
第XVIII部

Cross-Site Scripting脆弱性への
対策手法

W I D E P R O J E C T

�18

第 18部

Cross-Site Scripting脆弱性への対策手法

第 1章 Introduction

Cross-Site Scripting (XSS) is caused by the

failure of web applications to properly validate

user input before returning it to the client’s

web browser. Although some approaches exist

for defending against XSS attacks, XSS vulner-

abilities continue to appear in web applications.

These weaknesses, which often result from poorly

developed web applications and data process-

ing systems, allows attackers embedding mali-

cious HTML-based contents, such as JavaScript,

within client HTTP requests. Through embed-

ding HTML code and scripting elements, it is pos-

sible to steal session ID information, thus, result-

ing in the leakage of privacy information.

The purpose of XSS-WG (Cross-Site Script-

ing Working Group) is to not only propose new

approaches to detect and protect users from XSS

attacks and vulnerabilities, but also implement

and evaluate these approaches.

The output of the working group is an effective

system that protects the users from XSS attacks

and also enable detection of XSS vulnerable web

applications. Currently, we propose a system

that automatically detects XSS vulnerability by

manipulating either request or server response at

client side. The system also shares the collected

vulnerability information via a central repository.

Our approach is quite different from other works

in the literature that only stress protection. In

our case, the proposed system not only protects

users from XSSattacks, but also detects the web

servers with XSS vulnerabilities.

We evaluated the system in the WIDE camp.

During the whole experiment period, the sys-

tem investigated more than 8000 HTTP requests

(HTTP GET requests) and the corresponding

response messages. Through the detection mecha-

nism, the system detected 13 XSS vulnerable Web

sites (note that those aren’t the XSS attacks, but

the vulnerable Web sites that could be used to

launch the XSS attacks).

We also evaluate the effectiveness of our sys-

tem by probing the most representative, real-

world XSS vulnerable web sites which we collected

from the Internet. The result shows that, out of

32 XSS vulnerable web sites, our system success-

fully detected 30 Web sites. This indicates that

our system’s effectiveness against XSS attacks.

The rest of the report is organized as follows.

In chapter 2 we explain the background, and in

chapter 3 we briefly introduce XSS vulnerability

and the related works. In chapter 4 we present our

proposed system in detail. In chapter 5 we discuss

the implementation of our proposed system. In

chapter 6 we explain how we evaluate the system.

Finally, chapter 7 concludes this report and briefly

discuss our future work[29].

第 2章 Background

For most major Internet financial institutions

and retailers, the Internet provides both a cost-

effective means of presenting their merchandise to

customers, and a method of delivering personal-

ized 24 hours a day, 7 days presense a week. In

almost all cases, the preferred method of deliver-

ing these services is the HTTP protocol. Due to

limitations within the protocol, there is no built-

in facility to identify or track a particular cus-

tomer (or session) uniquely within an application.

In other words, HTTP is a stateless protocol. In

237

●
第
18
部

C
ro

ss-S
ite

S
crip

tin
g

脆
弱
性
へ
の
対
策
手
法

W
I

D
E

P
R

O
J

E
C

T
2

0
0

3
a

n
n

u
a

l
r

e
p

o
r

t
●第 18部 Cross-Site Scripting脆弱性への対策手法

order to take care of the stateless or connection-

less problem between client and server, the cookie

is defined to solve the problem.

The cookie is a general mechanism which server

side connection (such as CGI scripts) can use to

both store and retrieve information on the client

side of the connection. To put it more plainly,

the cookie is a mechanism that allows web site

to record your comings and goings, usually with-

out one’s knowledge or consent. Web servers

use cookie that may contain the user’s name and

credit card numbers[228]. Although this would be

convenient for clients, it would also be risky.

Since they are stored and transmitted in plain,

cookies are readable and of course, forgeable. The

clear-text nature of the cookie implies that a mali-

cious intermediary between the client and the

server would be able to intercept and modify the

cookies. Therefore the standard specification of

the cookie emphasizes that information of person-

nel and financial nature should only be sent over

a secure channel[224]. However, even if the com-

munication channel is secure (such as SSL), cook-

ies can still be easy targets on users’ computers.

There are various ways for a malicious party to

steal this kind of information from the users’ per-

sonal computers, ranging from Trojan horses to

JavaScript bug exploits. For example, the cross-

site scripting (XSS) is a very popular and effective

attacking technique used by the malicious third

party.

XSS is a web application level vulnerability that

can be used by the malicious third party to easily

bypass the cookie protection mechanism. Since

the vulnerability resides at the web server side,

various server side solutions are proposed for pro-

tecting users from the XSS attack. But most of

them usually degrade the server performance and

cause tremendous configuration overhead.

第 3章 Cross-Site Scripting (XSS)

We start by briefly explaining the XSS vulnera-

bility and how the attack is carried out, as well as

a brief survey on current solutions and problems.

3.1 Cross-Site Scripting Vulnerability

On February 20, 2000, CERT published infor-

mation on newly identified security vulnerability

affecting all web server products[27]. This vul-

nerability, known as Cross-Site Scripting (XSS),

occurs when web applications mistakenly trust

data returned from clients. For example, the URL

field of a web site can be used to insert executable

scripts.

As mentioned previously, XSS occurs when

a web application gathers malicious data from

attackers. The data is usually gathered in the

form of hyperlink which contains malicious con-

tent (e.g., JavaScript) within it. The attackers

may put the link in a website, web boards or in

an email; once the users click on the link, the

request message with the malicious script will be

sent to web applications (e.g., web servers). After

the data is collected by the web application, it

generates an output page for the users which con-

tains the malicious scripts but it appears as valid

contents from the websites. Without any security

consideration the user’s browsers will execute the

malicious scripts. In short, servers that embed

browser input into dynamically generated HTML

pages can be manipulated into becoming a launch

pad for running an attacker’s malicious code.

Servers that use static pages are immune to

this type of attack because they have full con-

trol over how their web pages will be interpreted.

The attacker does not modify the content of the

web sites. The attacker merely inserts new scripts

that can be executed by a browser. Therefore, the

client’s information is the main target for XSS

238

W I D E P R O J E C T

�18

attacks, such as the cookie and the data in the

hidden field.

3.2 XSS Attack and Cookie Stealing

As illustrated in Fig. 3.1, ‘a’ is a user, ‘b’ is

a web page which contains the link (the link is

shown in Fig. 3.3) of attackers’ malicious scripts

while the ‘c’ represents a trusted but a XSS vul-

nerable server.

1. while the user visits the web page b,

2. the user may click on the link with the mali-

cious script embedded;

3. then the request with embedded malicious

scripts is sent to the web server c;

4. the trusted web server generates the response

with malicious scripts and the user’s browser

runs the malicious scripts without any secu-

rity restrictions.

Web servers generate both text and HTML

markup on its response pages. The client’s

browsers then interpret the web pages. HTML

uses special tags to distinguish text from markup

language. Different characters are special at dif-

ferent points in the document which is depending

on the grammar. The less-than sign < usually

indicates the beginning of a HTML tag. A HTML

tag can affect the formatting of the page or intro-

duce a code that will be executed by the browsers.

Such as in JavaScript specification, <SCRIPT>

and </SCRIPT> indicate the beginning and end-

ing of the JavaScript code respectively.

For example, if the script in Fig. 3.2 is inserted

in the text area of a searching engine, that might

result in exposure of the cookie data in user’s com-

puters.

When web servers generate pages by insert-

ing dynamic data into a template, it should be

checked to ensure that the data to be inserted does

Fig. 3.1. The Principle of the XSS

Fig. 3.2. Script typed into the search page

Fig. 3.3. A Link Containing XSS Attempt

239

●
第
18
部

C
ro

ss-S
ite

S
crip

tin
g

脆
弱
性
へ
の
対
策
手
法

W
I

D
E

P
R

O
J

E
C

T
2

0
0

3
a

n
n

u
a

l
r

e
p

o
r

t
●第 18部 Cross-Site Scripting脆弱性への対策手法

not contain any special characters but this is not

always the case. Also, the user’s web browsers

could mistake any special characters as HTML

markup. This would result in the browsers mis-

taking some data values as HTML tags or scripts

instead of displaying them as text. An attacker

can choose the data that the web servers insert

into the web page, thereby tricking the user’s

browsers into running malicious scripts and codes.

3.3 Related Works

Various solutions are available to protect clients

from XSS attacks. At first, the web applica-

tion developers and vendors should ensure that

all inputs from users are parsed and filtered prop-

erly. User input includes things stored in GET

query strings, POST data, Cookies, URLs, and

in general any persistent data that is transmitted

between the browser and web server. The best

philosophy to follow regarding user input filtering

is to deny all but a preselected element of benign

characters in the web input stream. This pre-

vents developers from having to constantly predict

and update all forms of malicious input in order

to deny only specific characters (such as <, ; , >

etc.)4),5). Additionally web application vulnera-

bility scanners can be used to assist web develop-

ers and venders to test the vulnerabilities in their

web applications. Once an application has evolved

out of the design and development phases, it is

important to periodically test for XSS vulnerabil-

ities since application functionality is constantly

changing due to upgrades, integration of third

party technologies, and decentralized authoring

website. Due to the operational overhead and

dynamic features of web applications from differ-

ent vendors and developers, it is very uncertain to

say whether their products are immune for XSS

attacks or not.

Various solutions are available to protect clients

from XSS attacks. On the server side, using

proxy servers as application-level firewalls to filter

out the malicious code is a common mechanism

in most of the server side proposals, as shown

Fig. 3.4. Two Approaches to Address XSS Vul-

nerability

in Fig. 3.4. However, one thing should not be

avoided when discussing the server side solution,

the performance. The resource consuming con-

tent checking and filtering of XSS in the server

side can severely degrade the performance of the

web server. This approach also should not be rec-

ommended as an effective way of protecting the

user from XSS attack.

Scott and Sharp[257] provide a web application

input validation mechanism — a rule-based web

applications-level firewall — to protect against

XSS attacks. However, to adapt this mechanism

to web application requires that rules be defined

for every single data entry point, a difficult task

for web applications that have been developed

over a long time period, since they often contain

a complex structure with little documents.

JWIG[290] project also provides web applica-

tion input validation mechanism. However, it

only works with web applications developed with

the Java JWIG extension. Some software engi-

neering approaches are also proposed such as

WAVES[104], OWASP[291] for security assess-

ment. However, while how to protect users

against XSS attacks is one of their main tasks,

they are not built for detecting XSS vulnerabili-

ties on the Internet.

240

W I D E P R O J E C T

�18

Fig. 3.5. Comparison between scripts before escape encoding (a) and after escape encoding (b)

Table 3.1. Escape Encoding for Special Char-

acters

Special Special Tags after

Tags Encoding

& &

< <

> >

“ "

’ '

Table 3.2. Escape Encoding

Special Escape Escape In Browser

Tags Encoding Encoding Again

& & &amp; &

< < &lt; <

> > &gt; >

On the user/client side, the most effective solu-

tion is to disable all scripting language support

in user’s browsers and e-mail readers[223]. If

this is not a feasible option for business reasons,

another recommendation is to use reasonable cau-

tion when clicking links in anonymous e-mails and

dubious web pages. Also, keeping up to date

with the latest browser patches and versions is

important in protecting against other vulnerabil-

ities which may expose. But usually, neither do

users willing to disable all scripting language sup-

port, nor do they keen to keep their browsers up

to date let alone how many of them are aware of

the dangerous XSS.

第 4章 The Design of the Automatic Collec-

tion/Detection System for XSS Vulnerability

The system consists of a detection/collection

proxy server and a database server. In the detec-

tion proxy server two modes are used to detect and

collect the XSS attack information. The request

change mode and the response change mode.

4.1 Response Change Mode

Once the users browse the web, the HTTP

request (e.g., GET, POST) messages are cap-

tured and checked in the detection/collection

proxy server; if any characters in the request mes-

sage match the HTML special tags, the requests

are copied before sending to the requested web

sites. Consequently, if the related response mes-

sages contain the same special language tags, the

requested websites are considered as XSS vulner-

able. Moreover, if the response messages con-

tain special tags or malicious scripts, the proxy

encodes the language tags and forwards the safe

response message to the client. Meanwhile, the

HTML alert message is inserted to response page

for notification. This is called response change

mode.

However, it does not work properly if the

request and response messages contain multiple

parameters with harmless HTML tags like < or

<html> embedded. It may be possible that the

other parameters are included the special danger-

ous tags. In these circumstances, the response

change mode can’t detect which parameter has

XSS script tags and which one hasn’t. In default,

the proxy just assumes that any parameter with

length longer than 10 characters should contain

XSS scripts, those are not considered clear[223].

4.2 Request Change Mode

Due to the limited functionality of the response

change mode, we propose another method called

request change mode to handle the multi-

parameter pitfall of response change mode.

As the Table 4.1 shows, in request change mode,

when the system investigates the multi-parameter

HTTP request message, it generates a random

number — which will be used as an identifier or

241

●
第
18
部

C
ro

ss-S
ite

S
crip

tin
g

脆
弱
性
へ
の
対
策
手
法

W
I

D
E

P
R

O
J

E
C

T
2

0
0

3
a

n
n

u
a

l
r

e
p

o
r

t
●第 18部 Cross-Site Scripting脆弱性への対策手法

Table 4.1. Request Change Mode

Parameter Name Before After

parameter1 <s>test</s> <234s>234test<234/s>234

parameter2 <s>test</s> <235s>235test<235/s>235

parameter3 < <236

parameter4 <html> <237html>237

Fig. 4.1. Automatic Detection/Collection System for XSS

identity for parameters — and inserts the number

just after the special characters (script language

tags) in the first parameter; when it comes to

the second parameter, the number is increased by

one and inserted just after the special characters

and similarly, the same goes to other parameters.

Through the returning response, the system not

only detects the XSS scripts but also be able to

identify which parameters have XSS scripts such

as, in this case, Parameter 1 and 2. Thus, it avoids

the false alert in the parameter 3, 4.

Obviously, in request change mode, the system

generates an extra request in addition to the orig-

inal HTTP request. That says, the system sends

the HTTP request with the indentity (random

numbers) for detection purpose before sending the

original HTTP request. Thus, both the request

and response are proceeding two times at target

Web site. This may cause some problems with

its aggressive probing on Web sites and the extra

traffic it generates on the network.

4.3 The Information Collection for XSS Vul-

nerability

Fig. 4.1 presents the system overview of the

Automatic Detection/Collection system for XSS

vulnerability. After the proxy server detects the

vulnerabilities, it sends those collected informa-

tion such as host names, the parameter name,

the path name etc. (Table. 4.2) to the collection

database server and such that the collected infor-

mation can be shared among the proxy servers.

As illustrated in Fig. 4.2, the XML format is

used to communicate between the proxy server

and database. addData , removeData, getList

methods are used to add data to database and

242

W I D E P R O J E C T

�18

Table 4.2. Information Collected in Database

Element Content

hostName XSS Vulnerable Host

pathName XSS Vulnerable Path

request XSS Vulnerable Request

parameterName Parameter Name

parameter Parameter contains XSS Script

date The Time When HTTP Response is accepted

cookieScript Whether the Cookie includes the Script or not

deleteFlag Whether the Vulnerability is Corrected or Not

accessTime The Time the Database is Updated

Fig. 4.2. Data Format for XSS Vulnerabilities

upgrade the data, as well as share the data in the

database respectively.

第 5章 Implementation

We have implemented our system using Java

(J2SDK 1.4.1) in Redhat Linux 8.0 and the open

source PostgreSQL7.2 is used as the collection

database. The development of our detection/

collection proxy server is an extension of the proxy

server which is provided by Dr. Hiromitsu Takagi

at AIST (NAtional Institute of Advanced Indus-

trial Science and Technology)[102]. As the detec-

tion part, two different detection mechanisms,

response change mode and request change mode,

are implemented. These will be discussed later.

5.1 Response Change Mode

Fig. 5.1 shows how the response change mode

works.

1. Request Check

The proxy checks whether its parameters

include special characters. If there are, the

detection/collection system will save a copy

of the request in the proxy side and forward

the original request. Otherwise the system

just forwards the request or response between

243

●
第
18
部

C
ro

ss-S
ite

S
crip

tin
g

脆
弱
性
へ
の
対
策
手
法

W
I

D
E

P
R

O
J

E
C

T
2

0
0

3
a

n
n

u
a

l
r

e
p

o
r

t
●第 18部 Cross-Site Scripting脆弱性への対策手法

Fig. 5.1. Response Change Mode

Fig. 5.2. Request Change Mode

the clients and servers.

2. Response Check

Followed by sending the request, the server

generates its response. If the request is

detected of containing the special charac-

ters, the detection/collection proxy compares

the response message with the corresponding

request message stored in the proxy server to

see whether the same special characters are

still included in the response message. If no

special characters are found, the detection/

collection proxy servers simply forward the

response to the client. Otherwise, the system

marks the server as XSS vulnerable and sends

the alert messages to the client. Meanwhile,

the escape encoded response message will be

sent to the client.

5.2 Request Change Mode

Fig. 5.2 illustrates a series of steps taken to

accomplish the detection and collection proce-

dures in request change mode. Every step is

explained below.

1. Request Check

Same with the description at response check

mode. To check whether the request message

containing special characters.

2. Sending Dummy Request

If the request message contains special char-

acter, the detection/collection server will save

the copy of original request message and then

to differ parameters in request message, ran-

dom numbers are inserted to every parame-

ter in random number plus one order before

sending to the requested web server.

3. Dummy Response Check

At this stage, the system investigates the

server generated response message to see

whether the server XSS vulnerable. Then

send the result to the database.

4. Sending the Request

If the web server is XSS vulnerable, the spe-

cial characters in original request are escape

encoded before sending to the web server.

Otherwise, the detection/collection system

simply forwards the original request to the

server.

244

W I D E P R O J E C T

�18

5. Response Check

Alert the user the alert message by embed-

ding HTML in the response page.

5.3 XSS Collection Database Server

• addData

Add the XSS vulnerability information with

the timestamp to the database.

• removeData

Update the database with renewed vulnera-

bility information.

• getList

Update the XSS vulnerable web site list

information from the database in detection/

collection server.

第 6章 System Evaluation

We measure the performance of our proposed

approach on the number of detected XSS vul-

nerable Web sites. We evaluated this system

at the WIDE Camp (Sept, 2003). During the

whole experiment period, the system investigated

more than 8000 HTTP requests (HTTP GET

requests) and the corresponding response mes-

sages. Through the detection mechanism, the sys-

tem detected XSS vulnerable 13 Web sites (note

that those aren’t the XSS attacks, but the vulner-

able Web sites that could be used to launch the

XSS attacks).

We also tested the system by using real-world

examples. By real-world, we mean that the

XSS vulnerable web applications for evaluating

our system are actual web sites, not emulated

ones. We gathered a number of XSS vulnera-

ble websites[230] and manually inserted emulated

scripts to the HTTP requests before sending to

the vulnerable websites. The emulated scripts

are only their most simple type of XSS attack-

scripts for demonstration purpose; more complex

and complicated scripts (JavaScript, VBScript,

etc.,) exist, but it is out of our topic, besides

XSS vulnerabilities exist in web applications not

in scripts. Actually the HTML tags such as “<”,

“>”, “<SCRIPT >”, “%3C” etc, are playing

a major role in detecting XSS attacks; the scripts

which is encapsulated by those HTML tags are

not important.

The system requirement is to detect the mali-

cious scripts embedded in the request/response

message and the XSS vulnerabilities at the web-

site and collecting XSS vulnerabilities informa-

tion, as well as protecting the user/client from

XSS attacks by encoding those special characters

in the request/response messages.

Table 6.1 shows the result in the response

change mode and Table 6.2 presents the result

for the request change mode. In order to test

the XSS detection/collection system, we gath-

ered some XSS vulnerable websites and manu-

ally insert emulated scripts to the HTTP requests

before sending to the requested website. The sys-

tem requirement is to detect the malicious scripts

embedded in the request/response message and

the XSS vulnerabilities at the website and to col-

lect XSS vulnerabilities information, as well as

to protect the user/client from XSS attacks by

encoding those special characters in the request/

response messages. Table 6.1 shows the result in

the response change mode and Table 6.2 presents

the result for the request change mode. ‘◦’ means

the system requirement is fulfilled while ‘×’ repre-

sents only in some special cases, the requirement is

not fulfilled. While investigating the request mes-

sages with multiple parameters, the system failed

to correctly detect the XSS vulnerability. As we

pointed out at chapter 4, this can be solved by

using the request change mode. Table 6.2 shows

that the request change mode is very effective

when encountered with the multiple parameters

problem.

At Table 6.3, we categorized our collected

sites into 5 areas and listed the result for both

the request change mode and response change

mode. We constructed multi-parameter URLs

245

●
第
18
部

C
ro

ss-S
ite

S
crip

tin
g

脆
弱
性
へ
の
対
策
手
法

W
I

D
E

P
R

O
J

E
C

T
2

0
0

3
a

n
n

u
a

l
r

e
p

o
r

t
●第 18部 Cross-Site Scripting脆弱性への対策手法

Table 6.1. Result for Response Change Mode

Number of Detection Collection Encoding
Parameters

GET 1 ◦ ◦ ◦
2 × × ◦

POST 1 ◦ ◦ ◦
2 × × ◦

Table 6.2. Result for Request Change Mode

Number of Detection Collection Encoding
Parameters

GET 1 ◦ ◦ ◦
2 ◦ ◦ ◦

POST 1 ◦ ◦ ◦
2 ◦ ◦ ◦

Table 6.3. Evaluation of Our System Using Real-world Links

Website Category Total Response Request
Change Change

◦ × ◦ ×
News Media

Government Agencies 3 3 0 3 0

Online Stores 9 9 0 8 1

Search Engines 3 3 0 3 0

Technology 6 6 0 6 0

Miscellaneous 4 4 0 3 1

Total 32 32 0 30 2

with scripts when testing the system on request

change mode. The result shows that the response

change mode can effectively detect the vulnera-

bility but when encountering multi-parameters,

request change mode effectively detects which

parameters contain malicious scripts.

第 7章 Conclusion and Future Work

From the participants’ point of view, the sys-

tem protected them against XSS attacks but it

failed to provide a completely stable Web environ-

ment. For example, the system generated some

false alerts, and as a result, the corresponding

responses were blocked. Also, since every request

is required to be checked, the participants felt

that the system violated their privacy. Deploying

the system directly in user’s computer by using

local proxy might avoid those problems but this

approach needs to be tested.

Our approach is an effective way to detect and

collect XSS vulnerabilities. However, there are

still many challenges to be addressed, especially,

how to utilize the collected XSS information in

the central database, and how to make the system

deployment for universal. In the report, we have

presented a user side forwarding proxy approach

for automatically detecting and collecting Cross-

Site Scripting Vulnerability. Two different detec-

tion modes, the response change mode and the

request change mode, are discussed and evaluated

with real-world examples respectively.

The evaluation showed that many “famous”

sites are not secure against XSS vulnerablilities.

The proposed approach and techniques described

in this report is useful in indentifying web appli-

cation security problems. The Migrating security

responsibility from the server side to the client

side have the advantage of a high-performance,

246

W I D E P R O J E C T

�18

dedicated XSS vulnerable detection and collection

system at the client-site no matter whether the

web servers are vulnerable or not. Meanwhile,

this will reduce the configuration overhead both

in administration side and client side. Those real-

world examples (Table 6.3) show us the exciting

future of this approach and justifying those claims

to real-life case studies is high priority for future

work.

247

●
第
18
部

C
ro

ss-S
ite

S
crip

tin
g

脆
弱
性
へ
の
対
策
手
法

