] is a proposed such currency based
on the WAT System[324], a polycentric com-
plementary currency using WAT tickets as its
medium of exchange. Participants spontaneously
issue and circulate the tickets as needed, whose
values are backed up by chains of trust. -WAT
implements the tickets electronically by exchanges
of messages signed in OpenPGP[31].

This chapter clarifies the trust model of i-WAT,
and investigates how it is related with that of
PGP[297]. To implement the model by dynami-
cally building an appropriate web of trust (WOT),
the author claims that it would suffice if the
behaviors of participants satisfy the following
three properties:

1. mutual signing by knowing, or any two mutual
acquaintances sign the public keys of each
other,

2. mutual signing by participation, or the drawer

and a user of an i-WAT ticket sign the public

1 This chapter is an extended version of the paper with the same title, which is to appear in the IEICE

TRANSACTIONS on Communication in April 2005.

439

P ROJETCT

SI0MION AR[I0A(Q) (I JUSTIUOTIAUL POINLIISI(] pajeidoqu] DI e

25




t

reepor

a n n u a

P ROJETCT 2 0 0 4

E

D

e [J 250 Integrated Distributed Environment with Overlay Network

keys of each other, and
3. mutual full trust by participation, or the
drawer and a user of an i-WAT ticket fully
trust each other, and a recipient fully trusts
the corresponding user of a ticket, in the con-
text of PGP public key signing.
Likelihood of satisfaction of these properties is
supported by the (dis)incentives imposed by the
semantics of --WAT.
A reference implementation of i-WAT has been
developed in the form of an XMPP[270, 271]
instant messaging client. We are beginning to put

the currency system into practical use.

5.1 Introduction

5.1.1 Peer-to-peer complementary curren-
cies and their potential impacts on the
Internet

Distributed autonomous (or peer-to-peer) sys-
tems, such as an overlay network of people over
the Internet, require coordination among partic-
ipants to achieve their goals. Since each partici-
pant may behave selfishly to maximize their ben-
efit, incentive-compatibility[97], roughly restated
as the goal of the system being accomplished by
collection of selfish behaviors, becomes important.
Because relationships among participants in such
a system necessitate fair exchanges of resources,
the medium of exchange must take an important
role.

Money is a well-known medium of exchange, but
its scarcity has caused a lot of problems. Comple-
mentary currencies, or alternative forms of mon-
etary medium, have been proposed and tested to
achieve an autonomous, sustainable local econ-
omy even in short of money. There have been
succeeding cases, such as experiments in Worgl
in 1932 (stamp money[275]), in Comox Valley in
1983 (Local Exchange Trading System[276]) and
in Ithaca since 1991 (Ithaca HOURs[109]).

Many of the outcomes are short-lived, how-
ever, because most of the existing complemen-
tary currencies are dependent on the qualities of

their administrations. It would thus benefit the

440

autonomy and sustainability of economy if we
could design an administration-free complemen-
tary currency; if we want to make a peer-to-peer
world, money too needs to be peer-to-peer.

If such peer-to-peer complementary currencies
are applied to the Internet, it would benefit many
areas including multicast cost sharing, inter-
domain routing, web caching, file sharing, dis-
tributed task allocation, and other application-
layer overlay networks. Freedom to pursue these
possibilities depends on whether we can have

a free economic medium or not.

5.1.2 Contribution of this chapter

i-WAT[272] is a proposed such currency based
on the WAT System[324], a polycentric com-
plementary currency using WAT tickets as its
medium of exchange. A WAT ticket is like a bill
of exchange, but without a specified redemption
date or place. -WAT implements the tickets
electronically by exchanges of messages signed in
OpenPGP[31].

This chapter clarifies the trust model of i-WAT,
and investigates how it is related with that of
PGP[297]. In particular, this chapter deduces
three properties satisfying which the participants
can dynamically extend their webs of trust to
accommodate trades using i-WAT. This can be
reflected to the designs of software tools which

implement the i-WAT protocol.

5.2 Background

5.2.1 Digital signature

Digital signature is an essential technology for
designing a dependable economic medium, which
can provide a proof of debits or credits.

Throughout this chapter, let us use nota-
tions from[29] for formalization, with additional
abstractions built upon them to fit our purposes.

Suppose Alice (A) is associated with a public/
secret key pair denoted as (Ka,K,'). To sim-
plify the arguments to follow, let us assume that
each user has exactly one key pair associated with

them.



A digital signature has two objectives:
1. To prove that Alice once admitted a
message m.

2. To prove that m has not been altered since

then.

These can be realized by encrypting m with
Alice’s secret key K;l, obtaining {m}Kzl which
is only decrypted with her public key K 4. Since
K;l is a secret known only to Alice, those who
could decrypt {m} Kyl can infer that it must have
been encrypted by Alice. They can also be cer-
tain that m has not been altered since Alice made
{m} Kyt if the result of decryption equals m.

Usually, for efficiency reasons, instead of
encrypting m itself, a digital signature is made
by applying a secure hash function H to m, then
encrypting the hash value with the secret key.
H must be carefully chosen so that it is compu-
tationally infeasible to obtain m’ where m’ # m

such that H(m) = H(m').

Definition 1 (digital signature) Let us write
AT if and only if A presents both a plain-text
message m and its encrypted form {H(m)}KZL
The latter is called a signature on the former.

The signature can be verified by Bob if he
has a copy of Alice’s public key Ka. To ver-
ify the signature, he calculates H(m) from m,
decrypts {H(m)}K;\l with K4, and compares the
two resulted values.

One question is how Bob can be sure that his

copy of Alice’s public key is genuine.

Definition 2 (validating relation) z > y if
x possesses a copy of y’s public key K, and infers
that the copy is genuine.

Let us also write © <y iff © >y Ay > x

(mutually validating relation).

A trust model around validity of public keys
is a specific definition of wvalidating relation >
in the system in concern. Typically, validity of
a public key is supported by a certificate, or a sig-
nature on the key. For example, if Bob (B) sees

signs

Cameron (C) such that B 2% C A C "5° K4, then

W I D E

B % A assuming that C’s certificate is trustwor-
thy. This relation is recursive, so that someone
needs to self-certify at some point.

A public key infrastructure uses a tree of cer-
tificate authorities, or issuers of certificates, whose
public keys are validated by the parent nodes,
rooted by a self-certifying authority.

5.2.2 Web of trust

In a web of trust, however, responsibility for
validating public keys is delegated to people one
trusts, without necessitating certificate authori-
ties. It is a network of people signing the public
keys of others.

Signing relation = states that one certifies that

its copy of someone’s public key is genuine.

Definition 3 (signing relation) - is defined as
follows:

lLa S

2.0 >y if:c“insKy

Let us also write © <y iff ¢ >y Ay = x
(mutually signing relation).
]

Definition 4 (signing-apart relation) I s

defined as follows:
1 s[0]
. =T
2.x5'[—1>]y ifx SyAa#y.

3.z slat?l z if there exists y such that x elal TN

s[b]
y = z.

Let us also write A = B il C in place of A g
CifA>BAB i C' (expansion of signing-apart
relation) in order to clarify who stands in between
the chain of signing relations.

Definition 5 (web of trust) A web of trust for

s[n]

is a set of all y such that x — y where n > 0.

A specific validation relation needs to be defined
over a web of trust. PGP (Pretty Good Privacy) is
an example of a cryptographic technology which
defines such a relation. Let us use GnuPG[296]
as our choice of implementation of OpenPGP[31]

standard.

441

P ROJETCT

SI0MION AR[I0A(Q) (I JUSTIUOTIAUL POINLIISI(] pajeidoqu] DI e

25




t

reepor

a n n u a

P ROJETCT 2 0 0 4

E

D

e [] 25[1

5.2.3 PGP trust model

Let us further define that 7, is the set of users
z considers fully trustable, and 7, is the set of
users x considers marginally trustable.

In the context of PGP public key signing, fully
trustable means that one considers that the owner
of a public key has an excellent understanding of
key signing, and his or her signature on a key
would be as good as their own, and marginally
trustable means that one considers that the owner
of a public key understands the implications of key
signing and properly validates keys before signing
them[297].

The PGP trust model is a definition of validat-

. . v
ing relation — over a web of trust.

Definition 6 (PGP trust model) = > y if
1. sufficient number of valid key owners sign y’s
public key, i.e.
(a)z >y, or
(b) there exist at least f instances of z such that
2€T, > 2Nz22y, or
(c) there exist at least m instances of z such
that z € T’y x> 2 Az > y; and
2.z 1 y where n < h,
where f, m and h are the required number of fully
trusted key owners, required number of marginally
trusted key owners, and number of maximum steps
in the path in the web of trust tracing x back

from y, respectively.

Let us define the marginally validating rela-

tion (<) as follows (although this is not used in

Integrated Distributed Environment with Overlay Network

the design of our currency):

Definition 7 (weak PGP trust model)

z(=)y if

1. insufficient number of valid key owners sign

y’s public key, i.e.

(a) there exist at least one but less than f

instances of z suc

S
z—y, or

(b) there exist at least one but less than m

instances of z such that z € T';, x L2 A

S
z —y; and

s[n]

2.x — y wheren < h

By default, GnuPG defines f =1, m =3 and

h =5.

hothat 2 € T, © > 2 A

5.2.4 The WAT System

Overview
The WAT System[324]
rency designed by Mr. Ei

of Gesell Research Society Japan[105]. A WAT
ticket, a physical sheet of paper resembling a bill

of exchange, is used as the medium of exchange in

the system.

A lifecycle of a WAT ticket involves three stages
of trade (illustrated in Figure 5.1):
1. Issuing—the birth of a WAT ticket
A drawer issues a WAT ticket by writing
on an empty form the name of the provider
(lender) of the goods or service, the amount
of debt?, the present date, and the drawer’s

signature. The drawer gives the ticket to the

is a complementary cur-

ichi Morino, the founder

Pient

Drawer Lender Reci
i WAT ticket 1
/

Goods or WAT ticket

service

Goods or

service
WATticket | —— |
Goodsor | ——— |

service

Fig. 5.1. Three stages of trading with a WAT ticket

2 Typically in the unit kWh, which represents cost of producing electricity from natural energy sources.

442



o

Redemption
(endorsement, recipient = drawer)

— invalidated

W I D E

Issuing (drawer's signature, date, sum, lender)
— validated

Circulation
(endorsement, recipient)

— ownership
changes

Fig. 5.2. State machine of a WAT ticket

lender, and in return obtains the goods or
service.

2. Circulation—ordinary exchange
The person to whom the WAT ticket was
given can become a user, and use it for
another trading. To do so, the user writes the
name of the recipient, as well as their own, on
the reverse side of the ticket. The recipient
will become a new user, repeating which the
WAT ticket circulates among people.

3. Redemption—the return of the WAT ticket
The WAT ticket is invalidated when it
returns, as a result of a trade, to the drawer.

Figure 5.2 shows the state machine of a WAT

ticket.

Distinctive features

Autonomy Anyone can spontaneously become
a member of the WAT System with a sheet of
paper if they follow the above protocol.

Compatibility A WAT ticket is compatible
with any other WAT tickets in the world, so that
the currency system is operable globally, as long

as the drawer can be credited.

Extensibility The protocol illustrated in Fig-
ure 5.1 and 5.2 defines the WAT Core, the essence
of the WAT System. An extended part can be
defined for a new currency based on the WAT
System, stating, for example, the region, group
and duration in which the tickets are usable, as

well as the unit in which the debit is quantified.

Security In case the drawer fails to meet their
promise on the ticket, the lender assumes the
responsibility for the debit. If the lender fails, the
next user takes over. The responsibility follows
the chain of endorsements. The longer the chain
is, the more firmly backed up the ticket is. There-
fore the length of the chain of endorsements rep-

resents the extent of trust the ticket has gained.

5.3 --WAT: the Internet WAT System

5.3.1 Overview

i-WAT is a translation of the WAT Core onto
the Internet. In -WAT, messages signed in
OpenPGP are used to implement transfers of
an electronically represented WAT ticket. The
exchanged messages are called i- WAT messages,
and the ticket represented by the messages is
called an i-WAT ticket.

An i-WAT ticket contains the identification
number, amount of debt and public key user IDs
of the drawer, users and recipients. Endorsements
are realized by nesting PGP signatures as illus-
trated in Figure 5.3.

Table 5.1 shows the types of -WAT messages.
All --WAT messages are signed by the senders,
and are formatted in the canonical form[19] of
XML[21] with nested signatures. The messages
cause state transfers of an i-WAT ticket as illus-

trated in Figure 5.4.

443

P ROJETCT

SI0MION AR[I0A(Q) (I JUSTIUOTIAUL POINLIISI(] pajeidoqu] DI e

25




t

reepor

a n n u a

P ROJETCT 2 0 0 4

E

D

e 0 250 Integrated Distributed Environment with Overlay Network
Fred's
Ellie's signature
David's. signature ]
Cameron's signature Ja
Bob's signature
Alice's signature
signature
ID#,
debit f
VA 1
7 7
7/ I
7 7
/ / I
Drawer Lender Current owner
Fig. 5.3. Signature chain in an i-WAT ticket
Non- Wait for
A Acceptance
existent P
reject Wait for
Acceptance
dis-
LG Waitfor
Approval
Wait for :Pprove ¥ Wait for
Approval L Approval
approve * for redemption
Fig. 5.4. State machine of an i-WAT ticket
Table 5.1. i-WAT messages
message sender receiver function
<draw/> drawer | recipient (lender) | draws an i-WAT ticket.
<use/> user recipient uses an i-WAT ticket.
<accept/> recipient | drawer and user confirms readiness to accept the i-WAT ticket once
it is validated.
<reject/> recipient | drawer or user™ rejects an --WAT ticket.
<approve/> drawer user and recipient | validates an i-WAT ticket, and approves the trans-
action.
<disapprove/> | drawer user and recipient | denies an i-WAT transaction.

* depending on whether the ticket has just been issued or in circulation, respectively.

5.3.2 Changes from the WAT System
Changes in the state machine
Upon translating the WAT Core onto the digi-
tal communication domain, the author has made
the following changes from the state machine of
a WAT ticket:
1. Trades need to be asynchronously performed.
Intermediate states, such as waiting for accep-
tance or approval, are introduced.

2. Double-spending needs to be prohibited. The

444

drawer is made responsible for guaranteeing
that the circulating ticket is not a fraud. This
means that every trade has to be approved by

the drawer of the involved ticket.

Justification of the design

The author regards these changes as necessary
modifications to design a dependable economic
medium. But they, especially the latter one, may

introduce bottlenecks in the system.



This issue has not been quantitatively analyzed
yet. However, by a casual analysis, the author
believes that the design is justifiable because any-
one can spontaneously become a drawer as long
as they are trusted, and the relation between
their trust and the processing load is incentive-
compatible:

1. If everyone is trusted equally in a circle of
friends, the load should be evenly distributed
among participants.

2. Otherwise, the load should be distributed in
an incentive-compatible way:

(a) If one is late to respond (thus avoids to com-
ply with the imposed load), or tends to fail
to answer requests for redemption, they will
lose trust from others. Then it will become
more difficult for them to have their tickets
accepted for trades in the future.

(b) If one is quick to respond, and accepts
requests for redemption with certainty,
they will gain more trust from others. Since
their tickets become easier to use, they may
attract more load. But it will become eas-
ier for them to draw tickets at will in the
future, and initiate trades spontaneously to

obtain goods or services.

5.3.3 Protocol
Issuing—the birth of an -WAT ticket
1. The drawer sends a <draw/> message which
contains the public key user IDs of the drawer
and lender, identification number and amount

of debt. This message becomes the original

Drawer

Alice (A)

W I D E

i-WAT ticket after the protocol is completed.
2. The lender sends back the content of the mes-
sage as an <accept/> message.
3. The drawer sends an <approve/> message to

the lender.

Circulation—ordinary exchange

1. The user adds to the i-WAT ticket the pub-
lic key user ID of the recipient, and sends it
to the recipient as a <use/> message. This
message becomes a valid i-WAT ticket after
the protocol is completed.

2. The recipient forwards the content of the mes-
sage to the drawer and user as an <accept/>
message.

3. The drawer verifies the ticket, and sends
an <approve/> message to the user and

recipient.

Redemption—the return of the i-WAT
ticket
1. The user sends a <use/> message to the
recipient, who equals the drawer.
2. The drawer verifies the ticket, and invalidates
it as the debit is now redeemed. The drawer

sends an <approve/> message to the user.

5.4 i--WAT and the PGP trust model
5.4.1 --WAT trust model
Let us define that t(x) is an -WAT ticket ¢

drawn by x, U, () is the set of users throughout the
lifecycle (up to redemption) of ¢(z), and y @,

denotes that y gives t(z) to z as a result or promise

Future owner

- Gill (G)
Lender v :
Bob (B) v
v v K
\ Fred (F)
Cameron (C) / Current owner
V
(D) A
\David v Ellie (E)

Fig. 5.5. -WAT trust model

445

P ROJETCT

SI0MION AR[I0A(Q) (I JUSTIUOTIAUL POINLIISI(] pajeidoqu] DI e

25




t

reepor

a n n u a

P ROJETCT 2 0 0 4

E

D

e [J 250 Integrated Distributed Environment with Overlay Network

of a trade.
The i-WAT trust model is a definition of how
mutually validating relation <> must hold over

a network of participants.

Definition 8 (¢-WAT trust model) for every
t(a),

1. for all y such that y € Uy(a), @ Sy

2. for all y, z such that {y, 2} C U@y, ¥ &z if

t(z)
Yy — =z

Figure 5.5 illustrates the model by an example.
This model is naturally induced from the necessity

for the participants to validate i-WAT messages.

5.4.2 Spinning the web of trust—precondi-
tions

If the PGP trust model over the network of
participants does not readily support the above
model, the model needs to be implemented by
dynamically building an appropriate web of trust.
In order to do so, the author claims that it suf-
fices (but not necessitates) if the behaviors of the

participants satisfy the following properties.

Property 1 (mutual signing by knowing) for
every x and vy,

oz Sy if o knows® y

Intuitively, this states that any two mutual

acquaintances sign the public keys of each other.

Property 2 (mutual signing by participa-
tion) for every t(z),

o for all y such that y € Uy, Sy

Intuitively, this states that the drawer and a user

sign the public keys of each other.

Property 3 (mutual full trust by participa-
tion) for every t(z),
1. for all y such that y € Uyy, x € Ty Ny €T,
2. for ally, z such that {y,z} C Uy, y € T2 if

t(x)
it

y z

Intuitively, this states that the drawer and

a user are confident about each other that their

correspondents have an excellent understanding of
key signing, and a recipient is confident about the
corresponding user that they have such an excel-
lent understanding. They need to reflect such
views in their PGP trust databases.

Let us assume that GnuPG’s default values are

used for variables f, m and h.

5.4.3 Spinning the web of trust—case studies

Let us justify the above claim by case studies.
Throughout the studies, the network of partici-
pants in Figure 5.5 is used as an example. It is
assumed that no external source of information is
available.

Our goal is to show that the :-WAT trust model
is satisfied in every stage of trades starting from
likely initial states, i.e., a joining party knows
someone in the network of participants, if the
properties explained in section 5.4.2 are satisfied
by the participants.

The statement that follows each claim is both

a casual proof and a procedure to achieve the goal.

Issuing
The goal is to form the initial network of par-

ticipants between Alice and Bob.

Claim 1 A < B results if Alice knows Bob.

In case Alice knows Bob

1. By mutual signing by knowing,
A& B
2. By the definition la of PGP trust model,
A& B
Circulation

The goal is to let Gill join the existing network

of participants.

Claim 2 G & FAG & A results if Gill knows
either Fred or Alice, or someone (in Tg) or some

people (in T') in the network of participants.

3 In the context of this chapter, knows relation is defined to be symmetrical, i.e., y knows x if  knows y.

446



In case Gill knows Fred
1. By mutual signing by knowing and mutual

signing by participation,
GSFAFS A
2. By expansion of signing-apart relation,
GSFAGSFSA
3. By the definition la of PGP trust model,
GSEFAGSFSA

4. F € T4 and F € 7g by the properties 1 and 2
of mutual full trust by participation, respec-
tively. Also, the path length between Gill and
Alice is shorter than h. Therefore, by the def-
inition 1b of PGP trust model,

GEFAGS A

In case Gill knows Alice
1. By mutual signing by knowing and mutual

signing by participation,
GSANASE
2. By expansion of signing-apart relation,
GSANGSASTE
3. By the definition la of PGP trust model,
GHANGSASE

4.A € 7g and A € Tr by the property 1 of
mutual full trust by participation. Also, the
path length between Gill and Fred is shorter
than h. Therefore, by the definition 1b of
PGP trust model,

GHANGE T

In case Gill knows neither Alice nor Fred
The goal can still be met if
1. there is one user x such that x € U4y who
knows Gill and appeared earlier than Fred,
and x € 7¢, or

2. there are three users x, y, z such that

W I D E

{z,y, 2} CU;ay who all know Gill and ap-
peared earlier than Fred, and {z,y,2} C 7'q.
The proofs for the above two cases are similar;
they both involve first establishing G < A by way
of someone or some people in the middle, only that
the latter is more complex.
Suppose Gill knows Cameron, David, Ellie, and
marginally trust them.
1. By mutual signing by knowing and mutual

signing by participation,
GSCONCSANASE

2. By expansion of signing-apart relation, and

by the definition la of PGP trust model,

GSEONCESANGS OCS A
ANGESOCSASFE

3. The above also holds if we replace C' with D
or E. Tt is given that {C, D, E} C T'. Also,
the path length between Gill and Alice is
shorter than h. Therefore, by the defini-
tion 1c of PGP trust model,

GHANCSANGSCS A
NGESCSASFE
4.C & A by the definition la of PGP trust
model. C € Ty by the property 1 of mutual

full trust by participation. Therefore, by the
definition 1b of PGP trust model,

GLANGESCEASFE

5.Now that Gill and Alice mutually validate
their public keys, they can establish G < A

by mutual signing by participation.
GHANGSASE
6.A € T¢ and A € Tr by the property 1 of
mutual full trust by participation. Also, the
path length between Gill and Fred is shorter

than h. Therefore, by the definition 1b of
PGP trust model,

GHANGSES

447

P ROJETCT

SI0MION AR[I0A(Q) (I JUSTIUOTIAUL POINLIISI(] pajeidoqu] DI e

25




t

reepor

a n n u a

P ROJETCT 2 0 0 4

E

D

e [J 250 Integrated Distributed Environment with Overlay Network

Redemption

The goal is to complete the lifecycle of the ticket

in concern. This needs to be done without further

expanding the existing network of participants.

Claim 3 G <& A results without extending the web

of trust any further.

1. By mutual signing by participation,

GS A

2. By the definition la of PGP trust model,

G& A

5.4.4 Justification of the preconditions

Let us casually explain how the preconditional

properties are supported by the natural behav-

iors of people. The formal proof that the design

of i-WAT is incentive-compatible is left out for

a future work.

Mutual signing by knowing

If two parties know each other (well enough), it

should be possible to safely exchange the finger-

prints* of their public keys. Therefore this is only

a question of the communication cost.

Mutual signing by participation

Because it becomes easier for other people to

join the circle of friends around an i-WAT ticket

if this property is met, both the drawer and user

have incentives to sign each other’s public keys

after properly validating them.

Mutual full trust by participation

The participants are motivated to fully trust
their correspondents in the context of public key
signing by the same incentives as the above.
Also, they are disincentivized to be negligent of
the precautions for signing public keys, in order
to protect themselves from possible attacks by

impostors.

5.4.5 Possible attacks
Overview

Attacks may be possible by compromising the
preconditional properties. When mutual signing
by knowing or participation is compromised, it
would result in a failure to build an appropriate
web of trust. This is fail-safe, so that no harm
will result for other members of the system. This
is not the case when mutual full trust by partic-
ipation is compromised. The system should be
strong enough to prevent mishaps from resulting
when participants show untrustworthy behaviors
with respect to signing public keys.

The author claims that a web of trust to support
the i-WAT trust model protects itself from such

a threat.

Case studies
Table 5.2 shows the cases of possible attacks
to exploit the first three people appearing in the

network of participants in Figure 5.5.

An impostor forges Alice’s public key The

impostor receives goods or service from Bob in

Table 5.2. Cases of possible attacks
# | signing | compromised | forged key forger prevented by
1| B3A BeTc (Ka, K;l) an impostor Bob
2| BXA B € Tc (Ka,K3') | Bob (Alice is imaginary) | Bob, Cameron
31 ASB AeTe (KB, K§1> an impostor Alice
4| A>B Aelc (Kg,Kgz") | Alice (Bob is imaginary) | Cameron
5| B2C BecTa (Kc,K5') | an impostor or Bob Bob
6| ASC AecTp (Ke, K51> an impostor or Alice Alice

4 A fingerprint is a hash value of a key so that the key’s identity can be checked with small cost.

448



return of an empty promise. Bob is incentivized to
obtain the fingerprint of Alice’s public key directly
from her and compare it with that of the forged
public key. Otherwise, the debit will become his

responsibility.

Bob creates Alice, and forges her public
key Bob tries to make an i-WAT ticket with
an empty promise, and use it against Cameron.
However, Bob is disincentivized to create Alice in
the first place, because he must take the responsi-
bility of the debit once people discover that Alice
is not able to repay. Or he could escape, so that
Cameron is incentivized to keep in touch with Bob

to make him more traceable.

An impostor forges Bob’s public key The
impostor receives an i-WAT ticket Alice issues
without giving her anything in return. Although
she can always disapprove further trades with the
ticket, she will lose her trust because people can
infer that she was a careless signer, making it more
difficult for her to participate in future trades.

Alice is incentivized to be careful.

Alice creates Bob, and forges his public
key Issuing is always the hardest part. Alice
tries to make her i-WAT tickets easier to circu-
late by skipping the step. If, for any reason, she
fails to meet her promise on the ticket, Cameron
must take over the responsibility as Bob does not
exist. This can easily be considered an attack to
Cameron. Therefore, Cameron is incentivized to
keep in touch with Alice to make her more trace-

able in case she escapes.

An impostor or Bob forges Cameron’s pub-
lic key Someone pretends to be or creates
Cameron, and receives the i-WAT ticket from Bob
giving nothing in return. Bob is incentivized to
be careful, and disincentivized to create Cameron
because whatever the imaginary friend causes,

people would first suspect Bob.

An impostor or Alice forges Cameron’s

public key Someone pretends to be or creates

W I D E

Cameron, and receives the i-WAT ticket from Bob
giving nothing in return. Alice is incentivized to
be careful because she is the first to be blamed,
and disincentivized to create Cameron because
when someone disappears with a valid ticket, it
means Alice does not have to repay, so that people

would consider that she has a motive.

5.5 Deployment

5.5.1 Overview

i-WAT allows the underlying carrier of messages
to be existing e-mail or instant messaging sys-
tems. As a reference implementation, the author
has developed an -WAT plug-in and the hosting
XMPP (Extensible Messaging and Presence Pro-
tocol)[270, 271] client called wija. The software
is available from http://www.media-art-online.
org/wija/ (the i-WAT plug-in is bundled with all
platform-specific packages).

-WAT and a public key exchange mechanism
to support the system have been implemented as
extensions to XMPP instant messaging protocol.

The reference implementation has already been
in use by the WAT System communities. It has
been used, for example, to exchange goods, such
as books, with services, such as working hours for
developing an open source software, namely wija

itself.

5.5.2 Support for the preconditional prop-
erties

Our software lets users exchange their public
keys directly (by way of XMPP servers) without
consulting a public key server. From a user’s
point of view, this is performed by choosing
a correspondent from a buddy list, and selecting
either importing or exporting their keys. When
imported, a window pops up with the fingerprint
of the public key, asking the user whether to sign
the key or not. This is expected to enhance the
ease for mutual signing by knowing.

Our software currently does not directly sup-
port mutual signing by participation. However,

the current design of the software uses the buddy

449

P ROJETCT

SI0MION AR[I0A(Q) (I JUSTIUOTIAUL POINLIISI(] pajeidoqu] DI e

25




t

reepor

a n n u a

P ROJETCT 2 0 0 4

E

D

e [J 250 Integrated Distributed Environment with Overlay Network

list to locate the owner of a public key, so that new
participants will be required to add the drawer in
their buddy list if they have not already, to which
the drawer would respond by adding them back.
Then the above mechanism for key exchange can
be used.

Our software currently does not have a support

for mutual full trust by participation.

5.6 Future work

Our development team will add a user interface
to wija to support mutual signing and mutual full
trust by participation. We will experiment further
how we can reduce the communication cost so that
people can easily satisfy the three preconditional
properties. At the same time, as we put -WAT
into practical use, we will see if these properties
are actually useful for building up the circle of

friends around an i-WAT ticket.

5.7 Related work
5.7.1 Magic Money

Magic Money[329] is an example of message-
based currencies on the Internet based on PGP
signatures. It was designed and implemented by
an anonymous programmer known as PrOduct
Cypher in the early 1990s. Although there were
a few enthusiasts, the use of Magic Money did not
spread widely for several reasons:

1. It utilized Chaum’s blind signature proto-
col[38] which was patented at the time. Since
Magic Money was distributed as a free,
open source software, its existence itself was
unlawful.

2. It required presence of a server, which had to
be maintained by someone.

3.1t pursued untraceability while there was
nothing to back up the values of the digital
coins. The system was regarded as untrust-
worthy.

The author regards Magic Money as an impor-

tant experience of deploying a complementary
currency on the Internet, and has tried to

do the opposites: 1) chosen GnuPG as the

450

implementation of OpenPGP which does not use
patented technologies, 2) chosen not to rely on
servers (we use XMPP servers as routers), and
3) chosen to give up anonymity to some extent
(public key IDs and signing relations are made

known) to build up trust instead.

5.7.2 Geek Credit

Geek Credit[167] is an example closer to i--WAT.
It defines Geek Credit policy, which is similar
to the i-WAT state machine, but the problem
of double-spending is handled differently. Geek
Credit detects double-spending at redemption, so
that each trading does not need to be consulted
with the drawer.

While this simplifies the protocol, the risk of
attacks is higher for Geek Credit than for i-WAT.
Having not to consult the drawer also makes the
trust model of Geek Credit simpler, but it means
that there is no implicit support for building the
web of trust dynamically other than joining the
circle of friends by knowing the current owner of
the ticket. Since the drawer does not have a way
to check the usage of their tickets, there is no way
to enforce the imposed restrictions by an extended

part if there is one.

5.7.3 Ripple

Ripple[103] is another example of a decentral-
ized currency system. It finds a chain of credit
connections between parties to make payments.
If A is trusted by B and B is trusted by C, and
if A wants to make a payment to C, then A pays
to B so that B pays to C.

This may work if everyone in the found chain
is present on the Internet. The author does not
see that as a big problem; i-WAT has a similar
assumption of the drawers being present on the
Internet most of the time.

The behaviors of the two currency systems
would look similar in that if A and C' do not
yet know each other, the system depends on the
intermediate person B to secure the trustworthi-

ness between A and C. But i-WAT does so by



checking the signatures of B on the public keys
of A and C, so that it does not require the pres-
ence of B when A and C' want to make a trans-
action. Therefore i-WAT should be both more
efficient and more tolerant of failures.

Currently, there is no working implementation

of Ripple.

5.8 Conclusions

Peer-to-peer complementary currencies can be
powerful tools for promoting collaborations and
building relationships on the Internet. -WAT
is a proposed such currency based on the WAT
System, a polycentric complementary currency
using WAT tickets whose values are supported by
chains of trust.

This chapter clarified the --WAT trust model.
To implement the model by dynamically building
an appropriate web of trust, the author showed
that it would suffice if the behaviors of partici-
pants satisfy the following three properties:

1. mutual signing by knowing

2. mutual signing by participation

3. mutual full trust by participation
Likelihood of satisfaction of these properties is
supported by the (dis)incentives imposed by the
semantics of i-WAT.

The author has developed an XMPP client
called wija in order to put i-WAT into practical
use. The author’s team has been experimenting
on user interfaces for exchanging public keys, so
that participants of i-WAT can satisfy the above
properties with little or no subjective communi-

cation cost.

Acknowledgment
The author would like to thank Mr. Eiichi

Morino and other members of Gesell Research
Society Japan for valuable advices and discussions
on the content of this chapter, as well as feedback

on wija software.

D

E

P ROJETCT

451

SI0MION AR[I0A(Q) (I JUSTIUOTIAUL POINLIISI(] pajeidoqu] DI e

25







