1 VIO

Joooboobbbbooud

W I D E

060
gogboboboogobood

010 0000

DNSOOOOOOOOOOODbNSOOOoOooo
OO0 DNSOOOOOOOOOOOO0O0O0OODNS
wGoOoOOooooooooooobooOoObNs O
coooooOoOoOoOooOooooobNsObOOODOO
cooooooooobocoooooo

ubboboooooooooooobooooooo

e DNS O OO

DNSOOOOOOOOoooooooooooo
O0jp0oooooooooooooooon
gobooboooooooodOn eTLD OO
oooooooocooooo

eDNSODODOO

DNSOOOoooooooooooooooono
gbooboooooobooboobooboooooo
gbooboooooobooboobooboooooo
gbooboooooobooboobooboooooo
gbooooooboooo
gbooboooooobooboobooboooooo
0oooooo JPNIC/JPRSOOOOOOO
goooooobNsOOOOooooooboooo
gbooboooooobooboobooboooooo
ooooooboozoe02000 DNSwgOGOGOO
uobodoobooobo 20000000000
oooobooboooooobobboooooooobooboooo
ug3gbooboJpbbo0obobooobooobooood
uoboooobooboobooboooo

0 20 The Effects of Server Placement and
Server Selection for Internet Services

2.1 abstract

Many services on the Internet are provided by

multiple identical servers in order to improve per-
formance and robustness. The number, the loca-
tion and the distribution of servers affect the per-
formance and reliability of a service. The server
placement is, however, often determined based
on the empirical knowledge of the administrators.
This paper investigates issues of the server place-
ment in terms of the service performance and the
server load.

We identify that a server selection mechanism
plays an important role in server placement,
and thus, evaluate different server selection algo-
rithms. The result shows that it is essential to the
robustness of a service to employ a mechanism
which distributes service requests to the servers
according to the measured response time of each
server.

As a case study, we evaluate the server selection
mechanisms employed by different DNS (Domain
Name System) implementations. Then, we show
the effects of the different server selection algo-
rithms using root-server measurements taken at
different locations around the world.

Keywords: server placement, server selection al-

gorithm, DNS, root name server

2.2 Introduction

As the Internet continues to grow at an explo-
sive rate, the increasing number of services on the
Internet become indispensable to our life. Many
services on the Internet are provided by multiple
identical servers in order to improve performance
and robustness. For such services, server place-
ment is an important factor of the quality of a
service. Server placement has been a subject of
research where the number, the location and the
distribution of servers are studied so as to increase
the total system performance and the reliability of
the service.

Although the best-server selection is often as-

85

PR OIJECT

OOooOooooooOoOooo oo e

el 60 0OO0OO0OUOOOOODOODOOO

sumed for server placement, we found it is not
the case with many Internet services in use, no-
tably with DNS (Domain Name System), and use
of different selection mechanisms has a significant
impact to server placement strategies. This pa-
per investigates server selection mechanisms, and
explores issues of server placement using differ-
ent selection mechanisms. We categorize server
selection algorithms and illustrate their behavior
in simple synthetic situations.

As a case study, we evaluate the server selec-
tion mechanisms employed by different DNS im-
plementations. Then, using measurements of the
DNS root servers from different locations, we in-
vestigate how server selection algorithms affect the
performance perceived by users, and load-sharing
of the servers.

Our results show that proper use of the server

selection algorithms is essential to the perfor-

mance and the stability of Internet services.

2.3 Related Work

The center placement problem has been a well-

known subject of research, and studied both in
theory and practical applications [98]. It is a prob-
lem to find the optimal placement of a set of cen-
ters or the minimum number of centers for given
users.

Although placement of servers in the Internet
is similar, there are other practical issues such
as distance measurement, fluctuations or uncer-
tainty of the environment, and constant growth of
the network. Jamin et al. propose distant maps
which provides a relative distance between end-
hosts, and discuss its application for mirror server
placement [115, 137]. It is also shown that the
closest server selection performs much better than
random server selection. Qiu et al. evaluates dif-
ferent placement algorithms for web server replicas
by means of simulation [96]. The focus of these ap-
proaches is to improve the performance for users,
and thus, users are assumed to access the closest
server. This paper investigates the load distribu-

tion of servers as well as the performance, and

86

focuses on the effects of different server selection
algorithms.

As for DNS measurement, Brownlee et al. pas-
sively observed DNS traffic on a university campus
and analyze the behavior of the root and gTLD
servers [105]. They also analyze DNS traffic at the
F root server [104]. Fomenkov et al. investigate
the connectivity of the DNS root servers to a large
number of DNS clients [99]. The measurement is
done by co-locating an active measurement tool,
called skitter, with six of the root servers. These
DNS results do not consider the effects of server
selection algorithms on the user side, which mo-
tivated our research on DNS. We make use of
measurements of the root servers taken by Sekiya

et al. [166] for our simulation.

2.4 Server Placement and Server Selection

Server placement is heavily influenced by the
server selection mechanism used for the system.
For users to receive good performance, it is im-
portant to choose a near server since some servers
could be very far on the Internet. In addition,
to increase availability, a user should be able to
switch to an alternative server if needed. If the
nearest server fails, or its performance degrades,
a user needs to choose another server to continu-
ously receive the service in good quality.

On the other hand, a service provider should
arrange servers so as to provide good system-wide
performance. However, load-sharing among the
servers is sometimes more important than the per-
formance from the administrator’s point of view.
It is often needed to place an additional server
to reduce the load of heavily-loaded servers. The
location of the new server should be chosen care-
fully in order to distribute the service load appro-
priately. Furthermore, it is necessary to consider
the effects to the performance perceived by users
as well. That is, the performance should not be
sacrificed too much by load distribution.

In this paper, distance or response time is used

as a metric for server selection but there are other

metrics such as throughput. Our principle of bal-

ancing performance and load distribution in an

adaptive way also applies to other metrics.

2.4.1 Server Selection Algorithms

When a set of servers for a certain service are
available, a user selects one of the servers. There
are different mechanisms to select a server to use.
We introduce three representative server selection

algorithms and illustrate the differences.

1. best-server algorithm
2. uniform algorithm

3. reciprocal algorithm

The best-server algorithm measures the condi-
tions of the servers and chooses one as the best
server. The metric can be round-trip time, the
number of hops, or other kind of network distance.
The best server can be chosen from these metrics.
This algorithm is optimal in performance but hard
to control load-sharing as described later.

The uniform algorithm selects all the servers
uniformly. This algorithm can be realized by
round-robin or random selection, and does not use
any metrics. It is easy to implement this algo-
rithm so that it has been used widely by many
network applications. This algorithm is good for
load-sharing but poor in performance, especially
if a bottleneck server exists.

The reciprocal algorithm selects a server with a
probability reciprocal to some metrics. Unlike the
best-server algorithm, not only the best server but
also other servers are used. The access probability
to each server is a function of some metrics. For
example, if a distance is used as a metric, a near
server is used more frequently than a far server,
and two servers located at the same distance are
used equally. This algorithm is adaptive in the
face of fluctuating server conditions since selection

is dynamically determined by the function.

2.4.2 Algorithm Evaluation
To illustrate the differences of the three algo-
rithms, simple synthetic network configurations

are used. In the following examples, the distance

W I D E

between a user and a server is used as the metric
for server selection. That is, when user ¢ accesses
server j and the distance between ¢ and j is d;j,
the access cost is defined as d;;. When a set of
servers S is given and the number of the servers is
m, The cost function of user %, ¢(i), for the best-

server algorithm is
C(’L) = min dij
JjES

For the uniform algorithm, ¢(z) is simply the av-
erage of the distances.

m

) 1
c(i) = — Z dij
j=1
For the reciprocal algorithm, the probability of us-
ing a server is reciprocal to the distance. There-

fore, the probability of user i using server j is
1
Pij = T — 1
dij) o
jes Y

The cost function of the reciprocal algorithm is

. m
o(i) = Y dijpis = ——1—
j€s -
dis
jes
Optimal Placement
The optimal placement is to minimize the total

cost. That is, for given set of users U, place a set

of servers S so as to

minimize Z (i)
€U

To illustrate the differences of the algorithms,
we use a simple configuration as shown in
Figure 2.1. Assume 16 users are placed at each
vertex of a 4 X 4 square mesh. We consider the
optimal arrangement of 4 identical servers for each
algorithm.

Figure 2.1 (A) shows the optimal placement for
the best-server algorithm. We need to minimize
the average distance from each user to the nearest
server. This is known as the k-median problem
[98] and a generic solution is NP-hard. However,

it is easy to solve in this configuration by dividing

87

PR OIJECT

OOooOooooooOoOooo oo e

el 60 0OO0OO0OUOOOOODOODOOO

©) ©) ©) ©) ©) O
& &

©) ©) ©) ©) ©)

©) ©) ©) ©) ©)
& &

©) ©) ©) ©) ©) O

(A) Best-server Algorithm

Fig. 2.1.

the users into 4 clusters and placing a server at
the center of each cluster.

Figure 2.1 (B) shows the optimal placement for
the uniform algorithm. We need to minimize the
average distance from each user to all servers. In
this example, it is optimal to place the 4 servers
altogether at the center of the users.

Figure 2.1 (C) shows the optimal placement
for the reciprocal algorithm. When server selec-
tion is performed with the reciprocal algorithm,
a user uses not only the nearest server but also
others with probability reciprocal to the distance
between the user and the server.

As easily seen from the figures, the best-server
algorithm shows the best performance and the
performance of the uniform algorithm is the worst.
All servers have the same share of the load for all

the algorithms.

Adding a Server for Load-Sharing

It is often needed to place an additional server to
reduce the service load of heavily-loaded servers.
We consider the effects of an additional server to

the system-wide performance.

O O O

: present server
additional server

O O O |m

Fig. 2.2. 3 existing servers, a new server at D,

at D’ or at D"’

88

O O ® @ O

O O O O O O
(B) Uniform Algorithm

(C) Reciprocal Algorithm

optimal placement of 4 servers for 16 users with different selection algorithms

The network configuration in Figure 2.2 is used
here. 16 users and 4 servers are used as in the pre-
vious case but, this time, the locations of the users
and the servers are the same for all the algorithms.

The effects of an additional server, D, D’ or D'’
in the figure, are observed. D and D'’ are close to
one of the existing servers, C, D’ is far from the
existing servers and the users. Table 2.1 shows
the changes in the load distribution and the aver-
age response time by the additional server. The
distance of two points is computed as the Euclid
distance, and the cost of response time between

adjacent vertices is normalized to 1.

Table 2.1. server load and response time by an
additional server
Algorithm Load Distribution Response
A B C D() Time
Best-server 25% 25% 50% - 1.020
+D 25% 25% 50% 0% 1.020
+D" 25% 25% 50% 0% 1.012
+D" 25% 25% 25% 25% 0.941
Uniform 33% 33% 33% — 2.116
+D 25% 25% 25% 25% @ 2.174
+D" 25% 25% 25% 25% 2.748
+D" 25% 25% 25% 25% 2.016
Reciprocal 32% 32% 36% — 1.614
+D 26% 26% 27% 21% 1.656
+D’ 29% 29% 32% 10% 1.890
+D" 24% 24% 25% 27% 1.538

In the case of the best-server algorithm, adding
D or D’ has no effect. The right half of the users
use server C and the left half of the users are di-
vided into server A and server B. Both D and D’

are behind server C for all the users so that they

are not used at all. However, when D’/ is added,
the load of C' is divided between C and D’’. This
example illustrates a difficulty in controlling load-
sharing with the best-server algorithm. Even if
a new server is added to the existing overloaded
server as is the case for D, it may not help at all.
The opposite case is also possible; if a new server
is placed just in front of the existing server, all the
load could be shifted from the existing server to
the new server.

On the other hand, the load is assigned equally
to all the servers with the uniform algorithm. Re-
gardless of the position of the new server, the load
of each server is reduced from 33% to 25% by
adding a server. The response time is, however,
affected by the position of the new server. Be-
fore adding the new server, the response time of
the unform algorithm is already the worst in the
3 algorithms. It degrades slightly by adding D,
and degrades severely by adding D’ since the users
access D’ equally. This illustrates a difficulty to
control the system-wide performance with the uni-
form algorithm

In the case of the reciprocal algorithm, D con-
tributes to load-sharing and the response time de-
grades slightly. The impact of D’ is small since its
distance is large for all the users. The users still
access D’ and the performance drops accordingly.

We can infer dynamic condition changes using
Table 2.1. If the connectivity to D fluctuates, D
is perceived as being at D’ or D’/. Further, if it
fails, only the other 3 servers remain. It is easy
to see that the load distribution of the best-server
algorithm is heavily affected as the position of D
fluctuates. The performance of the uniform algo-
rithm also fluctuates as the position of D fluctu-
ates. On the other hand, the reciprocal algorithm
can adapt in both performance and load distribu-
tion as D fluctuates.

Although a simple configuration of 16 users is
used in this example, it is obvious that our ob-
servation also applies to more complex configura-
tions. The observed problems are inherent in the

algorithms, and it simply becomes harder to pre-

W I D E

dict the effects as the number of users increases

and the user distribution becomes unbalanced.

2.4.3 Practical Issues

Distance Measurement

So far, we used the distance between a user and
a server as our metric. In a real network, how-
ever, it is difficult to define the distance. More-
over, a user can obtain limited information about
the network and the servers. How to measure the
distance on the Internet is still under active re-
search [115, 137].

In practice, the response time from a server is
often used instead of the distance to the server.
The response time measured by a user includes
the network delay, the server processing time and
the local processing time.

Since the response time fluctuates, the average
response time in the recent past is used to predict
the response time in the near feature. Depending
on applications, the variance of the response time
is used as well.

The network and server conditions can change in
a short time. A server selection mechanism should
be able to adapt to changes of the situation. How
quickly a mechanism adapts to a change depends
on how often it measures the condition. The more
frequently it measures the condition, the quicker
it adapts.

When the response time is used to measure the
condition, a user needs to send a request to obtain
the response time. The best-server algorithm is
not suitable for detecting condition changes since
it does not access the servers other than the best
server and does not update the response time of
the other servers. The reciprocal algorithm can
detect condition changes of a near server better
than a far server since the near server is accessed
more than the far server. This is another advan-

tage of the reciprocal algorithm.

Operational Restrictions
It is often not possible to realize ideal server

placement in a real environment due to opera-

89

PR OIJECT

OOooOooooooOoOooo oo e

el 60 0OO0OO0OUOOOOODOODOOO

tional restrictions. There are a limited number of
places where servers can be accommodated. Once
a server is installed and a service is started, it is
not easy to change the configuration even when a
need for rearrangement arises. On the other hand,
the service may need to stop for hardware or soft-
ware maintenance. Other unexpected problems
could arise such as failures of network or facilities.

As the scale of a service increases, the ser-
vice becomes more difficult to manage as planned.
Therefore, server placement and server selection
should be designed to be flexible and fail-safe.
To this end, adaptivity is an important property
for large-scale services, especially from the opera-

tional point of view.

2.4.4 Summary

In server placement planning, it is important to
take server selection mechanisms into considera-
tion. We have illustrated the behavior of three
types of server selection algorithms.

The behavior of the best-server algorithm is in-
tuitive and the best performance can be achieved.
However, its load distribution is sensitive to the
server placement, and hard to control in a real
network. A slight change of the environment could
lead to an unexpectedly-large shift in load distri-
bution.

The uniform algorithm provides fair load dis-
tribution but it is hard to improve the perfor-
mance. Because each server has the same share,
the system performance is dominated by the bot-
tleneck server. In global Internet services, it is
usually much more difficult to control the bottle-
neck server than the best server.

The performance of the reciprocal algorithm is
not as good as the best-server algorithm but it
is much easier to control load-sharing by server
placement. The algorithm is adaptive to condi-
tion changes, which is important to make a service
robust on the Internet.

For large-scale Internet services, the following
properties are needed for a server selection algo-

rithm.

90

1. An algorithm prefers servers with better per-
formance. It is not only for performance but
also allows server placement to control load
distribution.

2. An algorithm sends equal load to 2 servers
if their performance is equal. This prevents
oscillations between 2 servers.

3. An algorithm adapts to condition changes.

The reciprocal algorithm satisfies these properties.

2.5 A Case Study: DNS

2.5.1 Domain Name System

DNS translates host names to IP addresses.
DNS is a distributed database in which domain
names are maintained in a hierarchical tree struc-
ture. A domain in the domain name space may be
divided into subdomains, and the administration
of a subdomain may be delegated. A zone is an
administrative unit of the domain name space in
which a set of name servers are authoritative for
the domain as well as responsible for providing re-
ferrals of its delegated subdomains. When a name
server at the client side is asked to resolve a name,
it traverses the name hierarchy and sends queries
recursively to an authoritative server of each zone
within the specified name. DNS also uses caching
extensively to reduce repetitive queries for the
same zone.

A zone can have multiple authoritative servers
for better performance and robustness. When
there are multiple name servers authoritative for
a zone, a recursive server picks up one to send
a query. How to select a server is implementa-
tion dependent. The DNS specifications [124, 125]
suggest to sort the server list by statistics such as

previous response times and batting average.

2.5.2 DNS Implementations

There are several DNS implementations which
employ different server selection mechanisms.
These mechanisms can be categorized into the

three algorithms described in the previous section.

BIND-8

The Berkeley Internet Name Domain system
(BIND) [70] is the most widely used implemen-
tation of DNS. The server selection algorithm of
BIND-8, version 8 of BIND, can be viewed as a
variant of the reciprocal algorithm in the sense
that the access probability is a function of server
response time. The older versions of BIND also
have the same algorithm.

BIND-8 maintains the list of name servers for a
zone. When BIND-8 finds multiple name servers
to resolve a request, it sorts the servers by the
smoothed response time, and tries the servers in
this order!. The smoothed response time is the
average response time of this server in the recent
past.

The smoothed response time is maintained
as follows. When a response comes back, the
smoothed average response time, srtt, is computed

using the exponentially-weighted moving average:
srtt = a- sttt + (1 —) - rtt (2.1)

Then, the entries of the unused servers in the list

are decayed by
srtt =y - srtt (2.2)

smoothed response time (srtt)

the number of access

Fig. 2.3. a model of smoothed response time in
BIND-8

and its TTL is long enough.

analysis for simplicity.

W I D E PR OIJECT

By slowly reducing srtt of the unused servers, they
are eventually tried again?. BIND-8 uses (a =
0.7) and (y = 0.98).

Figure 2.3 illustrates the effect of the algorithm.
For simplicity, we assume a server has a constant
response time and there is a constant threshold to
select a server. When a server is accessed for the
first time, the response time is recorded. While
this server is not used, srtt is slowly decayed by
Equation 2.2 every time other servers for the same
name are referenced. Eventually, srit hits the
threshold 6, and this server is used again. This
time, srtt is increased by Equation 2.1. Then,
this server is not used until srtt hits the threshold
again.

In the steady state, srtt follows a sawtooth
track, and the server is selected once in y access.
In other words, the expected share of the server is
1/y.

Let the constant response time be x times larger
than 0. That is, rtt = x - 0. Let p be the peak
value of the sawtooth track. When the server is

accessed, (srtt = 0). From Equation 2.1,
p=0(a+z(l-a) (23)

The server is not used for the next (y — 1) times,

and becomes 0 again. From Equation 2.2
D p=6 (2.4)

From Equation 2.3 and 2.4, we can eliminate 6

and p.
1
(y—1) —
7 a+(1—a)z
—1=1 - -
Y 8 a+ (1—a)x
1 1-—
Sy lesletO-a) oo

log vy

By applying (o = 0.7) and (v = 0.98)

BIND maintains separate entries for cached data and for data read from the file. We assume the cached entry

BIND also penalizes those who had earlier chances but have not responded. This algorithm is omitted in this

91

OOooOooooooOoOooo oo e

el 60 0OO0OO0OUOOOOODOODOOO

y=1-— bg(ﬁ;g%m (2.6)

Figure 2.4 plots how selection cycle y changes
with varying response time factor . We also plot
(y = z) and (y = 22) for comparison. (y = z)

corresponds to the reciprocal algorithm.

200 — :

XD oo

y (cycle length)

0 I I I I
0 20 40 60 80 100

X (response time factor)

the server selection cycle of BIND-8
with varying response time

The BIND-8 algorithm employs a concave func-
tion instead of a linear function. Intuitively, it
magnifies the difference when a server is close, and
minifies the difference when the server is far away.
This prevents the access probability of a far server
from being too small. It allows a user to keep track
of all the servers, and is suitable when the server
set is relatively small as is the case for DNS. On
the other hand, if the server set is large, a con-
vex function is suitable to ignore far servers. It is
also an effective way to reduce the effect of poorly-
performing servers.

A concave function of BIND-8 also has a bias to
select the nearest server more than a linear func-
tion. The BIND-8 algorithm seems to be a little
aggressive to segregate near servers. When the
distance ratio of two servers is 1 : 2, the ratio of
their access probability is 1 : 0.07. When the dis-
tance ratio is 1 : 5, the access ratio is 1 : 0.025.

One way to distribute the load more to other
near servers is to use larger «, although « is the
weight for moving average and larger o means
slower convergence. If a is set to 0.9 instead of

0.7, the access ratio becomes 1 : 0.18 for distance

92

ratio 1 : 2, and 1 : 0.056 for distance ratio 1 : 5.
On a side note, the BIND-8 implementation di-
rectly applies Equation 2.2 to srtt for aging, and
does not keep track of the real measured response
time. It might be useful to have a separate vari-
able for the purpose of server selection since the
response time can be used for other purposes such

as identifying a malfunctioning server.

BIND-9

The algorithm of BIND-9, version 9.2.1 or be-
fore, is a variant of the best-server algorithm. The
latest version of BIND-9 has a same algorithm
as BIND-8. Old BIND-9 implements Equation
2.1 but not Equation 2.2. The srtt parameter
for a name server is initialized to a small random
value so that all name servers are accessed at least
once. However, a recursive server will refer to only
the best performing server, once srtt of the other
servers are recorded.

This could be a problem in some situations. The
algorithm is adaptive only when the best perform-
ing server slows down. It is unable to detect a
situation where the performance of another server
improves. It is possible that a recursive server
switches to a non-optimal server under a short out-

age but never goes back to the best server there-

after.

DJBDNS and Windows Internet Server
The algorithm of djbdns [51] selects one in the

server list randomly, and can be categorized into
the uniform algorithm.

Also, our experiments indicate that the name
server implementation of Microsoft Windows 2000
Internet Server is in this category, although we
could not find any reference to confirm our exper-

iment result.

2.5.3 Evaluation by Root Server Measure-

ment

In this section, we apply different server-
selection algorithms to a data set measured on the

Internet in order to observe their effects to the real

W I D E PR OIJECT

Table 2.2. the median response time (msec) of the root servers from different locations

Measurement Root Servers

Point A B C D E F G H 1 J K L M
US(1) 88 22 520 75 16 24 385 80 203 89 163 38 134
US(2) 79 21 545 67 2 2 374 72 183 79 152 24 123
US(3) 72 135 521 315 178 111 499 316 437 71 236 140 105
US(4) 2 70 430 6 64 76 315 4 116 3 79 75 192
US(5) 4 67 477 1 70 82 275 5 135 2 89 92 189
Us(6) 22 76 449 9 70 82 200 15 131 23 93 94 192
CA* 140 200 570 140 371 181 461 160 220 120 191 200 330
MX* 110 91 101 100 131 100 290 90 200 81 170 100 211
UK 190 179 542 105 170 170 310 114 57 110 72 184 254
FR 116 188 540 108 193 148 397 152 32 112 32 179 251
CH 96 178 514 112 163 158 258 115 58 96 27 199 300
IT* 200 251 630 150 270 220 347 160 100 170 70 220 331
PL* 170 220 660 140 361 200 361 150 90 150 80 230 356
UA* 180 501 620 440 270 250 620 451 350 160 350 500 590
CN(1)* 280 401 930 220 551 400 591 470 371 480 351 151 421
CN(2)* 750 670 1190 720 250 360 910 720 820 710 521 660 540
KR* 310 220 980 291 281 201 671 290 400 291 360 231 220
JP 178 140 614 169 102 100 430 170 270 170 230 137 1
NZ 209 137 648 202 146 135 434 206 307 201 270 150 160
AU* 360 270 800 381 390 250 705 320 480 321 440 250 200
ZA* 348 388 808 308 489 378 498 298 338 308 378 389 508
KE* 329 359 489 250 - 340 480 369 399 350 360 330 490
DZ* 210 280 630 181 250 250 351 180 140 180 100 280 350
BR(1)* 140 161 541 111 161 151 101 101 211 101 181 181 251
BR(2) 140 198 555 149 190 194 327 125 248 141 216 196 303
AR 171 203 613 163 222 220 364 167 270 163 243 203 322
CL* 140 220 571 140 210 180 481 140 250 140 220 181 310

environment. From the response time of a set of
servers, we can derive the expected load distribu-
tion and the expected average response time for
each client with the different algorithms.

Note that the simulations are used merely to
observe the effects of different server selection al-
gorithms in more realistic situations. Because of
the limitations of the data set used for simulation,
the results are not intended to show specific DNS

issues on specific locations or their response time.

Measurement Data

The data set includes the response time of the
DNS root name servers measured from different
locations around the world. Currently, there are
13 root name servers named from ’A’ to ’M’; 6 in
the East Coast, 4 in the West Coast, 2 in Europe,
and 1 in Japan.

The measurements were collected from 27 loca-
tions around the world in May and June, 2002
[166]. It uses an active measurement tool which
sends DNS queries to the root servers and mea-
sures the response time. For locations where set-
ting up the tool is difficult, dialup from Japan is

performed, and the results are compensated for

the delay caused by the dialup access.

The median of the measured response time for
each root server is shown in Table 2.2. The re-
sponse time differs in orders of magnitude since
the root servers are distributed around the world.
The measurement points are shown by their coun-
try codes. The dialup points have ‘x’ after the
country code.

Although the measurement points are classified
by their country codes, the data does not necessar-
ily reflect a typical view from the country because
the measurement points are selected based on ease
of access and have different topology and an access
line type to the Internet. The time of measure-
ment also varies for different locations. Nonethe-
less, it shows a real view of a set of servers observed
from different locations around the world.

We do not use information of response loss in
our simulation since there is no standard or simple
way to reflect the loss rate. However, response-loss
is an important factor to select a server. Even if
the response time is small, the loss rate could be
high for a server. Obviously, such a server is not
good. To take BIND-8 as an example, BIND-8

penalizes srtt by 20% when it does not receive a

93

OOooOooooooOoOooo oo e

el 60 0OO0OO0OUOOOOODOODOOO

Table 2.3. Simulation results of the best-server algorithm

Measurement Load Distribution (%) Response
Point A B C D E F G H I J K L M Time (msec)
US(1) 0 0 0 0 100 0 0 0 0 0 0 0 0 16.0
US(2) 0 0 0 0 100 0 0 0 0 0 0 0 0 2.0
US(3) 0 0 0 0 0 0 0 0 0 100 0 0 0 71.0
US(4) 100 0 0 0 0 0 0 0 0 0 0 0 0 2.0
US(5) 0 0 0 100 0 0 0 0 0 0 0 0 0 1.0
US(6) 0 0 0 100 0 0 0 0 0 0 0 0 0 9.0
CA* 0 0 0 0 0 0 0 0 0 100 0 0 0 120.0
MX* 0 0 0 0 0 0 0 0 0 100 0 0 0 81.0
UK 0 0 0 0 0 0 0 0 0 100 0 0 0 57.0
FR 0 0 0 0 0 0 0 0 100 0 0 0 0 32.0
CH 0 0 0 0 0 0 0 0 0 0 100 0 0 27.0
IT* 0 0 0 0 0 0 0 0 0 0 100 0 0 70.0
PL* 0 0 0 0 0 0 0 0 0 0 100 0 0 80.0
UA* 0 0 0 0 0 0 0 0 0 100 0 0 0 160.0
CN(1)* 0 0 0 0 0 0 0 0 0 0 0 100 0 151.0
CN(2)* 0 0 0 0 100 0 0 0 0 0 0 0 0 250.0
KR* 0 0 0 0 0 100 0 0 0 0 0 0 0 201.0
JP 0 0 0 0 0 0 0 0 0 0 0 0 100 1.0
NZ 0 0 0 0 0 100 0 0 0 0 0 0 0 135.0
AU* 0 0 0 0 0 0 0 0 0 0 0 0 100 200.0
ZA* 0 0 0 0 0 0 0 100 0 0 0 0 0 298.0
KE* 0 0 0 100 0 0 0 0 0 0 0 0 0 250.0
DZ* 0 0 0 0 0 0 0 0 0 0 100 0 0 100.0
BR(1)* 0 0 0 0 0 0 0 100 0 0 0 0 0 101.0
BR(2) 0 0 0 0 0 0 0 100 0 0 0 0 0 125.0
AR 0 0 0 0 0 0 0 0 0 100 0 0 0 163.0
CL* 0 0 0 0 0 0 0 0 0 100 0 0 0 140.0
Table 2.4. Simulation results of the uniform algorithm
Measurement Load Distribution (%) Response
Point A B C D E F G H I J K L M Time (msec)
US(1) 7.7 VOO O A OV G O VG O G 7.7 OO O G 7.7 141.3
US(2) 7.7 OO O A OV G O OO O G 7.7 OO O G 7.7 132.5
US(3) COVAR OV G OV A O R O A O G O O O A O O Y G 4 241.2
US(4) 7.7 7.7 OO O G 7.7 T 7.7 VO O G 7.7 110.2
US(5) 7.7 7.7 OO O G O S O G O Y OV 4 VO O G v 7.7 114.5
US(6) 7.7 OO OV A OV G O 4 OO O G 7.7 OO O G 7.7 112.0
CA* COVAR OV G O A O Y O S O O O O A O Y Y 4 252.6
MX* OV A OV G OV A O Y O A O O O R O A O O O Y G O 4 136.5
UK 7.7 7.7 T 7.7 7.7 7T 7.7 VO O G 7.7 189.0
FR 7.7 7.7 OO O G OO O G OV G O ¢ OV O G v 7.7 188.3
CH 7.7 OO O A OV A O OO O G 7.7 TN 7.7 7.7 174.9
IT* COVAR OV G O A O R O A A O O O A O O Y G O 239.8
PL* 7.7 7.7 7T 7.7 VO O G 7.7 7T 7.7 7.7 243.7
UA* 7.7 7.7 T 7.7 7.7 7T 7.7 7T 7.7 7.7 406.3
CN(1)* 7.7 7.7 OO OV G 7.7 OO O G OO O A OV G O ¢ 432.1
CN(2)* 7.7 7.7 OO O G 7.7 OO O G OO O G 7.7 678.5
KR* OV A OV G O A O R O A O O O O A O O Y G O 4 365.1
JpP 7.7 7.7 T 7.7 7.7 T 7.7 7T 7.7 7.7 208.5
NZ 7.7 7.7 OO O G OO O G 7.7 OV O G v 7.7 246.5
AU* 7.7 OO O G OV G O ¢ OO O G 7.7 7T 7.7 7.7 397.5
ZA* 7.7 OO O G OV G O ¢ OO O G 7.7 OO O G 7.7 418.2
KE* OV AR OV G OV A O G O A O O O O A O A Y G O 4 378.75
DZ* 7.7 7.7 7T 7.7 VO O G 7.7 7T 7.7 7.7 260.2
BR(1)* 7.7 7.7 OO O G OO O A OV G O ¢ OO O G 7.7 184.0
BR(2) 7.7 7.7 OO O G OO O G 7.7 OO O G 7.7 229.4
AR 7.7 O G O G OV A O 4 OO O G 7.7 OO O G 7.7 255.7
CL* A A AN A A A N A N A A 244.9
response.

We also do not consider the effects of caching
in our simulation. Caching does not affect the
load distribution but significantly reduces the per-

ceived response time and the traffic.

94

2.5.4 Simulation Results

The different server selection algorithms are ap-
plied to the measurement data in order to observe
the effects of the algorithms. In addition to the
3 basic algorithms described in the previous sec-

tion, 2 variants of the reciprocal algorithms are

W I D E PR OUJECT

Table 2.5. Simulation results of the reciprocal algorithm (1/d)
Measurement Load Distribution (%) Response
Point A B C D E F G H I J K L M Time (msec)
US(1) 46 184 0.8 5.4 253 168 1.0 5.1 2.0 4.5 2.5 106 3.0 52.5
US(2) 1.1 4.1 0.2 1.3 428 42.8 0.2 1.2 0.5 1.1 0.6 3.6 0.7 11.1
US(3) 16.6 89 23 3.8 6.7 10.8 2.4 3.8 2.7 169 5.1 8.6 114 155.8
US(4) 374 1.1 0.2 125 1.2 1.0 0.2 187 0.6 249 0.9 1.0 0.4 9.7
US(5) 12.3 0.7 0.1 49.2 0.7 0.6 0.2 9.8 0.4 246 0.6 0.5 0.3 6.4
USs(6) 13.1 3.8 06 319 4.1 3.5 1.4 192 22 125 3.1 3.1 1.5 37.4
CA* 11.2 7.8 2.7 11.2 4.2 8.7 3.4 9.8 7.1 13.1 8.2 7.8 4.7 203.7
MX* 83 10.0 9.0 9.1 6.9 9.1 3.1 10.1 4.5 11.2 5.3 9.1 4.3 356.7
UK 5.5 5.8 1.9 9.9 6.1 6.1 3.4 9.1 183 9.5 145 5.7 4.1 135.6
FR 6.8 4.2 15 7.3 4.1 5.3 2.0 5.2 246 7.0 246 4.4 3.1 102.3
CH 8.3 4.5 16 7.1 4.9 5.1 3.1 7.0 13.8 83 29.6 4.0 2.7 104.0
IT* 6.9 5.5 2.2 9.2 5.1 6. 4.0 8.6 13.8 81 19.7 6.3 4.2 179.7
PL* 8.0 6.2 2.1 9.7 3.8 6.8 3.8 9.0 15.1 9.0 17.0 5.9 3.8 176.3
UA¥* 144 52 42 5.9 9.6 104 4.2 5.7 74 162 7.4 5.2 4.4 336.5
CN(1)* 9,8 6.8 3.0 125 5.0 6.9 4.6 5.8 7.4 5.7 7.8 18.2 6.5 356.7
CN(2)* 6.0 6.7 3.8 6.2 18,0 12,5 4.9 6.2 5.5 6.3 8.6 6.8 8.3 584.7
KR* 7.5 10.5 24 7.9 8.2 11.5 34 8.0 5.8 7.9 6.4 10.0 10.5 300.3
JP 0.5 0.7 0.2 0.6 0.9 0.9 0.2 0.5 0.3 0.5 0.4 0.7 93.5 12.2
NZ 74 11.3 24 7.6 106 11.4 3.6 7.5 5.0 7.7 5.7 10.3 9.6 200.5
AU* 7.3 9.8 3.3 6.9 6.8 10.5 3.7 8.2 5.5 8.2 6.0 10.5 13.2 342.7
ZA* 8.6 7.7 3.7 9.7 6.1 7.9 6.0 10.1 8.9 9.7 7.9 7.7 5.9 389.5
KE* 9.3 85 6.2 122 0.0 9.0 6.3 8.3 7.6 8.7 8.5 9.2 6.2 365.7
DZ* 7.8 59 26 9.1 6.6 6.6 4.7 9.1 11.7 9.1 164 5.9 4.7 213.5
BR(1)* 8.3 72 21 104 7.2 7.7 114 114 55 114 6.4 6.4 4.6 213.5
BR(2) 10.8 7.6 2.7 10.1 7.9 7.8 4.6 12.1 6.1 10.7 7.0 7.7 5.0 196.0
AR 10.0 84 2.8 105 7.7 7.8 4.7 103 6.4 105 7.1 8.4 5.3 222.9
CL* 111 70 27 11.1 7.4 8.6 3.2 11.1 6.2 11.1 7.0 8.6 5.0 201.4

Table 2.6. Simulation results of the reciprocal algorithm (1/d?)
Measurement Load Distribution (%) Response
Point A B C D E F G H I J K L M Time (msec)
US(1) 1.4 227 00 1.9 428 19.0 0.1 1.7 0.3 1.4 0.4 7.6 0.6 27.1
US(2) 0.0 0.4 0.0 0.0 495 49.5 0.0 0.0 0.0 0.0 0.0 0.3 0.0 2.3
US(3) 25.7 7.3 05 1.3 4.2 10.8 0.5 1.3 0.7 264 24 6.8 12.1 111.1
US(4) 55.3 0.0 0.0 6.1 0.1 0.0 0.0 13.8 0.0 24.6 0.0 0.0 0.0 3.0
US(5) 4.6 0.0 0.0 739 0.0 0.0 0.0 3.0 0.0 185 0.0 0.0 0.0 1.5
Us(6) 9.6 0.8 0.0 57.1 0.9 0.7 0.1 206 0.3 8.7 0.5 0.5 0.1 16.1
CA* 14.0 6.9 0.8 14.0 20 8.4 1.3 107 57 19.1 7.5 6.9 2.5 175.6
MX* 8.0 11.7 9.5 9.7 5.7 9.7 1.2 120 24 148 34 9.7 2.2 107.0
UK 3.0 3.3 04 9.7 3.7 3.7 1.1 82 328 88 206 3.1 1.7 102.2
FR 3.1 1.2 0.1 3.6 1.1 1.9 0.3 1.8 40.8 3.3 408 1.3 0.7 53.1
CH 4.9 1.4 0.2 3.6 1.7 1.8 0.7 3.4 135 49 622 1.1 0.5 56.7
IT* 4.6 3.0 05 8.3 2.5 3.8 1.5 7.3 186 6.4 379 3.8 1.7 134.5
PL* 6.4 3.8 04 94 1.4 4.6 1.4 8.2 227 82 287 3.5 1.4 135.5
UA* 21.7 2.8 1.8 3.6 9.7 11.3 1.8 3.5 5.7 275 5.7 2.8 2.0 271.8
CN(1)* 10.0 49 09 16.3 2.6 4.9 2.3 3.6 5.7 3.4 6.4 345 4.4 287.1
CN(2)* 3.8 4.8 1.5 42 345 16.6 2.6 4.2 3.2 4.3 7.9 5.0 7.4 479.5
KR* 6.5 129 0.6 7.4 79 154 14 7.4 3.9 7.4 4.8 11.7 129 269.5
JP 0 0 0 0 0 0 0 0 0 0 0 0 100 1.1
NZ 6.2 145 0.7 6.7 128 150 1.4 6.4 2.9 6.8 3.7 12.1 10.7 177.0
AU* 6.2 11.0 1.3 5.5 5.3 129 1.6 7.8 3.5 7.8 4.2 129 20.1 304.8
ZA* 9.2 74 1.7 11.7 4.6 7.8 4.5 125 9.7 11.7 7.8 7.3 4.3 370.0
KE* 9.9 83 4.5 17.2 0.0 9.3 4.7 7.9 6.8 8.8 8.3 9.9 4.5 352.8
DZ* 6.6 3.7 0.7 8.9 4.7 4.7 2.4 9.0 149 9.0 29.2 3.7 2.4 178.2
BR(1)* 7.8 59 0.5 125 5.9 6.7 151 15.1 3.5 15.1 4.7 4.7 2.4 178.2
BR(2) 135 6.8 09 11.9 7.3 7.0 25 17.0 4.3 133 5.7 6.9 2.9 175.8
AR 12.0 85 09 132 7.1 7.2 26 126 4.8 132 5.9 8.5 3.4 204.4
CL* 14.0 5.7 0.8 14.0 6.2 8.5 1.2 14.0 44 140 5.7 8.4 2.9 177.7
DZ* 6.6 3.7 0.7 8.9 4.7 4.7 2.4 9.0 149 9.0 29.2 3.7 2.4 178.2

used; one uses 1/d? instead of 1/d and the other
uses the BIND-8 algorithm. The simulation re-
sults are shown in Table 2.3 through 2.7.

For each algorithm, the expected load distribu-
tion and the expected average response time are
computed from the measured response time of the

root servers.

Regarding the performance, The best-server al-
gorithm is optimal in this simulation. The per-
formance of the uniform algorithm is poor due to
large variations in the response time of the servers.
For a global Internet service, it is unavoidable that
some servers are located on the other side of the

planet, which is an adverse condition for the uni-

95

OOooOooooooOoOooo oo e

el 60 0OO0OO0OUOOOOODOODOOO

Table 2.7. Simulation results of the BIND-8 algorithm

Measurement Load Distribution (%) Response
Point A B C D E F G H 1 J K L M Time (msec)
US(1) 2.2 13.6 0.8 25 551 11.0 09 24 1.3 22 1.4 5.1 1.6 38.9
US(2) 0.8 1.4 04 08 457 457 05 08 06 0.8 0.6 1.3 0.7 11.7
US(3) 27.0 59 1.7 24 4.1 8.3 1.7 2.4 1.9 270 3.1 5.6 9.0 127.9
US(4) 71.3 08 06 39 08 08 05 68 07 11.8 08 0.8 0.6 10.7
US(5) 3.0 07 04 828 06 06 04 24 05 69 06 06 05 8.4
US(6) 5.0 1.6 0.7 69.2 1.7 1.6 1.0 94 1.2 4.7 1.4 1.4 1.0 24.8
CA* 129 6.5 2.1 129 3.1 76 25 96 56 203 69 64 34 187.6
MX* 7.6 11.2 9.0 9.0 5.8 9.0 25 11.2 3.5 148 4.2 9.0 3.3 112.4
UK 3.3 3.5 15 7.0 3.7 3.7 2.1 6.2 41.3 6.5 154 34 2.5 108.4
FR 3.0 20 1.1 3.2 2.0 2.4 1.2 24 38.0 3.1 38.0 21 1.6 67.9
CH 3.3 1.9 1.0 28 21 2.1 1.5 28 6.1 3.3 699 1.8 1.4 62.2
IT* 40 31 15 58 29 36 24 52 11.9 49 487 36 24 136.6
PL* 5.4 3.9 16 7.2 2.4 4.3 2.4 6.5 20.0 6.5 33.7 3.7 2.4 145.9
UA* 19.3 34 2.8 3.8 7.6 8.6 2.7 3.8 5.1 31.6 5.1 3.4 2.9 281.5
CN(1)* 70 43 20 11.1 3.0 43 29 36 47 35 51 446 4.0 283.5
CN(2)* 3.8 42 24 39 444 11.3 3.0 39 34 39 58 42 5.6 465.2
KR* 6.4 122 19 7.1 75 153 26 7.1 4.5 7.1 5.1 10.9 122 285.7
JpP 05 05 04 05 06 06 04 05 04 05 05 05 941 13.4
NZ 6.4 143 19 6.4 120 143 2.7 6.4 3.8 6.4 4.4 114 9.8 189.0
AU* 59 98 25 55 54 114 28 7.1 4.1 7.1 4.6 11.4 223 316.4
ZA* 88 7.2 29 11.3 5.0 7.5 50 12.0 9.2 11.2 7.5 7.2 5.0 378.4
KE* 93 80 5.1 188 0.0 88 5.1 77 6.7 83 80 93 5.0 353.4
DZ* 57 39 19 70 45 45 3.1 70 114 70 370 39 3.1 180.7
BR(1)* 7.2 5.8 1.8 11.7 5.8 6.5 145 145 4.1 145 5.0 5.0 3.4 140.9
BR(2) 126 6.6 2.2 11.0 6.8 6.6 3.4 173 48 126 57 6.6 3.7 184.1
AR 11.5 80 23 126 7.0 70 3.6 121 52 126 6.0 8.0 4.2 213.4
CL* 134 5.8 2.1 134 6.1 7.8 25 134 48 134 5.8 7.8 3.8 189.2

form algorithm.

As for the load distribution, Table 2.3 shows
that B, C and G root servers are not used by the
best-server algorithm. This is due to the fact that
the measurement points are very limited in our
data set, and it is unlikely that these servers are
not used in the real environment even if all the
users use the best-server algorithm. Still, the al-
gorithm is sensitive to the server locations, and
the results indicate difficulties in arranging server
locations.

When the 3 variants of the reciprocal algorithms
are compared, there is a trade-off between perfor-
mance and load distribution. Better load distri-
bution is obtained in exchange for poorer perfor-
mance. As explained in section 2.5.2, the BIND-8
has a bias towards the best-server but still access
far servers more than the other two. The 1/d?
algorithm has a strong bias against far servers.

We believe that the BIND-8 algorithm is fairly
reasonable in terms of both performance and load
distribution. The best-server algorithm in old
BIND-9 is good for performance when the system
environment is stable. However, it is not flexible

in the face of a condition change and the behav-

96

ior is not predictable when uncertainty exists in
the environment. The uniform algorithm in djbdns
or Microsoft server is suitable if the performance
does not matter or if all servers show similar per-
formance to all users.

Currently, BIND-8 has the majority of the in-
stalled base of name servers but the share of old
BIND-9 and Windows Internet Server is increas-
ing. If the best-server algorithm or the unform
algorithm becomes dominant, it could have an im-
pact to the stability of DNS. On the other hand,
it could contribute to the stability of the DNS ser-
vice to improve server selection algorithms in DNS
implementations.

It should be noted that DNS is a unique ser-
vice for its importance as an Internet infrastruc-
ture and for its unparalleled scale. In addition,
the maximum number of authoritative servers for
a zone is currently limited only to 13 to fit a re-
sponse into a single packet with the minimum size.

Among name servers, the root and top level do-
main servers have special significance. The en-
tire system of DNS relies on these servers that

need to serve the whole Internet. The root servers

currently processes about 5,000 queries per sec-

ond [104].

Therefore, our discussion on DNS and the root
servers is not necessarily applied to other services
on the Internet. Still, we believe that understand-
ing the issues is essential for possible future ser-

vices with the same level of scale as DNS.

2.6 Conclusion

We have identified that a server selection mech-
anism plays an important role in server placement,
and evaluated different server selection algorithms
from the operational point of view. In a real envi-
ronment, simple methods such as the best server
selection or the uniform server selection may not
work as expected due to uncertainties of the work-
ing environment.

For large-scale Internet services, the following
properties are needed for a server selection algo-
rithm. (1) An algorithm prefers servers with bet-
ter performance. It is not only for performance
but also allows server placement to control load
distribution. (2) An algorithm sends equal load to
2 servers if their performance is equal. This pre-
vents oscillations between 2 servers. (3) An algo-
rithm adapts to condition changes. The reciprocal
algorithm or its variant satisfies these properties
and is more suitable for Internet services.

Then, we have examined practical issues by
looking into the different server selection algo-
rithms of the existing DNS implementations. The
effects of the different algorithms are shown by
simulation using measurements of the DNS root
servers.

The results indicate that it could contribute to
the stability of the DNS service to improve server
selection algorithms in DNS implementations. As
DNS becomes increasingly important as an infras-
tructure of the Internet, it is time to seriously
study server selection algorithms in DNS imple-

mentations.

W I D E

030 DNSOOOOOOOOO

310000
wIiDEOOOOOOOOOO0OO0O0O0000000d
0000000 DNS(Doooooooo)yooo
gobooooo bNsOoooooooooooo
gooooobooooooooobooOoooooo
goooooobooooobooboboboooo jppbboo
gooooooooobobooooooooooo
gooooooocooooooooon

3.2JP 00000 DNS
DNSOOOIpOOOOOOoOOOoOooobooOOoOoo
0({@O)0o0ooooooooooooooooo
DNSOOOOOOooooooooooooooo
gooooooooooooooboooooooo
ooooooooooooo
oooooooooooooboooojp0oOoOooo
goboooboo11ooobooojpboobobooo
0O ¢p’ 000 (D0O0boooooooooo)od
gbooboooooboboboooobooooboo
gbobodooobodoojpbbOoobooboboooooo
gobooobooboooobooooobooboog jpd
gboooboooobooboobooboobooboobobooobo
jpbbboobobooobooboboooboooboon
gbooboooobobooboooobooooboo
gboobooboobooooooobo1oo00oo
wibEOoobooooooooooooooobod
gbooboobooooobooobooooo

3300000o0oon
JpOoO00ooooooobNsOOoOoOOoooooo
gboobooboooo
e 00000 OOOCOODOOODOOO
eI DNSOUOOOODOOOOOO
e 00000 DOOOOOOLOOODOODOO
gobooboobooo
ooooobNsSOOOOO 101000000
gbooboooooboboboooobooooboo
gbooboooooboboboooobooooboo

97

PR OIJECT

OOooOooooooOoOooo oo e

el 60 0OO0OO0OUOOOOODOODOOO

JP Domain
Domain Namer Server

0 3.1.

cooooooooooOoooooon
ooooooobooooooooobooooooo
coooooooooOooooooobooooooo
ooooooooooooooooobooooooon
oooooooooobooo

3400000
o0oo0oooOoooooooooOo (ooo
O00000)00000oo0ooo0oooooO DNS
ooooooooo pcOb0OO0OOOOO0OOOO
oobodgs3i1ooobooooao
gooooooobopcOOoboOoOOOOoOoOoOO
bobodooboboobooboobobooboobooog
oooooowebOOOOOOOODOOOODODODO
uoboooooboooboo

3500000

35100000000
DNSOOOOooooooooooooono 3.20
boboooboobooboobobooboobooobog
boboooboobooboobobooboobooobog
uoboooooboooboooaoo

98

Port Copy
(Port Mirror)

Monitoring PC

oooooooo

2.0H

1.8 M

1.6 M

I
I
1.4 1
I
1am | [l

= el

e T T

ey

Bandwidth (bps)

0.4 m

ozm

Mar Apr May Jun Jul Aug Sep OCt | Moy Dec Jan
Copyright 2002 (C) WIDE Project
@ Total

0 3.2. DNSOOOOOOOOOO (OO bps)

uobodobooboobooooboobooboooo
gbobooooooboboboobosboooo
gbooboooooboboboooobooooboo
gbooboooooboboboooobooooboo
gbooboooooboboboooobooooboo

ooobooboooooooooooJephOoOoonoO
gboobooooobobooboooobooooboo
gbooboobooooooboooboobooboobo

352000000
O33000oooobNsOOoOoOobDDbDObObOO
gbooobooooboooooboooboooboobo
gobooobooooboooobooobodooo
l11o0gooooobooooobooobooobooo

cooooooooooboobowbooooboooo
cooooooooboooooooooboboooooo
DNSOOOOOOOoooooooooooooboo
ngooooooooooooooboobooboooooo
ooooooooon

DNS Query and Response (UDP Only)
100 k

a0 k

80 k

W I D E

DNS {uery (EDNSO)

transaction/sec
@
a
a

Week 43 week 51 week 01 Week 03

copyright 2002 (C) WIDE Project
D Query M Query (EDNSD)

70 k.

60 k.

50 k.

20 k

transaction/sec

30 k

20 k

10 k

o
Mar Apr May Jun Jul Aug Sep Gct Moy Dec Jan

copyright 2002 (2) WIDE Project
M query M Response

0 3.3. DNSOOOOOOOOOO

3.53IPv6 00000

Ipv6e 0 O0OCOOOODOOOOOOOOOOOO0
cooooooooooooooooboboooooo
cooooooo ipva00bCOOOOOOCOOOO
oooooooobooooooorrvvobDOoDODO
cooooooooooooooooboboooooo
obooooooboobooooboooorpveobbooDO
oooooooooobNsOoOoo IpveOODOO
O0oo0oOoooIpPva0D0OO0O 1/4000 1/600
cooooooooo

gboboboooooobooooooboooo 1pve
oobooooooboooooooooboorIrpvenO
cooooooooboooooooooboboooooo
ooo

3.5.4 EDNSO
EDNSoO MO0 DNSOOOOOoooooubp

ooooooosi2oooooooooooooo
oooobocoooobobobooOoodo bNsOOoOooo
ISCBINDOOOOOO9O0OCOCOCOOO EDSNO O
ooooooooooooooooobooo
oooooo0 QueryOO EDSNOOOOODOO
cooooooboooooboos340bbooooon
oo s30bb400 EDSNOOOOOOOOOOO
oo Ipv6eO000000O0O0O0O0O0OOOOOOOO

0 3.4. DNSOOOOOOOO (EDSNO)

3600
gobooooobooboooobooooooo
gboobooooooboJpOoboboooooboobooOoo
gbJpOoooboobOooooooooboooo
gbooboooooboobooooobooooboo
goooooooooooobobobobobooooooo
gbooboooooboobooooobooooboo
gbooboooobooooooo

3700000
gboboobobboboogoooboboooooobo
gbooobobooboooboobooooboobobooobo
gbooboooooboobooooooooboo
goboboobooooooobooooooboooboo
gbooobooobooboobobd e«TLDOOOOOO
gbooooo
gobooooobooboooobooooboooo
gbooboooooboobooooobooooboo
gbooboooooboobooooobooooboo
000 Query 0 Update 00O O0OO0OO0DOOOOO
goooooboooooooooboooooooon
gooooooocooooooo

99

PR OIJECT

OOooOooooooOoOooo oo e

