U XU

Explicit Multicast

W I D E

010 O
Explicit Multicast

010 0000

0000000000 (XCAST: Explicit Mulci-
tast) 0 00 OO ISM (Internet Standard Multicast)
gooooooboooobooobooboobooog
gooooooboooobooobooboobooog

cooocooooobooooooooooooooo

XCASTO ISMUOQOOOOOoOoooooooooo
oooooopooocoOoOoooooooooooo
oooooopooocoOoOoooooooooooo
oooooopooocoOoOoooooooooooo
oooooopooocoOoOoooooooooooo
ooooooooo

WIDE project U0 1999 000 v6 WG O OO
000 XCASTOOOOOOoOooDoOOz2o0000 110
oowGoOUOooooooooooDo 200000
O XCASTwGoOooooooooooooo

e MDOG6 (Multiple Destination Option) O O O
ooo

eJIUIODODDOOOOODODO

e Explicit Multicast Basic Specification

0 20 MDO6(Multiple Destination Option) [0 [
oood

MDOG6 (Multiple Destination Option) O 0O 0O
UoboOd WIDE project DOOOOOOOOOO
vboboooboooboobooobooboobooog
000001999000 Internet-Draft UO OO OO
boboooboobooboobobooboobooobog
OO0O0OO0OKAMEIPv6ODOOOOOOOOOODOO
6Bone O UOOOOOOOOOOO

oooooobooo XecaAstoooooooooo
ooooooo

e [1[J IPv6 protocol stack 0 0 OO0 O OO0
oooo
ecorenetwork U0 OO OOODOOOODOOOO
gooooooocoooooo

ecore netowork O OO OOOOOOOODOO
goooopooooooooooooooo

2100

MDO6 OO OOODOO FreeBSD 2.2.8 00O
KAME IPv6 stack 0000000 O00O0OOOOO
O kernel stack 1.6K line, library 2.7K line 0 0 0O
U0 kernel DO OODOO ISMOOOODOODOOO
gooopooooooooXxcAsTooooooo
gooooooooOooooooooOoooooo
gdoooooooOooOoooooooooooo
000ooo0dooo KAMEOOOOOOODO
gdodoopooooouoOoooooooooooo
000000 FreeBSDOODOODOODOOOODOO
O0O000DOFreeBSD 3.5,4200000000000

ooodoooooooOoouooooooogoo
goooooooooooooboboobb MDoe O
gooooo

evic: UOOOOOOOOODOOODOO

erat: O UOOOOOOOOODOOO
ebzflag: OO OOOOOOOOOOODOOOO
gooo

2200
Ubobodbb eBoneODOOOOOOOOOO

221 INET2000 0000000000

20000 7O0000O0O0O0COOO0 INET20000
gooooooooooooooobooboobooooo
gbooboooobobooboooobooboooboo

179

PR OIJECT

gseonny oIdxy Do e

e [1 100 Explicit Multicast

ooooooooocoOooooooooooooo
gooooooooooouooooooo

goooooooDDb WIDE 6Boned 0o
gooooooooobo Mbosoooooogogd
oo0O0ooooOoOooooOooooboooooooo
000 WIDE 6Bone D O OOODOOOOO MDO6
oooooooOooOoOoOoOoOoOooOoOoOoMDOS6 O
IPv6 option header OO0 00O O0OOOOOODO0O
000000000000 daisychain0OO0QO00OO
ooooooooocoOoOoooooooooooo
oo0ooooO0oooOoO0obooooooooooodg
ooooooooocoOoOoooooooooooo
ooooo

INET2000 demo
IPv6 showcase (18-21 July 00)

"7 TWIDE 6Bone

All Rights Reserved, Copyr&lf’{ﬂ) FUJITSU LABORATORIES 2000

222XCASTUOOOOOOOOOOO

XCASTOOOOOOOoOoOooooooooo

XCAST wGUOOoooooooooooooo
20000 100000 1000000O0O0OOCOOO
oooooooooooooooooobooowa
ooboooooooooboboo XecAstooooo
boboooboobooboobobooboobooog
uoboooobobooboooda
gooooooboobbbooodoooooooooon
boboooboobooboobobooboobooog
boboooboobooboobobooboobooog
boboooboobooboobobooboobooog
boboooboobooboobobooboobooog
boboooboobooboobobooboobooog
goboooooboooobobooboobooobog

180

030 Ooooooooooobod

IsMOOoOooooooooooooooooo
gooooooooooooooboooooooo
gooooooooooooooboooooooo
gooooooooooooooboooooooo
XCASTOOOOOOooOoOooooooooooboo
goooooboooooooooboooooooo
O0o0OO0O0O0O00000XCAST WG O 200000
goooooboooooooooboooooooo
oooooooocooooooo

cooooooooooooooobooooo
od

e000OOOOOOOOOO
gooooooocoooooooboooooo
gooooooocoooooooo
el00O0OOOOOOOOO
gboboobooboooboooooboooboo
gboboobooboooboooooboooboo
gboboobooboooboooooboooboo
gboboobooboooboooooboooboo
gboboobooboooboooooboooboo
gboooboooobboobooobooboog
e 00IO0OOUDOOODOOOOO
gboboobooboooboooooboooboo
gboooboooobboobooobooboog

XCASTOOOOOooooooooboobooooo
goboobooooooooooboooooboooo
gboobooooboboboooobooooboo
gboobooboooooooooo 3soooo
gboobooooobobooboooobooooboo
gbooboooobooooooo

e 0O0OOOOOODO
gobobooooooooboboboooooooobo
gboboobooboooboooooboooboo
gboboobooboooboooooboooboo

e 0O0OOOOOODO

gooooboooooooooobooooooo
gooooboooooooooobooooooo
gooooboooooooooobooooooo
gooooboooooooooobooooooo
gooooboooooooooobooooooo
gooooboooooooooobooooooo
goooooocoooooo irpOoO0OO0OO
gooooboooooooooobooooooo
goocoooooooobocobooooooooon
gooooboooooooooobooooooo
gooooboooooooooobooooooo
gooooIpooocbooooooooboo
eI OOODOO
goocoooooooobocobooooooooon
gooooboooooooooobooooooo
goooooooooocoooIpOoOOOO
gbboooooooMbosbbbOOOOODO
oooo

eI0O
gooooboooooooooobooooooo
gooooboooooooooobooooooo
gooooooooooooooboooooo
eI0OO
goooooooooooooobooooooon
ooooooooooboooooro0o0o0oon
goooobooooooooooobooooooon
goooooooooooooobooooooon
goooooooooooooobooooooon
oooo

3100
gobooboobooooooobooooboo

oooooooooogd
FreeBSD 3.5 Release

IPv6e 0000

KAME?! 20000625 Stable
MDOe OO OO
mdo6-kit-20001017-platform 2
gooooo

http://www.kame.net/
http://www.alcatel.com/xcast/
http://www.postgresql.org/

W I D E

PostgreSQL? 7.0.2 20000921 patched
oood

coo

ooooo

gee 2.7.2.3

cooonoo

glib 1.2.80 gtk+ 1.2.80 libpq

Ooopoo0O0O00d vie-2.8ucl-1.1.30rat-4.2.4 00
gooooooooOoUoooooooOoooooo
gooooooooOoUoooooooOoooooo
goooopooocoooooooo

ooooooooooOoOooooooooooo
gooooooooOoUoooooooOoooooo
oooooooooooopoobooooooo vie,
rat UO0O0O00000OOOOOCOOOOOOO00OO
goooooooooooooooooooooo
goooooooooooooooooooooo
oog

0 40 XCAST basic specification

1999 0 0 O MDO6 O Internet Draft 00000
0000000000 Alcatel 00O CLM (Connec-
tionless Multicast)0IBM O O SGM (Small Group
Multicast) 0 D0 000030000000000
oooooooooooboooooooo2oeo0 0
12 00 basic XCAST specification U O O Internet
Draft 00000 Draft 0000000000C0O0O

e00J0I0O0DODODOUOOUUODDDODOOO
ooooo

e IPv4, IPv6 0O IDODOODOOODOODOOO

e 0000 bitmap OO O OO
eO00OOOO

e DSCPUIODO

e lJ0DO0OOODOISMUIDDDOOODDODOO
Channel 1D

181

PR OIJECT

gseonny oIdxy Do e

e [1 100 Explicit Multicast

e core network O OO 0OOOOO End-to-End
gooooboooooooboooo

00 Internet Draft 000 O0000O00000OO
coooooooooooooooobooo

o IBM(IPv4)

e Alcatel(IPv4)

o ETRI(IPv6)

e WIDE Project0 000000 (IPv4)

000 Internet Draft 0 00000000

4.1 Introduction
Multicast, the ability to efficiently send data to

a group of destinations, is becoming increasingly
important for applications such as IP telephony
and video-conferencing.

There seem to be two kinds of multicast that are
important: a broadcast-like multicast that sends
data to a very large number of destinations and a
“narrowcast” multicast that sends data to a fairly
small group. An example of the first is the audio &
video multicasting of a working group session from
an IETF meeting to sites all around the world. An
example of the second is a videoconference involv-
ing 3 or 4 parties. For reasons described below,
it seems prudent to use different mechanisms for
these two cases. As the reliable multicast trans-
port group has stated: “it is believed that a ‘one
size fits all’ protocol will be unable to meet the
requirements of all applications.”

Multicast can be used to minimize bandwidth
consumption. Explicit Multicast (Xcast) also can
be used to minimize bandwidth consumption for
“small groups.” But it has an additional advan-
tage as well. Xcast eliminates the per session sig-
naling and per session state information of tra-
ditional multicast schemes and this allows Xcast
to support very large numbers of multicast ses-
sions. And this scalability is important since it
enables important classes of applications such as
IP telephony, videoconferencing, collaborative ap-

plications, networked games etc. where the num-

182

ber of simultaneous multicast sessions can be very
large and the number of members in a group is

small.

4.2 Overview Xcast

In this document following terminology will be

used:

e Session: in Xcast the term ’multicast ses-
sion’ will be used instead of 'multicast group’
to avoid the strong association of multicast
group with multicast group addresses in tra-
ditional IP multicast.

e Channel: in a session with multiple senders

(e.g. a video conference), the flow sourced
by one sender will be called a channel. So a

session can contain one or more channels.

In the Host Group Model the packet carries a
multicast address as a logical identifier of all group
members. In Xcast, the source node keeps track
of the destinations in the multicast channel that
it wants to send packets to.

The source encodes the list of destinations in
the Xcast header, and then sends the packet to
a router. Each router along the way parses the
header, partitions the destinations based on each
destination’s next hop, and forwards a packet with
an appropriate Xcast header to each of the next
hops.

When there is only one destination left, the
Xcast packet could turn into a normal unicast
packet, which can be unicasted along the remain-
der of the route. This is called X2U (Xcast to
Unicast).

For example, suppose that A is trying to get
packets distributed to B, C & D in Figure 1 below:

R4—B
A — R1—R2—R3 R8—C
R5—R6 —R7
R9—D
Figure 1

This is accomplished as follows: A sends an
Xcast packet with the list of destinations in its
Xcast header to the first router, R1.

Since the Xcast header will be slightly different
for IPv4 and IPv6 we won’t reveal any details on
the encoding of the Xcast header in this section
(see section 9). So, ignoring the details, the packet
that A sends to R1 looks like this:

[src = A — dest = B C D — payload |

When R1 receives this packet, it needs to prop-
erly process the Xcast header. The processing that
a router does on receiving one of these Xcast pack-

ets is as follows:

e Perform a route table lookup to determine the
next hop for each of the destinations listed in
the packet.

e Partition the set of destinations based on their

next hops.

Replicate the packet so that there’s one copy
of the packet for each of the next hops found

in the previous steps.

Modify the list of destinations in each of the
copies so that the list in the copy for a given
next hop includes just the destinations that
ought to be routed through that next hop.

e Send the modified copies of the packet on to

the next hops.

e Optimization: If there is only one destination
for a particular next hop, send the packet as
a standard unicast packet to the destination
(X2U), as there is no multicast gain by for-

matting it as an Xcast packet.

So, in the example above, R1 will send a single
packet on to R2 with a destination list of (B C D)
and R2 will send a single packet to R3 with the
same destination list.

When R3 receives the packet, it will, by the al-
gorithm above, send one copy of the packet to des-
tination R5 with an Xcast list of (C D) and one
ordinary unicast packet addressed to (B). R4 will
receive a standard unicast packet and forward it

on to (B). R5 will forward the Xcast packet that

W I D E

it receives on to R6 which will pass it on to R7.
When the packet reaches R7, R7 will transmit or-
dinary unicast packets addressed to (C) and (D)
respectively. R8 and R9 will receive standard uni-
cast packets, and forward the packets on to (C)
and (D) respectively.

It’s important that the Xcast packet that is sent
to a given next hop only includes destinations for
which that next hop is the next hop listed in the
route table. If the list of destinations in the packet
sent to R4, for example, had also included C and
D, R4 would send duplicate packets.

Note that when routing topology changes, the
routing for an Xcast channel will automatically
adapt to the new topology since the path an Xcast
packet takes to a given destination always follows

the ordinary, unicast routing for that destination.

4.3 The cost of the traditional multicast

schemes

Traditional multicast schemes [37, 42, 36] were
designed to handle very large multicast groups.
These work well if one is trying to distribute
broadcast-like channels all around the world but
they have scalability problems when there is a very
large number of groups.

The characteristics of the traditional IP multi-
cast model are determined by its two components:
the Host Group model [37] and a Multicast Rout-
ing Protocol. Both components add to the differ-
ence in nature between unicast and multicast.

In the Host Group model, a group of hosts is
identified by a multicast group address, which is
used both for subscriptions and forwarding. This

model has two main costs:

e Multicast address allocation: The creator of
a multicast group must allocate a multicast
address which is unique in its scope (scope
will often be global). This issue is being ad-
dressed by the Malloc working group, which
is proposing a set of Multicast Address Al-
location Servers (MAAS) and three protocols
(MASC, AAP, MADCAP).

183

PR OIJECT

gseonny oIdxy Do e

e [1 100 Explicit Multicast

e Destination unawareness: When a multicast
packet arrives in a router, the router can de-
termine the next hops for the packet, but
knows nothing about the ultimate destina-
tions of the packet, nor about how many times
the packet will be duplicated later on in the
network. This complicates the security, ac-

counting and policy functions.

In addition to the Host Group model, a rout-
ing algorithm is required to maintain the mem-
ber state and the delivery tree. This can be
done using a (truncated) broadcast algorithm or
a multicast algorithm. Since the former consumes
too much bandwidth by unnecessarily forwarding
packets to some routers, only the multicast algo-

rithms are considered. These multicast routing

protocols have the following costs:

e Connection state: The multicast routing pro-
tocols exchange messages that create state
for each (source, multicast group) in all
the routers that are part of the point-to-
multipoint tree. This can be viewed as sig-
naling that creates multicast connection state,
possibly yielding huge multicast forwarding
tables. Some of these schemes even dissem-
inate this multicast routing information to
places where it isn’t necessarily needed. Other
schemes try to limit the amount of multicast
routing information that needs to be dissem-
inated, processed and stored throughout the
network. These schemes use a “shared distri-
bution tree” that is shared by all the members
of a multicast group and they try to limit the
distribution of multicast routing information
to just those nodes that “really need it.” But
these schemes also have problems. Because
of the shared tree, they use less than optimal
paths in routing packets to their destinations
and they tend to concentrate traffic in small
portions of a network.

e Source advertisement mechanism: Multicast

routing protocols provide a mechanism by

184

which members get ‘connected’ to the sources
for a certain group without knowing the
sources themselves. In sparse-mode protocols,
this is achieved by having a core node, which
needs to be advertised in the complete do-
main. On the other hand, in dense-mode pro-
tocols this is achieved by a “flood and prune”
mechanism. Both approaches raise additional

scalability issues.

Interdomain routing: Multicast routing pro-
tocols that rely on a core node additionally
need an interdomain multicast routing proto-

col.

The cost of multicast address allocation, desti-
nation unawareness and the above scalability is-
sues lead to a search for other multicast schemes.
Source-Specific Multicast (SSM) [67] addresses
some of the above drawbacks: in SSM a host joins
a specific source, thus the channel is identified
by the couple (source address, multicast address).
This approach avoids multicast address allocation
as well as the need for an interdomain routing pro-
tocol. The source advertisement is taken out of
the multicast routing protocol and is moved to an
out-of-band mechanism (e.g. web page).

Note that SSM still creates state and signaling
per multicast channel in each on-tree node. Fig-
ure 2 depicts the above costs as a function of the
number of members in the session or channel. All
the costs have a hyperbolic behavior.

cost of the traditional

multicast model
per member

costly [OK

g

rd
number of members
alternative=Xcast
Figure 2

The traditional multicast model becomes expen-

sive for its members if the groups are small. Small

groups are typical for conferencing, gaming and
collaborative applications. These applications are
well- served by Xcast.

In practice, traditional multicast routing proto-
cols impose limitations on the number of groups
and the size of the network in which they are de-

ployed. For Xcast these limitations do not exist.

4.4 Motivation

Xcast takes advantage of one of the fundamental
tenets of the Internet “philosophy,” namely that
one should move complexity to the edges of the
network and keep the middle of the network sim-
ple. This is the principle that guided the design of
IP and TCP and it’s the principle that has made
the incredible growth of the Internet possible. For
example, one reason that the Internet has been
able to scale so well is that the routers in the core
of the network deal with large CIDR blocks as op-
posed to individual hosts or individual “connec-
tions.” The routers in the core don’t need to keep
track of the individual TCP connections that are
passing through them. Similarly, the IETF’s diff-
serv effort is based on the idea that the routers
shouldn’t have to keep track of a large number
of individual RSVP flows that might be passing
through them. It’s the authors’ belief that the
routers in the core shouldn’t have to keep track
of a large number of individual multicast flows ei-
ther.

Compared to traditional multicast, Xcast has
the following advantages:

1) Routers do not have to maintain state per
session (or per channel). This makes Xcast very
scalable in terms of the number of sessions that
can be supported since the nodes in the network
do not need to disseminate or store any multicast
routing information for these sessions.

2) No multicast address allocation required.

3) No need for multicast routing protocols (nei-
ther intra- nor interdomain). Xcast packets always
take the “right” path as determined by the ordi-
nary unicast routing protocols.

4) No core node, so no single point of fail-

W I D E

ure. Unlike the shared tree schemes, Xcast mini-
mizes network latency and maximizes network “ef-
ficiency.”

5) No symmetrical paths required. Traditional
multicast routing protocols create non-shortest-
path trees if the paths are not symmetrical (sym-
metrical = the shortest path from A to B is the
same as the shortest path from B to A). It is ex-
pected that more and more paths in the Inter-
net will be asymmetrical due to traffic engineering
and more policy routing, thus multicast will cause
more and more deviation from optimal network
usage.

6) Automatic reaction to unicast reroutes.
Xcast will react immediately to unicast route
changes. In traditional multicast routing proto-
cols a communication between the unicast and the
multicast routing protocol needs to be established.
In many implementations this is on a polling ba-
sis, yielding a slower reaction to e.g. link failures.
It may also take some time for traditional multi-
cast routing protocols to fix things up if there is a
large number of groups that need to be fixed.

7) Easy security and accounting. In contrast
with the Host Group Model, in Xcast all the
sources know the members of the multicast chan-
nel, which gives the sources the means to e.g. re-
ject certain members or count the traffic going to
certain members quite easily. Not only a source,
but also a border router is able to determine how
many times a packet will be duplicated in its do-
main. It also becomes easier to restrict the number
of senders or the bandwidth per sender.

8) Heterogeneous receivers. Besides the list of
destinations, the packet could (optionally) also
contain a list of DiffServ CodePoints (DSCPs).
While traditional multicast protocols have to cre-
ate separate groups for each service class, Xcast in-
corporates the possibility of having receivers with
different service requirements within one multicast
channel.

9) Xcast packets can make use of traffic engi-
neered unicast paths.

10) Simpler implementation of reliable protocols

185

PR OIJECT

gseonny oIdxy Do e

e [1 100 Explicit Multicast

on top of Xcast, because Xcast can easily address
a subset of the original list of destinations to do a
retransmission.

11) Flexibility (see section 6).

12) Easier transition mechanisms (see section
11).

It should be noted that Xcast has a number of
disadvantages as well:

1) Overhead. Each packet contains all remain-
ing destinations. But, the total amount of data
is still much less than for unicast (payload is only
sent once). A method to compress the list of des-
tination addresses might be useful.

2) More complex header processing. Each desti-
nation in the packet needs a routing table lookup.
So an Xcast packet with n destinations requires
the same number of routing table lookups as n
unicast headers. Additionally, a different header
has to be constructed per next hop. Remark how-
ever that:

a) Since Xcast will typically be used for super-
sparse sessions, there will be a limited number
of branching points, compared to non-branching
points. Only in a branching point new headers
need to be constructed.

b) The header construction can be reduced to a
very simple operation: overwriting a bitmap.

¢) Among the non-branching points, a lot of
them will contain only one destination. In these
cases normal unicast forwarding can be applied.

d) By using a hierarchical encoding of the list
of destinations in combination with the aggrega-
tion in the forwarding tables the forwarding can
be accelerated [124].

e) When the packet enters a region of the net-
work where link bandwidth is not an issue any-
more, the packet can be transformed by a Prema-
ture X2U. Premature X2U (see section 11.2) oc-
curs when a router decides to transform the Xcast
packet for one or more destinations into unicast
packets. This avoids more complex processing
downstream.

f) Other mechanisms to reduce the processing

have been described in [77] (tractable list) and

186

[124](caching), but are not (yet) part of this basic
Xcast specification.
3) Xcast only works with a limited number of

receivers.

4.5 Application

While Xcast is not suitable for multicast ses-
sions with a large number of members, such as
the broadcast of an IETF meeting, it does provide
an important complement to existing multicast
schemes in that it can support very large numbers
of small sessions. So Xcast covers a very important
class of applications: conferencing, multi-player
games, collaborative working, etc. The number
of these sessions will become huge.

Some may argue that it is not worthwhile to
use multicast for sessions with a limited num-
ber of members, and use unicast instead. But in
some cases limited bandwidth in the “last mile”
makes it important to have some form of multi-
cast as the following example illustrates. Assume
n residential users that set up a video conference.
Typically access technologies are asymmetric (e.g.
xDSL, GPRS or cable modem). So, a host with
xDSL has no problem receiving n-1 basic 100kb/s
video channels, but the host is not able to send its
own video data n-1 times at this rate. Because of
the limited and often asymmetric access capacity,
some type of multicast is mandatory.

A simple but important application of Xcast lies
in bridging the access link. The host sends the
Xcast packet with the list of unicast addresses and
the first router performs a Premature X2U.

Since Xcast is not suitable for large groups,
Xcast will not replace the traditional multi-
cast model, but it does offer an alternative for
multipoint-to-multipoint communications when

there can be very large numbers of small sessions.

4.6 Flexibility Xcast

The main goal of multicast is to avoid duplicate
information flowing over the same link. By us-
ing traditional multicast instead of unicast, band-

width consumption decreases while the state and

state&signaling

per session
in router

B
pre ing
C per packet

in router
A
link bandwidth
Figure 3

signaling per session increases. Apart from these
two dimensions, we identify a third one: the
header processing per packet. This three dimen-
sional space is depicted in Figure 3.

One method of delivering identical information
from a source to n destinations is to unicast the
information n times (A in Figure 3). A second
method, the traditional multicast model (B in Fig-
ure 3) sends the information only once to a multi-
cast address. In Xcast the information is sent only
once, but the packet contains a list of destinations
(point C).

The three points A, B and C define a plane
(indicated with dots in Figure 3): a plane of

All three approaches
The link bandwidth is

conservation of misery.
have disadvantages.

a scarce resource, especially in access net-
works. State&signaling/session encounters limita-
tions when the number of sessions becomes large
and an increased processing/packet is cumber-
some for high link speeds.

A nice property of Xcast is that a router can
make its own tradeoffs. Since all information is
carried in the packet, Xcast allows the router to
move in this plane of conservation of misery (Fig-
ure 3), according to its own needs, which could be,
for example, its location in the network. Routers
could build caches to move from C to B, while

Premature X2U allows a shift from C to A.

4.7 Control plane

Unlike traditional multicast schemes, Xcast
does not specify a “control plane.” There is no

IGMP, and as mentioned above, there are no in-

W I D E

tradomain or interdomain multicast routing proto-
cols. With Xcast, the means by which multicast
sessions are defined is an application level issue
and applications are not confined to the model in
which hosts use IGMP to join a multicast session.

For example:

e some applications might want to use an
IGMP-like receiver-join model.

e other applications might want to use a model
in which a user places a call to the party or
parties that he or she wants to talk to (simi-
lar to the way that one puts together a con-
ference call today using the button’s on one’s
telephone).

e one might define a session based on the cells
that are close to a moving device in order to
provide for a “smooth handoff” between cells
when the moving device crosses cell bound-
aries.

e in some applications the members of the ses-
sion might be specified as arguments on a
command line.

e one might define an application that uses GPS
to send video from a bank robbery to the 3
police cars that are closest to the bank being

robbed.

Thus, the application developer is not limited to
the receiver-initiated joins of the IGMP model.
There will be multiple ways in which an Xcast
sender determines the addresses of the members
of the channel.

For the purpose of establishing voice and multi-
media conferences over IP networks, several con-
trol planes have already been defined, including

SIP and H.323.

4.7.1 SIP

In SIP, a host takes the initiative to set up a ses-
sion. With the assistance of a SIP server a session
is created. The session state is kept in the hosts.
Data delivery can be achieved by several mecha-

nisms: meshed unicast, bridged or multicast. Note

187

PR OIJECT

gseonny oIdxy Do e

e [1 100 Explicit Multicast

that for the establishment of multicast delivery, a
multicast protocol and communication with Mul-
ticast Address Allocation Servers (MAAS) are still
required.

In “meshed unicast” or “multi-unicasting,” the
application keeps track of the participants’ unicast
addresses and sends a unicast to each of those ad-
dresses. For reasons described in section 3, multi-
unicasting rather than multicast is the prevalent
solution in use today. It’s a simple matter to re-
place multi-unicast code with Xcast code. All that
the developer has to do is replace a loop that sends
a unicast to each of the participants by a single
“xcast_send” that sends the data to the partici-
pants. Thus it’s easy to incorporate Xcast into
real conferencing applications.

Both Xcast and SIP address super-sparse mul-
ticast sessions. It turns out that Xcast (a very
flexible data plane mechanism) can be easily inte-
grated with SIP (a very flexible control plane pro-
tocol). When an application decides to use Xcast
forwarding it does not affect its interface to the
SIP agent: it can use the same SIP messages as it

would for multi-unicasting.

4.7.2 Receiver Initiated Join model

In the previous section, it was discussed how
to establish an Xcast session among well known
participants of a multi-party conference. In some
cases, it is useful for participants to be able to join
a session without being invited. For example, the
chairman of a video chat may want to leave the
door of their meeting open for newcomers. The
receiver-initiated join model can be implemented,
if desired, by introducing a server that hosts can

talk to to join a conference.

4.8 Optional information

4.8.1 List of ports

Although an extension to SIP could be arranged
such that all participants in a session use the same
transport (UDP) port number, in the general case
it is possible for each participant to listen on a dif-

ferent port number. To cover this case, the Xcast

188

packet optionally contains a list of port numbers.

If the list of port numbers is present, the desti-
nation port number in the transport layer header
will be set to zero. On X2U the destination port
number in the transport layer header will be set to
the port number corresponding to the destination

of the unicast packet.

4.8.2 List of DSCPs
The Xcast packet could (optionally) also con-

tain a list of DiffServ CodePoints (DSCPs). While
traditional multicast protocols have to create sep-
arate groups for each service class, Xcast incorpo-
rates the possibility of having receivers with dif-
ferent service requirements within one channel.

The DSCP in the IP header will be set to the
most demanding DSCP of the list of DSCPs. This
DSCP in the IP header will determine e.g. the
scheduler to use.

If two destinations, with the same next-hop,
have ‘non-mergable’ DSCPs, two Xcast packets
will be created. ‘Non-mergable’ meaning that one
can not say that one is more or less stringent than

the other.

4.8.3 Channel Identifier

Optionally a sender can decide to add an extra
number in the Xcast header: the Channel Identi-
fier. If the source does not want to use this option
it MUST set the Channel Identifier to zero. If the
Channel Identifier is non-zero the pair (Source Ad-
dress, Channel Identifier) MUST uniquely identify
the channel (note that this is similar to the (S, G)
pair in SSM). This document does not assign any
other semantics to the Channel Identifier besides
the one above.

This Channel Identifier could be useful for sev-
eral purposes:

1) An identifier of the channel in error, flow con-
trol, etc. messages

2) A key to a caching table [124].

3) It gives an extra de-multiplexing possibility
(beside the port-number)

4) ...

4.9 Encoding

4.9.1 General
The source address field of the IP header con-

tains the address of the Xcast sender. The desti-
nation address field carries the All-Xcast- Routers
address (to be assigned link-local multicast ad-
dress), this is to have a fixed value. Every Xcast
router joins this multicast group. The reasons for
putting a fixed number in the destination field are:

1) The destination address field is part of the IP
pseudo header and the latter is covered by trans-
port layer checksums (e.g. UDP checksum). So
the fixed value avoids a (delta) recalculation of
the checksum.

2) The IPsec AH covers the IP header desti-
nation address hence preventing any modification
to that field. Also, both AH and ESP payloads
cover the whole UDP packet (via authentication
and/or encryption). The UDP checksum cannot
therefore be updated if the IP header destination
address were to change.

3) In Xcast for IPv6 the Routing Extension shall
be used, this header extension is only checked by
a router if the packet is destined to this router.
This is achieved by making all Xcast routers part
of the All_Xcast_Routers group.

4) Normally Xcast packets are only visible to
Xcast routers. However, if a non-Xcast router re-
ceives an Xcast packet by accident (or by crimi-
nal intent), it will not send ICMP errors since the
Xcast packet carries a multicast address in the des-
tination address field.

Note that some benefits only hold when the mul-
ticast address stays in the destination field until
it reaches the end-node (thus not combinable with

X2U).

49.21Pv4

[3] proposed (for a slightly different purpose)
to carry multiple destinations in the IPv4 option.
But because of the limited flexibility (limited size
of the header), Xcast will follow another approach.

The list of destinations will be encoded in a sepa-

W I D E

rate header. The Xcast header for IPv4 (in short
Xcast4) is carried between the IPv4 header and
the transport layer header.

[IPv4 header — Xcast4 — transport header —
payload |

Note also that since the Xcast header is added to
the data portion of the packet, if the sender wishes
to avoid IP fragmentation, it must take the size of

the Xcast header into account.

IPv4 header

The Xcast4 header is carried on top of an
IP header. The IP header will carry the pro-
tocol number PROTO_Xcast. The source ad-
dress field contains the address of the Xcast
sender. The destination address field carries the

All_Xcast_Routers address.

Xcast4 header
The Xcast4 header is depicted in Figure 4. It

is composed of two parts: a fixed part (first 12
octets) and two variable length parts that are

specified by the fixed part.

0 1 2 3
01234567890123456789012345678901
VERSION |A|X|D|P Rl NBR_OF_DEST

CHECKSUM

PROT ID LENGTH RESV

CHANNEL IDENTIFIER

List of Addresses and DSCPs

List of Port Numbers (optional)

Figure 4

VERSION = Xcast version number. This doc-
ument describes version 1.

A = Anonymity bit: if this bit is set the desti-
nation addresses for which the corresponding bit
in the bitmap is zero must be overwritten by zero.

X = Xcast bit: if this bit is set a router must not
reduce the Xcast packet to unicast packet(s), i.e.
the packet MUST stay an Xcast packet end-to-
end. This bit can be useful when IPsec is applied.

D = DSCP bit: if this bit is set the packet will
contain a DS-byte for each destination.

P = Port bit: if this bit is set the packet will
contain a port number for each destination.

NBR_OF _DEST = the number of destinations.

189

PR OIJECT

gseonny oIdxy Do e

e [1 100 Explicit Multicast

CHECKSUM = A checksum on the Xcast
header only. This is verified and recomputed at
each point that the Xcast header is processed. The
checksum field is the 16 bit one’s complement of
the one’s complement sum of all the bytes in the
header. For purposes of computing the checksum,
the value of the checksum field is zero. It is not
clear yet whether a checksum is needed (ffs). If
only one destination is wrong it can still be useful
to forward the packet to N-1 correct destinations
and 1 incorrect destination.

PROT ID = specifies the protocol of the follow-
ing header.

LENGTH = length of the Xcast header in 4-
octet words. This field puts an upper boundary
to the number of destinations. This value is also
determined by the NBR_OF_DEST field and the
D and P bits.

RESV = R = Reserved. It must be zero on
transmission and must be ignored on receipt.

CHANNEL IDENTIFIER = 4 octets Channel
Identifier (see section 8.3).

The first variable part is the ’List of Addresses
and DSCPs’, the second variable part is the "List
of Port Numbers’. Both are 4-octet aligned. The
second variable part is only present if the P-bit is
set.

Figure 5 gives an example of the variable part
for the case that the P-bit is set and the D-bit is
cleared (in this example N is odd):

0 1 2 3
01234567890123456789012345678901
BITMAP

Destination 1

Destination N

Port 1 | Port 2

Port N | Padding

Figure 5

BITMAP = every destination has a correspond-
ing bit in the bitmap to indicate whether the des-
tination is still valid on this branch of the tree.
The first bit corresponds to the first destination
in the list. This field is 4-octet aligned (e.g. for

190

49 destinations there will be a 64-bit bitmap). If
Xcast is applied in combination with IPsec, the
bitmap - since it can change on route - has to be
moved to a new to be defined IPv4 option.

List of Destinations. Each address size is four
octets.

List of Port Numbers. List of two octet des-
tination port number(s), where each port corre-

sponds in placement to the preceding Destination

Address.

IPv6
The Xcast6 header encoding is similar to IPv4,

except that Xcast information is stored in IPv6
extension headers.

[IPv6 header — Xcast6 — transport header —
payload |

IPv6 header

The IPv6 header will carry the NextHeader
value ’'Routing Extension’. The source ad-
dress field contains the address of the Xcast
sender. The destination address field carries the

All_Xcast_Routers address.

Xcast6 header

The Xcast6 header is also composed of a fixed
and two variable parts. The fixed and the first
variable part is carried in a Routing Extension.
The second variable part is carried in a Destina-

tion Extension.

Routing Extension header
The P-bit of Xcast4 is not present because it is
implicit by the presence or absence of the Desti-

nation Extension (Figure 6).

g1234567;9012345§789012325678901

Next Header | Hdr Ext Len
VERSION|A|X|D| R |NBFLOF,DEST
CHANNEL IDENTIFIER

RouteType=Xcast 0

CHECKSUM

List of Addresses and DSCPs

Figure 6

HdrExtLen = The header length is expressed in

8-octets, thus a maximum of 127 destinations can
be listed (this is why NBR_.OF_DEST is 7-bit).

RouteType = Xcast should be assigned by
IANA.

The fourth octet is set to 0.

R = Reserved.

CHANNEL IDENTIFIER = 16 octets Channel
Identifier (see section 8.3).

The other fields are defined in section 9.2.2.

The 'List of Addresses and DSCPs’ is 8-octet
aligned. The size of the bitmap is determined by
the number of destinations and is a multiple of 64

bits.

Destination Extension header

Optionally the Destination Extension (Figure 7)
is present to specify the list of Port Numbers. The
destination header is only evaluated by the desti-

nation node.

0 1 2 3
01234567890123456789012345678901
Next Header | Hdr Ext Len | Opt Type=Ports | Opt Date Len

List of Port Numbers

Figure 7

Option Type for Ports should be assigned by
IANA. The first three bits MUST be 010 to in-
dicate that the packet must be discarded if the
option is unknown and that the option can not be
changed en-route.

The number of Ports MUST be equal to the
number of destinations specified in the Routing

header.

4.10 Impact on Upper Layer Protocols

Some fields in the Xcast header(s) can be mod-
ified as the packet travels along its delivery path.

This has an impact on:

4.10.1 Checksum calculation in transport
layer headers

In transport layer headers, the target of the

checksum calculation includes the IP pseudo

header, transport header and payload (IPv6

header extensions are not a target).

W I D E

The transformation of an Xcast packet to a nor-
mal unicast packet - (premature) X2U - replaces
the multicast address in the IP header destina-
tion field by the address of a final destination. If
the Xcast header contains a Port List, the port
number in the transport layer (which should be
zero) also needs to be replaced by the port number
corresponding to the destination. This requires a
recalculation of these checksums. Note that this
does not require a complete recalculation of the
checksum, only a delta calculation, e.g. for IPv4:

Checksum’ = (Checksum + daH + daL +
daH’ + dal’ + dp + dp’)

In which ” 7 ” indicates the new values, “da” the
destination address, “dp” the destination port and
“H” and “L” respectively the higher and lower 16
bit.

4.10.2 IPsec
This is described in [118].

4.11 Gradual Deployment

4.11.1 Tunneling

One way to deploy Xcast in a network that has
routers that have no knowledge of Xcast is to
setup “tunnels” between Xcast peers (MBone ap-
proach). This enables the creation of a virtual net-
work layered on top of an existing network. The
Xcast routers exchange and maintain Xcast rout-
ing information via any standard unicast routing
protocol (e.g. RIP, OSPF, ISIS). The Xcast rout-
ing table that is created is simply a standard uni-
cast routing table that contains the destinations
that have Xcast connectivity, along with their cor-
responding Xcast next hops. In this way, pack-
ets may be forwarded hop-by-hop to other Xcast
routers, or may be “tunneled” through non- Xcast
routers in the network.

For example, suppose that A is trying to get
packets distributed to B, C & D in Figure 8 be-
low, where “X” routers are Xcast-capable, and
“R” routers are not. Figure 9 shows the routing
tables created via the Xcast tunnels:

Router X1 establishes a tunnel to Xcast peer

191

PR OIJECT

gseonny oIdxy Do e

e [1 100 Explicit Multicast

R4—B
A — X1—R2—X3 R8—C
R5—R6 —X7
R9—D
Figure 8

X1 routing table : X3 routing table : X7 routing table :

Dest | Next Hop Dest | Next Hop Dest | Next Hop
B X3 A X1 A X3
C X3 C X7 B X3
D X3 D X7
Figure 9

X3. Router X3 establishes a tunnel to Xcast peers
X1 and X7. Router X7 establishes a tunnel to
Xcast peer X3.

The source A will send an Xcast packet to its
default Xcast router, X1, that includes the list of
destinations for the packet. The packet on the link
between X1 and X3 is depicted in Figure 10:

payload

UPD

Xcast
B,C,D
prot = UDP

inner IP

src=A
dst = All_X_
prot = Xcast

outer IP
src = A
dst=B
prot = IP

Figure 10

When X3 receives this packet, it processes it as

follows:

e Perform a route table lookup in the Xcast
routing table to determine the Xcast next
hop for each of the destinations listed in the
packet.

e If no Xcast next hop is found, replicate the
packet and send a standard unicast to the des-
tination.

e For those destinations for which an Xcast next
hop is found, partition the destinations based

on their next hops.

192

e Replicate the packet so that there’s one copy
of the packet for each of the Xcast next hops
found in the previous steps.

e Modify the list of destinations in each of the
copies so that the list in the copy for a given
next hop includes just the destinations that
ought to be routed through that next hop.

e Send the modified copies of the packet on to
the next hops.

e Optimization: If there is only one destina-
tion for a particular Xcast next hop, send the
packet as a standard unicast packet to the des-
tination, as there is no multicast gain by for-

matting it as an Xcast packet.

So, in the example above, X1 will send a single
packet on to X3 with a destination list of (B C D).
This packet will be received by R2 as a unicast
packet with destination X3, and R2 will forward
it on, having no knowledge of Xcast. When X3 re-
ceives the packet, it will, by the algorithm above,
send one copy of the packet to destination (B)
as an ordinary unicast packet, and 1 copy of the
packet to X7 with a destination list of (C D). R4,
R5, and R6 will behave as standard routers with
no knowledge of Xcast. When X7 receives the
packet, it will parse the packet and transmit or-
dinary unicast packets addressed to (C) and (D)

respectively.

4.11.2 Premature X2U

If a router discovers that its downstream neigh-
bor is not Xcast capable, it can perform a Prema-
ture X2U, i.e. send a unicast packet for each desti-
nation in the Xcast header which has this neighbor
as a next hop. Thus duplication is done before the
Xcast packet reached its actual branching point.

A mechanism (protocol/protocol extension) to
discover the Xcast capability of a neighbor is ffs.
Among others, one could think of an extension
to a routing protocol to advertise Xcast capabili-
ties or one could send periodic ‘Xcast pings’ to its
neighbors (send an Xcast packet that contains its

own address as a destination and check whether

the packet returns).

4.11.3 Semi-permeable tunneling (IPv6
only)

This is an optimization of tunneling in the sense
that it does not require (manual) configuration
of tunnels. It is enabled by adding a Hop-by-
Hop Xcast6 header. An IPv6 packet can initi-
ate/trigger additional processing in the on-route
routers by using the IPv6 Hop-by-hop option.

The type of the Xcast6 Hop-by-hop option has
a prefix ‘00’ so that routers that cannot recognize
Xcast6 can treat the Xcast6 datagram as a normal
IPv6 datagram and forward toward the destina-
tion in the IPv6 header.

Packets will be delivered to all members if at
least all participating hosts are upgraded.

When the source A sends an Xcast packet via
semi-permeable tunneling to destinations B, C
and D it will create the packet of Figure 11. One
of the final destinations will be put in the desti-

nation address field of the outer IP header.

payload

UPD

Xcast

inner IP

src = A
dst = All_X_
prot = Xcast

Xcast
SP-tunnel
Hop-by-hop

outer IP
src = X1
dst = X3
prot = IP

Figure 11

Semi-permeable tunneling is a special tunnel-
ing technology that permits intermediate Xcast
routers on a tunnel to check the destinations and
branch if destinations have a different next hop.

Note that with the introduction of an Xcast
IPv4 option, this technique could also be applied

in IPv4 networks.

W I D E

4.11.4 Special case: deployment without
network support

A special method of deploying Xcast is possible
by upgrading only the hosts. By applying tun-
neling (see section 11.1 and 11.3) with one of the
final destinations as tunnel endpoint, the Xcast
packet will be delivered to all destinations when
all the hosts are Xcast aware. Both normal and
semi-permeable tunneling can be used.

If host B receives this packet, in the above ex-
ample, it will notice the other destinations in the
Xcast header. B will create a new Xcast packet
and will send it to one of the remaining destina-
tions.

In the case of Xcast6 and semi-permeable tun-
neling, Xcast routers can be introduced in the net-
work without the need of configuring tunnels.

The disadvantages of this method are that:

e all hosts in the session need to be upgraded.

e non-optimal routing.

e anonymity issue: hosts can know the identity
of other parties in the session (which is not a
big issue in conferencing, but maybe for some
other application?).

e host has to perform network functions and
needs an upstream link which has the same

bandwidth as its downstream link.

4.12 (Socket) API

In the most simple use of Xcast, the final des-
tinations of an Xcast packet receive an ordinary
unicast UDP packet. This means that hosts can
receive an Xcast packet with a standard, unmod-
ified TCP/IP stack.

Hosts can also transmit Xcast packets with a
standard TCP/IP stack with a small Xcast library
that sends Xcast packets on a raw socket. This has
been used to implement Xcast based applications
on both Unix and Windows platforms without any
kernel changes.

Another possibility is to modify the sockets in-

193

PR OIJECT

gseonny oIdxy Do e

e [1 100 Explicit Multicast

terface slightly. For example, one might add an
“xcast_sendto” function that works like “sendto”
but that uses a list of destination addresses in

place of the single address that “sendto” uses.

4.13 Security Considerations

See [118].

194

