
第8部

次世代インターネットプロトコル

W I D E P R O J E C T

8

第 1章 v6分科会

v6 分科会は、IPv6 と IPsec に関する研究に取り

組んでいる。本章では、1999年度の v6 分科会の成

果報告として、主に IETFでの活動について述べる。

1.1 概要

v6 分科会のメンバーは、IETF の ipngwg 分科

会、および ngtrans 分科会において積極的に発表し

ている。最近では、議長から依頼されて発表するこ

とも多くなってきた。以下に発表用件についてまと

める。

• 第 45回 IETF、ノルウェー、オスロ、1999年

7月 11日–16日

– ipngwg

∗ TAHI Project: Verification tech-

nologies for IPv6 、岡部宣夫

∗ IPv6 Multihoming – RFC2260 ap-

proach、萩野純一郎

– ngtrans

∗ IPv6 Network in WIDE CAMP、

関谷勇司

∗ BIS: Bump-in-the-Stack Tech-

nique、土屋一暁

• IETF ipngwg分科会中間ミーティング、田町、

東京都、1999年 9月 29日–10月 1日

– 本会議

∗ ICANN IPv6 status、村井純

∗ IPv6 Multihoming – router only

mechanisms、萩野純一郎

∗ An Extension of Format for IPv6

Scoped Addresses、神明達哉

– 日本セッション

∗ Recent Activity of the KAME

Project、神明達哉

∗ Hitachi IPv6 activity and

GR2000、角川宗近

∗ IIJ IPv6 trial service、萩野純一郎

∗ 1st TAHI IPv6 Interoperability

test、宮田宏

∗ WIDE 6bone、長橋賢吾

∗ IPv6 install convention in Japan、

許 先明 (HEO SeonMeyong)

• 第 46 回 IETF、アメリカ、ワシントン DC、

1999年 11月 7日–2日

– ipngwg

∗ An Extension of Format for IPv6

Scoped Addresses、神明達哉

∗ Tokyo meeting network configura-

tion、萩野純一郎

∗ TAHI Project: Interoperability

Test Report、宮田宏

– ngtrans

∗ BIS: Bump-in-the-Stack Tech-

nique、土屋一暁

• 第 47回 IETF、オーストラリア、アデレード、

2000年 3月 26日–31日

– ipngwg

∗ Resolving addresses of the root

DNS servers、山本和彦

∗ Possible abuse against IPv6 tran-

sition technologies、萩野純一郎

∗ An Extension of Format for IPv6

Scoped Addresses、神明達哉

∗ IPv6 IPsec test in connec-

tathon2000、星野浩志

– ngtrans

∗ Overview of Transition Techniques

for IPv6-only to Talk to IPv4 -only

Communication 、山本和彦

∗ An IPv6-to-IPv4 transport relay

translator、萩野純一郎

∗ Possible abuse against IPv6 tran-

sition technologies、萩野純一郎

∗ Root DNS for IPv6 transport、加

藤朗

117

●
第
8
部

次
世
代
イ
ン
タ
ー
ネ
ッ
ト
プ
ロ
ト
コ
ル

●第 8部 次世代インターネットプロトコル

– ipsec

∗ TAHI IPsec test suites、星野浩志

ここで、上記の IETF ipngwg分科会中間ミーティ

ングについて説明する。1999年 9月 29日から 10月

1日に、WIDE/KAME プロジェクトがホスト役と

なり、IETF ipngwg 分科会中間ミーティングを開催

した。IETF に関連するミーティングを日本で開催

するのは初めてである。テーマは、IPv6 環境におけ

るマルチホーミング。91 人 (満席)の出席者を得て、

内容としても成功に終わった。10月 1日の午後は日

本での IPv6 の活動を外国人に説明する時間を設け、

ipngwg 分科会議長などに理解を深めて頂いた。詳

しくは、以下のページを参照して頂きたい。

http://www.wide.ad.jp/events/

199909.ipng-interim/

上記のほとんどは、RFC や Internet-Draft につ

いて発表したものである。これらの文献をまとめる

形で、本稿は次のように構成される。

• Bump-in-the-Stack に関する RFC (Informa-

tional)

• アドレスの悪用に関する Internet-Draft

• トランスポートリレーに基づいたトランスレー
タに関する Internet-Draft

• 新しいグループ通信に関する Internet-Draft

• マルチホームに関する Internet-Draft

• トランスレータの分類に関する Internet-Draft

• スコープを持つアドレスの取り扱いに関する
Internet-Draft

1.2 Dual Stack Hosts using the “Bump-In-the-

Stack” Technique (BIS)

1.2.1 Introduction

RFC1933 [56] specifies transition mechanisms,

including dual stack and tunneling, for the ini-

tial stage. Hosts and routers with the transition

mechanisms are also developed. But there are

few applications for IPv6 [125] as compared with

IPv4 [57] in which a great number of applications

are available. In order to advance the transition

smoothly, it is highly desirable to make the avail-

ability of IPv6 applications increase to the same

level as IPv4. Unfortunately, however, this is ex-

pected to take a very long time.

This memo proposes a mechanism of dual stack

hosts using the technique called “Bump-in-the-

Stack” [58] in the IP security area. The tech-

nique inserts modules, which snoop data flowing

between a TCP/IPv4 module and network card

driver modules and translate IPv4 into IPv6 and

vice versa, into the hosts, and makes them self-

translators. When they communicate with the

other IPv6 hosts, pooled IPv4 addresses are as-

signed to the IPv6 hosts internally, but the IPv4

addresses never flow out from them. Moreover,

since the assignment is automatically carried out

using DNS protocol, users do

not need to know whether target hosts are IPv6

ones. That is, this allows them to communicate

with other IPv6 hosts using existing IPv4 appli-

cations; thus it seems as if they were dual stack

hosts with applications for both IPv4 and IPv6.

So they can expand the territory of dual stack

hosts. Furthermore they can co-exist with other

translators because their roles are different.

This memo uses the words defined in [57], [125],

and [56].

1.2.2 Components

Dual stack hosts defined in RFC1933 [56] need

applications, TCP/IP modules and addresses for

both IPv4 and IPv6. The proposed hosts in this

memo have 3 modules instead of IPv6 applica-

tions, and communicate with other IPv6 hosts us-

ing IPv4 applications. They are a translator, an

extension name resolver and an address mapper.

Figure 1.1 illustrates the structure of the host

in which they are installed.

W
I

D
E

P
R

O
J

E
C

T
1

9
9

9
a

n
n

u
a

l
r

e
p

o
r

t

118

W I D E P R O J E C T

8

IPv4 applications

TCP/IPv4

Network card drivers

Network cards

extension
name
resolver

address
mapper

translator

IPv6

図 1.1 Structure of the proposed dual stack host

Translator

It translates IPv4 into IPv6 and vice versa using

the IP conversion mechanism defined in [59].

When receiving IPv4 packets from IPv4 appli-

cations, it converts IPv4 packet headers into IPv6

packet headers, then fragments the IPv6 pack-

ets (because header length of IPv6 is typically 20

bytes larger than that of IPv4), and sends them

to IPv6 networks. When receiving IPv6 packets

from the IPv6 networks, it works symmetrically

to the previous case, except that there is no need

to fragment the packets.

Extension Name Resolver

It returns a “proper” answer in response to the

IPv4 application’s request.

The application typically sends a query to a

name server to resolve A records for the target host

name. It snoops the query, then creates another

query to resolve both A and AAAA records for the

host name, and sends the query to the server. If

the A record is resolved, it returns the A record to

the application as is. In the case, there is no need

for the IP conversion by the translator. If only the

AAAA record is available, it requests the mapper to

assign an IPv4 address corresponding to the IPv6

address, then creates the A record for the assigned

IPv4 address, and returns the A record to the ap-

plication.

NOTE: This action is similar to that of the DNS

ALG (Application Layer Gateway) used in [60].

See also [60].

Address mapper

It maintains an IPv4 address spool. The spool,

for example, consists of private addresses [61].

Also, it maintains a table which consists of pairs

of an IPv4 address and an IPv6 address.

When the resolver or the translator requests it

to assign an IPv4 address corresponding to an

IPv6 address, it selects and returns an IPv4 ad-

dress out of the spool, and registers a new entry

into the table dynamically. The registration oc-

curs in the following 2 cases:

1. When the resolver gets only an AAAA record

for the target host name and there is not a

mapping entry for the IPv6 address.

2. When the translator receives an IPv6 packet

and there is not a mapping entry for the IPv6

source address.

NOTE: There is only one exception. When ini-

tializing the table, it registers a pair of its own

IPv4 address and IPv6 address into the table stat-

ically.

1.2.3 Action Examples

This section describes action of the proposed

dual stack host called “dual stack,” which com-

municates with an IPv6 host called “host6” using

an IPv4 application.

Originator behavior

This subsection describes the originator behav-

ior of “dual stack.” The communication is trig-

gered by “dual stack.”

The application sends a query to its name server

to resolve A records for “host6.”

The resolver snoops the query, then creates an-

other query to resolve both A and AAAA records

for the host name, and sends it to the server. In

this case, only the AAAA record is resolved, so the

resolver requests the mapper to assign an IPv4

address corresponding to the IPv6 address.

NOTE: In the case of communication with an

IPv4 host, the A record is resolved and then the

119

●
第
8
部

次
世
代
イ
ン
タ
ー
ネ
ッ
ト
プ
ロ
ト
コ
ル

●第 8部 次世代インターネットプロトコル

resolver returns it to the application as is. There

is no need for the IP conversion as shown later.

The mapper selects an IPv4 address out of the

spool and returns it to the resolver.

The resolver creates the A record for the as-

signed IPv4 address and returns it to the applica-

tion.

NOTE: See subsection 4.3 about the influence

on other hosts caused by an IPv4 address assigned

here.

The application sends an IPv4 packet to

“host6.”

The IPv4 packet reaches the translator. The

translator tries to translate the IPv4 packet into

an IPv6 packet but does not know how to trans-

late the IPv4 destination address and the IPv4

source address. So the translator requests the

mapper to provide mapping entries for them.

The mapper checks its mapping table and finds

entries for each of them, and then returns the IPv6

destination address and the IPv6 source address

to the translator.

NOTE: The mapper will register its own IPv4

address and IPv6 address into the table before-

hand. See subsection 2.3.

The translator translates the IPv4 packet into

an IPv6 packet then fragments the IPv6 packet if

necessary and sends it to an IPv6 network.

The IPv6 packet reaches “host6.” Then “host6”

sends a new IPv6 packet to “dual stack.”

The IPv6 packet reaches the translator in “dual

stack.”

The translator gets mapping entries for the

IPv6 destination address and the IPv6 source ad-

dress from the mapper in the same way as before.

Then the translator translates the IPv6 packet

into an IPv4 packet and tosses it up to the appli-

cation.

Diagram 1.2 illustrates the action described

above:

Recipient behavior

This subsection describes the recipient behavior

of “dual stack.” The communication is triggered

IPv4
appli-
cation

TCP/
IPv4

extension
name
resolver

address
mapper

trans-
lator

IPv6

"dual stack" "host6"

<<Resolve an IPv4 address for "host6.">>

Query of ’A’ records for "host6."

Name
server

Query of ’A’ and ’AAAA’ records for "host6."

Reply only with ’AAAA’ record.

<<Only the ’AAAA’ record is resolved.>>

Request an IPv4 address corrsponding to the IPv6 address.

<<Assign an IPv4 address.>>

<<Create the ’A’ record for the IPv4 address.>>

Reply with the IPv4 address.

Reply only with the ’A’ record.

An IPv4 packet.

<<Send an IPv4 packet to "host6.">>

Request IPv6 addresses corresponding to the IPv4 addresses.

Reply with the IPv6 addresses.

<<Translate IPv4 into IPv6.>>

An IPv6 packet.

<<Reply an IPv6 packet to "dual stack.">>

An IPv6 packet.

An IPv4 packet.

図 1.2 Action of the originator

by “host6.”

“host6” resolves the AAAA record for “dual

stack” through its name server, and then sends

an IPv6 packet to the IPv6 address.

The IPv6 packet reaches the translator in “dual

stack.”

The translator tries to translate the IPv6 packet

into an IPv4 packet but does not know how to

translate the IPv6 destination address and the

IPv6 source address. So the translator requests

the mapper to provide mapping entries for them.

The mapper checks its mapping table with each

of them and finds a mapping entry for the IPv6

destination address.

NOTE: The mapper will register its own IPv4

address and IPv6 address into the table before-

hand. See subsection 2.3.

But there is not a mapping entry for the IPv6

source address, so the mapper selects an IPv4 ad-

dress out of the spool for it, and then returns the

IPv4 destination address and the IPv4 source ad-

W
I

D
E

P
R

O
J

E
C

T
1

9
9

9
a

n
n

u
a

l
r

e
p

o
r

t

120

W I D E P R O J E C T

8

dress to the translator.

NOTE: See subsection 4.3 about the influence

on other hosts caused by an IPv4 address assigned

here.

The translator translates the IPv6 packet into

an IPv4 packet and tosses it up to the application.

The application sends a new IPv4 packet to

“host6.”

The following behavior is the same as that de-

scribed in subsection 3.1.

Diagram 1.3 illustrates the action described

above:

IPv4
appli-
cation

TCP/
IPv4

extension
name
resolver

address
mapper

trans-
lator

IPv6

"dual stack" "host6"

<<Reseive an IPv6 packet from "host6.">>

Query of ’A’ records for "host6."

Request an IPv4 address corrsponding to the IPv6 address.

Reply with the IPv4 address.

Reply only with the ’A’ record.

An IPv4 packet.

<<Translate IPv6 into IPv4.>>

An IPv6 packet.

<<Reply an IPv4 packet to "host6.">>

An IPv4 packet.

An IPv6 packet.

<<Translate IPv4 into IPv6.>>

図 1.3 Action of the recipient

1.2.4 Considerations

This section considers some issues of the pro-

posed dual stack hosts.

IP conversion

In common with NAT [62], IP conversion needs

to translate IP addresses embedded in application

layer protocols, which are typically found in FTP

[63]. So it is hard to translate all such applications

completely.

IPv4 address spool and mapping table

The spool, for example, consists of private ad-

dresses [61]. So a large address space can be used

for the spool. Nonetheless, IPv4

addresses in the spool will be exhausted and

cannot be assigned to IPv6 target hosts, if the

host communicates with a great number of other

IPv6 hosts and the mapper never frees entries reg-

istered into the mapping table once. To solve the

problem, for example, it is desirable for the map-

per to free the oldest entry in the mapping table

and re-use the IPv4 address for creating a new

entry.

Internally assigned IPv4 addresses

IPv4 addresses, which are internally assigned

to IPv6 target hosts out of the spool, never flow

out from the host, and so do not negatively affect

other hosts.

1.2.5 Applicability and Limitations

This section considers applicability and limita-

tions of the proposed dual stack hosts.

Applicability

The mechanism can be useful for users in the es-

pecially initial stage where some applications not

modified into IPv6 remain. And it can also help

users who cannot upgrade their certain applica-

tions for some reason after all applications have

been modified. The reason is that it allows hosts

to communicate with IPv6 hosts using existing

IPv4 applications, and that they can get connec-

tivity for both IPv4 and IPv6 even if they do not

have IPv6 applications as a result.

Note that it can also work in conjunction with

a complete IPv6 stack. They can communicate

with both IPv4 hosts and IPv6 hosts using IPv4

applications via the mechanism, and can also com-

municate with IPv6 hosts using IPv6 applications

via the complete IPv6 stack.

Limitations

The mechanism is valid only for unicast com-

munication, but invalid for multicast communi-

cation. Multicast communication needs another

mechanism.

It allows hosts to communicate with IPv6 hosts

121

●
第
8
部

次
世
代
イ
ン
タ
ー
ネ
ッ
ト
プ
ロ
ト
コ
ル

●第 8部 次世代インターネットプロトコル

using existing IPv4 applications, but this can not

be applied to IPv4 applications which use any

IPv4 option since it is impossible to translate IPv4

options into IPv6. Similarly it is impossible to

translate any IPv6 option headers into IPv4, ex-

cept for fragment headers and routing headers. So

IPv6 inbound communication having the option

headers may be rejected.

In common with NAT [62], IP conversion needs

to translate IP addresses embedded in application

layer protocols, which are typically found in FTP

[63]. So it is hard to translate all such applications

completely.

It may be impossible that the hosts using the

mechanism utilize the security above network

layer since the data may carry IP addresses.

Finally it can not combine with secure DNS

since the extension name resolver can not handle

the protocol.

1.2.6 Security Considerations

This section considers security of the proposed

dual stack hosts.

The hosts can utilize the security of all lay-

ers like ordinary IPv4 communication when they

communicate with IPv4 hosts using IPv4 applica-

tions via the mechanism. Likewise they can utilize

the security of all layers like ordinary IPv6 com-

munication when they communicate with IPv6

hosts using IPv6 applications via the complete

IPv6 stack. However, unfortunately, they can not

utilize the security above network layer when they

communicate with IPv6 hosts using IPv4 applica-

tions via the mechanism. The reason is that when

the protocol data with which IP addresses are em-

bedded is encrypted, or when the protocol data is

encrypted using IP addresses as keys, it is impossi-

ble for the mechanism to translate the IPv4 data

into IPv6 and vice versa. Therefore it is highly

desirable to upgrade to the applications modified

into IPv6 for utilizing the security at communica-

tion with IPv6 hosts.

1.3 Possible abuse against IPv6 transition

technologies

1.3.1 Abuse of IPv4 compatible address

Problem

To implement automatic tunnelling [64], IPv4

compatible addresses (like ::123.4.5.6) are used.

From IPv6 stack point of view, an IPv4 compat-

ible address is considered to be a normal unicast

address. If an IPv6 packet has IPv4 compatible

addresses in the header, the packet will be encap-

sulated automatically into an IPv4 packet, with

IPv4 address taken from lowermost 4 bytes of the

IPv4 compatible addresses. Since there is no good

way to check if embedded IPv4 address is sane,

improper IPv4 packet can be generated as a re-

sult. Malicious party can abuse it, by injecting

IPv6 packets to an IPv4/v6 dual stack node with

certain IPv6 source address, to cause transmission

of unexpected IPv4 packets. Consider the follow-

ing scenario:

• You have an IPv6 transport-capable DNS

server, running on top of IPv4/v6 dual

stack node. The node is on IPv4 subnet

10.1.1.0/24.

• Malicious party transmits an IPv6 UDP

packet to port 53 (DNS), with source ad-

dress ::10.1.1.255. It does not make dif-

ference if it is encapsulated into an IPv4

packet, or is transmitted as a native IPv6

packet.

• IPv6 transport-capable DNS server will

transmit an IPv6 packet as a reply, copy-

ing the original source address into the des-

tination address. Note that the IPv6 DNS

server will treat IPv6 compatible address as

normal IPv6 unicast address.

• The reply packet will automatically be

encapsulated into IPv4 packet, based on

RFC1933 automatic tunnelling. As a re-

sult, IPv4 packet toward 10.1.1.255 will be

W
I

D
E

P
R

O
J

E
C

T
1

9
9

9
a

n
n

u
a

l
r

e
p

o
r

t

122

W I D E P R O J E C T

8

transmitted. This is the subnet broadcast

address for your IPv4 subnet, and will (im-

properly) reach every node on the IPv4 sub-

net.

Possible solutions

For the following sections, possible soluitions

are presented in the order of preference (the au-

thor recommends to implement solutions that ap-

pear earlier). Note that some of the following are

partial solution to the problem. Some of the so-

lutions may overwrap, or be able to coexist, with

other solutions.

• Disable automatic tunnelling support.

• Reject IPv6 packets with IPv4 compatible

address in IPv6 header fields. Note that we

may need to check extension headers as well.

• Perform ingress filter against IPv6 packet

and tunnelled IPv6 packet. Ingress filter

should let the packets with IPv4 compatible

source address through, only if the source

address embeds an IPv4 address belongs to

the organization. The approach is a partial

solution for avoiding possible transmission

of malicious packet, from the organization

to the outside.

• Whenever possible, check if the addresses

on the packet meet the topology you have.

For example, if the IPv4 address block for

your site is 43.0.0.0/8, and you have a

packet from IPv4-wise outside with encap-

sulated IPv6 source matches ::43.0.0.0/104,

it is likely that someone is doing something

nasty. This may not be possible to make the

filter complete, so consider it as a partial so-

lution.

• Require use of IPv4 IPsec, namely authenti-

cation header [65] , for encapsulated packet.

Even with IPv4 IPsec, reject the packet if

the IPv6 compatible address in the IPv6

header does not embed the IPv4 address in

the IPv4 header. We cannot blindly trust

the inner IPv6 packet based on the exis-

tence of IPv4 IPsec association, since the in-

ner IPv6 packet may be originated by other

nodes and forwarded by the authenticated

peer. The solution may be impractical, since

it only solves very small part of the problem

with too many requirements.

• Reject inbound/outgoing IPv6 packets, if it

has certain IPv4 compatible address in IPv6

header fields. Note that we may need to

check extension headers as well. The au-

thor recommends to check any IPv4 compat-

ible address that is mapped from/to IPv4

address not suitable as IPv4 peer. They

include 0.0.0.0/8, 127.0.0.0/8, 224.0.0.0/4,

255.255.255.255/32, and subnet broadcast

addresses. Since the check can never be per-

fect (we cannot check for subnet broadcast

address in remote site, for example) the di-

rection is not recommend.

1.3.2 Abuse of 6to4 address

6to4 [64] is another proposal for IPv6-over-

IPv4 packet encapsulation, and is very similar to

RFC1933 automatic tunneling mentioned in the

previous section. 6to4 address embeds IPv4 ad-

dress in the middle (2nd byte to 5th byte). If

an IPv6 packet has a 6to4 address as destination

address, it will be encapsulated into IPv4 packet

with the embedded IPv4 address as IPv4 destina-

tion.

IPv6 packets with 6to4 address have the same

problems as those with IPv4 compatible address.

See the previous section for the details of the prob-

lems, and possible solutions.

1.3.3 Abuse of IPv4 mapped address

Problems

IPv6 basic socket API [66] defines the use of

IPv4 mapped address with AF INET6 sockets.

IPv4 mapped address is used to handle inbound

123

●
第
8
部

次
世
代
イ
ン
タ
ー
ネ
ッ
ト
プ
ロ
ト
コ
ル

●第 8部 次世代インターネットプロトコル

IPv4 traffic toward AF INET6 sockets, and out-

bound IPv4 traffic from AF INET6 sockets. In-

bound case has higher probability of abuse, while

outbound case contributes to the abuse as well.

Here we briefly describe the kernel behavior in in-

bound case. When we have an AF INET6 socket

bound to IPv6 unspecified address (::), IPv4 traf-

fic, as well as IPv6 traffic, will be captured by the

socket. The kernel will present the address of the

IPv4 peer to the userland program by using IPv4

mapped address. For example, if an IPv4 traffic

from 10.1.1.1 is captured by an AF INET6 socket,

the userland program will think that the peer is

at ::ffff:10.1.1.1. The userland program can ma-

nipulate IPv4 mapped address just like it would

do against normal IPv6 unicast address.

We have three problems with the specification.

First, IPv4 mapped address support complicates

IPv4 access control mechanisms. For example,

if you would like to reject accesses from IPv4

clients to a certain transport layer service, it is

not enough to reject accesses to AF INET socket.

You will need to check AF INET6 socket for ac-

cesses from IPv4 clients (seen as accesses from

IPv4 mapped address) as well.

Secondly, malicious party may be able to use

IPv6 packets with IPv4 mapped address, to by-

pass access control. Consider the following sce-

nario:

• Attacker throws unencapsulated IPv6 pack-

ets, with ::ffff:127.0.0.1 as source address.

• The access control code in the server thinks

that this is from localhost, and grants ac-

cesses.

Lastly, malicious party can make servers gener-

ate unexpected IPv4 traffic. This can be accom-

plished by sending IPv6 packet with IPv4 mapped

address as a source (similar to abuse of IPv4 com-

patible address), or by presenting IPv4 mapped

address to servers (like FTP bounce attack [67]

from IPv6 to IPv4). The problem is slightly dif-

ferent from the problems with IPv4 compatible

addresses and 6to4 addresses, since it does not

make use of tunnels. It makes use of certain be-

havior of userland applications.

Possible solutions

• Reject IPv6 packets, if it has IPv4 mapped

address in IPv6 header fields. Note that we

may need to check extension headers as well.

IPv4 mapped address is internal representa-

tion in a node, so doing this will raise no

conflicts with existing protocols. We recom-

mend to check the condition in IPv6 input

packet processing, and transport layer pro-

cessing (TCP input and UDP input) to be

sure.

• Reject DNS replies, or other host name

database replies, which contain IPv4

mapped address. Again, IPv4 mapped ad-

dress is internal represntation in a node and

should never appear on external host name

databases.

• Do not route inbound IPv4 traffic to

AF INET6 sockets. When an application

would like to accept IPv4 traffic, it should

explicitly open AF INET sockets. You may

want to run two applications instead, one

for an AF INET socket, and another for an

AF INET6 socket. Or you may want to

make the functionality optional, off by de-

fault, and let the userland applications ex-

plicitly enable it. This greatly simplifies

access control issues. This approach con-

flicts with what RFC2553 says, however, it

should raise no problem with properly- writ-

ten IPv6 applications. It only affects server

programs, ported by assuming the behavior

of AF INET6 listening socket against IPv4

traffic.

• When implementing TCP or UDP stack, ex-

plicitly record the wire packet format (IPv4

or IPv6) into connection table. It is unwise

W
I

D
E

P
R

O
J

E
C

T
1

9
9

9
a

n
n

u
a

l
r

e
p

o
r

t

124

W I D E P R O J E C T

8

to guess the wire packet format, by existence

of IPv6 mapped address in the address pair.

• We should separately fix problems like FTP

bounce attack.

• Applications should always check if the con-

nection to AF INET6 socket is from an IPv4

node (IPv4 mapped address), or IPv6 node.

It should then treat the connection as from

IPv4 node (not from IPv6 node with spe-

cial adderss), or reject the connection. This

is, however, dangerous to assume that ev-

ery application implementers are aware of

the issue. The solution is not recommended

(this is not a solution actually).

1.3.4 Attacks by combining different address

formats

Malicious party can use different address for-

mats simultaneously, in a single packet. For ex-

ample, suppose you have implemented checks for

abuse against IPv4 compatible address in auto-

matic tunnel egress module. Bad guys may try

to send a native IPv6 packet with 6to4 destina-

tion address with IPv4 compatible source address,

to bypass security checks against IPv4 compatible

address in tunnel decapsulation module. Your im-

plementation will not be able to detect it, since the

packet will not visit egress module for automatic

tunnels.

Analyze code path with great care, and reject

any packets that does not look sane.

1.3.5 Conclusions

IPv6 transition technologies have been pro-

posed, however, some of them looks immune

against abuse. The document presented possi-

ble ways of abuse, and possible solutions against

them. The presented solutions should be reflected

to the revision of specifications referenced.

For coming protocols, the author would like to

propose a set of guilelines for IPv6 transition tech-

nologies:

• Tunnels must explicitly be configured. Man-

ual configuration, or automatic configura-

tion with proper authentication, should be

okay.

• Do not embed IPv4 addresses into IPv6 ad-

dresses, for tunnels or other cases. It leaves

room for abuse, since we cannot practically

check if embedded IPv4 address is sane.

• Do not define an IPv6 address format that

does not appear on the wire. It complicates

access control issues.

The author hopes to see more deployment of na-

tive IPv6 networks, where tunnelling technologies

become unnecessary.

1.3.6 Security considerations

The document talks about security issues in ex-

isting IPv6 related protocol specifications. Possi-

ble solutions are provided.

1.4 An IPv6-to-IPv4 transport relay translator

1.4.1 Problem domain

When you deploy an IPv6-only network, you

still want to be able to gain access to IPv4-

only network resources outside, such as IPv4-only

web servers. To solve this problem, many IPv6-

to-IPv4 translation technologies are proposed,

mainly in the IETF ngtrans working group. The

memo describes a translator based on the trans-

port relay technique to solve the same problem.

In this memo, we call this kind of trans-

lator “TRT” (transport relay translator). A

TRT box locates between IPv6-only hosts and

IPv4 hosts and translates TCP,UDP/IPv6 to

TCP,UDP/IPv4, vice versa.

Advantages of TRT are as follows:

• TRT is designed to require no extra mod-

ification on IPv6-only initiating hosts, nor

that on IPv4-only destination hosts. Some

other translation mechanisms need extra

125

●
第
8
部

次
世
代
イ
ン
タ
ー
ネ
ッ
ト
プ
ロ
ト
コ
ル

●第 8部 次世代インターネットプロトコル

modifications on IPv6-only initiating hosts,

limiting possibility of deployment.

• The IPv6-to-IPv4 header converters have to

take care of path MTU and fragmentation

issues. However, TRT is free from this prob-

lem.

Disadvantages of TRT are as follows:

• TRT supports connected bidirectional traf-

fic only. The IPv6-to-IPv4 header convert-

ers may be able to support other cases, such

as unidirectional multicast datagrams.

• TRT needs a stateful TRT box between the

communicating peers, just like NAT boxes.

While it is possible to place multiple TRT

boxes in a site, a transport layer connec-

tion will go through particular, a single TRT

box. The TRT box thus can be consid-

ered a single point of failure, again like

NAT boxes. Some other mechanisms, such

as SIIT [59], use stateless translator boxes

which can avoid a single point of failure.

The memo assumes that traffic is initiated by an

IPv6-only host destined to an IPv4-only host. The

memo can be extended to handle opposite direc-

tion, if an apprpriate address mapping mechanism

is introduced.

1.4.2 IPv4-to-IPv4 transport relay

To help understanding of the proposal in the

next section, here we describe the transport relay

in general. The transport relay technique itself is

not new, as it has been used in many of firewall-

related products.

TCP relay

TCP relay devices have been used in firewall-

related products. These products are designed to

achieve the follwing goals: (1) disallow forward-

ing of IP packets across the device, and (2) al-

low TCP,UDP traffic to go through the device

indirectly. For example, consider a network con-

structed like the following diagram. “TCP relay

box” in the diagram does not forward IP packet

across the inner network to the outer network, vice

versa. It only relays TCP traffic on specific port,

from the inner network to the outer network, vice

versa. (Note: The diagram has only two subnets,

one for inner and one for outer. Actually both

side can be more complex, and there can be as

many subnets and routers as you wish)

When the initiating host (whose IP address is

A) tries to make a TCP connection to the desti-

nation host (X), TCP packets are routed toward

the TCP relay box based on routing decision. The

TCP relay box receives and accepts the packets,

even though the TCP relay box does not own the

destination IP address (X). The TCP relay box

pretends to having IP address X, and establishes

TCP connection with the initiating host as X. The

TCP relay box then makes a another TCP con-

nection from Y to X, and relays traffic from A to

X, and the other way around.

Thus, two TCP connections are established in

the picture: from A to B (as X), and from Y to

X, like below:

TCP/IPv4: the initiating host (A)

--> the TCP relay box (as X)

address on IPv4 header: A -> X

TCP/IPv4: the TCP relay box box (Y)

--> the destination host (X)

address on IPv4 header: Y -> X

The TCP relay box needs to capture some of

TCP packets that is not destined to its address.

The way to do it is implementation dependent and

outside the scope of this memo.

W
I

D
E

P
R

O
J

E
C

T
1

9
9

9
a

n
n

u
a

l
r

e
p

o
r

t

126

W I D E P R O J E C T

8

UDP relay

If you can recognize UDP inbound and out-

bound traffic pair in some way, UDP relay can

be implemented in similar manner as TCP relay.

An implementation can recognize UDP traffic pair

like NAT boxes does, by recording address/port

pairs onto an table and managing table entries

with timeouts.

1.4.3 IPv6-to-IPv4 transport relay translator

We propose a transport relay translator for

IPv6-to-IPv4 protocol translation, TRT. In the

following description, TRT for TCP is described.

TRT for UDP can be implemented in similar man-

ner.

For address mapping, we will reserve an IPv6

prefix referred to by C6::/64. C6::/64 should be

a part of IPv6 unicast address space assigned to

the site. Routing information must be configured

so that packets to C6::/64 would be routed to-

ward the TRT box. The following diagram shows

the network configuration. The subnet marked

as “dummy prefix” does not actually exist. Also,

now we assume that the initiating host to be IPv6-

only, and the destination host to be IPv4-only.

When the initiating host (whose IPv6 address

is A6) wishes to make a connection to the desti-

nation host (whose IPv4 address is X4), it needs

to make an TCP/IPv6 connection toward C6::X4.

For example, if C4::/64 equals to fec0:0:0:1::/64,

and X4 equals to 10.1.1.1, the destination ad-

dress to be used is fec0:0:0:1::10.1.1.1. The packet

will be routed toward the TRT box, and will be

captured by it. The TRT box will accept the

TCP/IPv6 connection between A6 and C6::X4,

and communicate with the initiating host, using

TCP/IPv6. Then, the TRT box will look at the

lowermost 32bit of the destination address (IPv6

address C6::X4) to get the real IPv4 destination

(IPv4 address X4). It will make an TCP/IPv4

connection from Y4 to X4, and forward traffic

across the two TCP connections.

There will be two TCP connections, one is

TCP/IPv6 and another is TCP/IPv4, in the pic-

ture: from A6 to B6 (as C6::X4), and Y4 to X4,

like below:

TCP/IPv6: the initiating host (A6)

--> the TRT box (as C6::X4)

address on IPv6 header: A6 -> C6::X4

TCP/IPv4: the TRT box (Y4)

--> the destination host (X4)

address on IPv4 header: Y4 -> X4

1.4.4 Address mapping

As seen in the previous section, an initiating

host must use a special form of IPv6 address to

connect to an IPv4 destination host. The special

form can be resolved from hostname by static ad-

dress mapping table on the initiating host (like

/etc/hosts in UNIX), special DNS

server implementation, or modified DNS re-

solver implementation on initiating host.

1.4.5 Notes to implementers

TRT for UDP must take care of path MTU is-

sues on the UDP/IPv6 side. This is implemen-

tation dependent and outside of the scope of this

memo. Simple solution would be to always frag-

ment packets from the TRT box to UDP/IPv6

side to IPv6 minimum MTU (1280 octets), to

eliminate the need for path MTU discovery.

Though the TRT box only relays TCP,UDP

traffic, it needs to check ICMPv6 packets destined

to C6::X4 as well, so that it can recognize path

MTU discovery messsages and other notifications

between A6 and C6::X4.

When forwarding TCP traffic, a TRT box needs

to handle urgent data [111] carefully.

127

●
第
8
部

次
世
代
イ
ン
タ
ー
ネ
ッ
ト
プ
ロ
ト
コ
ル

●第 8部 次世代インターネットプロトコル

To relay NAT-unfriendly protocols [63] a TRT

box may need to modify data content.

Scalability issues must carefully be considered

when you deploy TRT boxes to a large IPv6 site.

Scalability parameters would be (1) number of

connections the operating system kernel can ac-

cept, (2) number of connections a userland pro-

cess can forward (equals to number of filehandles

per process), and (3) number of transport relaying

processes on a TRT box. Design decision must be

made to use proper number of userland processes

to support proper number of connections.

To make TRT for TCP more scalable in a large

site, it is possible to have multiple TRT boxes in

a site. This can be done by taking the following

steps: (1) configure multiple TRT boxes, (2) con-

figure different dummy prefix to them, (3) and let

the initiating host pick a dummy prefix randomly

for load-balancing. (3) can be implemented as

follows; If you install special DNS server to the

site, you may (3a) configure DNS servers differ-

ently to return different dummy prefixes and tell

initiating hosts of different DNS servers. Or you

can (3b) let DNS server pick a dummy prefix ran-

domly for load-balancing. The load- balancing is

possible because you will not be changing desti-

nation address (hence the TRT box), once a TCP

connection is established.

For address mapping, the authors recommend

use of a special DNS server for large-scale instal-

lation, and static mapping for small-scale instal-

lation. It is not always possible to have special

resolver on the initiating host, and assuming it

would cause deployment problems.

1.4.6 Security considerations

Malicious party may try to use TRT boxes for

anonymizing the source IP address of traffic to

IPv4 destinations. TRT boxes should implement

some sort of access control to avoid such im-

proper usage.

A careless TRT implementation may subject to

buffer overflow attack, but this kind of issue is

implementation dependent and outside the scope

of this memo.

A transport relay box hijacks TCP connection

between two nodes. This may not be a legitimate

behavior for an IP node. The draft does not try

to claim it to be legitimate.

1.5 Multiple Destination option on IPv6(MDO6)

1.5.1 Introduction

Current multicast uses the Host Group Model;

the destination of a multicast datagram is identi-

fied by a Group Multicast Address. Routers that

relay datagrams have to maintain routing infor-

mation for each multicast spanning tree, which

causes several scalability problems. [68]

Multicast is useful not only for broadcast appli-

cations but also many-to-many applications like a

videoconference. Because many-to-many applica-

tions need multicast groups much more, the scal-

ability problem described above becomes pretty

critical.

Multiple Destination option on IPv6 is a yet an-

other multicast delivery mechanism that depends

only on the existing unicast routing environment.

The destination of a multicast datagram is spec-

ified by a list of unicast addresses instead of a

group multicast address. The list is stored in a

routing option header with a bitmap that repre-

sents the destinations to send on the list. The

router looks up the next hop of each unicast ad-

dress, using their unicast routing table, if their

bitmap is on. Then routers copy the datagram

and diverge it for the next hops routers sharing

the datagrams if any destinations have a common

next hop entry.

The routing header has to be evaluated on hop-

by-hop basis, The hop-by-hop option header indi-

cates on MDO6 routing header follows. The IPv6

destination field of MDO6 datagrams are filled by

one of the unicast addresses of the destinations

and the type of the MDO6 Hop-by-hop option

has a bit prefix ‘00’ so that routers that cannot

recognize MDO6 can treat the MDO6 datagram

W
I

D
E

P
R

O
J

E
C

T
1

9
9

9
a

n
n

u
a

l
r

e
p

o
r

t

128

W I D E P R O J E C T

8

as an ordinal IPv6 datagram and forward to one

of the destinations. Datagram reachability is pre-

served because if it passed a preferable router to

divide, it can go back at the next MDO6 router

the datagram reached.

“Tractable list” is a technology for routing effi-

ciency. A sender is able to sort the destination list

so that the on-bits of destination bitmap must ap-

pear continuously on whole stems of the spanning

tree. In the sparse multicast situation, multicast

packets are passed on to almost routers without

diverging. In that case, intermediate routers can

distinguish the packet that they do not need to

diverge only by looking up two addresses located

at both ends of the bitmap.

1.5.2 Header Format

MDO6 datagram has 3 extra option headers de-

scribed below.

IPv6 header

Hop-by-hop options(Type MDO)

Routing(Type MDO explicit destination list)

Destination options(Type MDO)

Other header

Upper protocol header

Payload

IPv6 Header

An IPv6 header of MDO6 datagrams has the

same format as ordinal IPv6 datagrams. The

source address of an IPv6 header is a unicast ad-

dress of the transmitter. The destination address

is a unicast address whose node appears first in

the destination bitmap, specified in Section 2.3

and 2.4. Next Header should name “Hop-by-hop

option”(00), because MDO6 datagrams must in-

clude the MDO6 Hop-by-hop option.

hop-by-hop option header

MDO6 datagrams must have the Hop-by-hop

option because they should be checked on every

intermediate router on their spanning trees.

The Next Header field and Header Extension

Length field must be filled by the type of the next

header and length of this hop-by-hop option spec-

ified by [125].

The option type number of the MDO6 hop-by-

hop option, temporarily in this draft, is XX. (It

must be assigned by ICANN in future.) The first

2 bits of XX must be 00 so that an intermediate

router that cannot recognize MDO6 skips evalua-

tion of the option and the datagrams are able to

pass the router for the IPv6 destination that is one

of the destinations on the MDO6 destination list.

The third bit of the Hop-by-hop option must be 1

so that the source and destination nodes exclude

this options header from targets of the calculation

129

●
第
8
部

次
世
代
イ
ン
タ
ー
ネ
ッ
ト
プ
ロ
ト
コ
ル

●第 8部 次世代インターネットプロトコル

of Authentication Header, because the destination

address field is changed in the multicast delivery

path.

MDO6 Options field describes how this data-

gram should behave. Its value is obtained by

applying logical AND to the values below. The

meaning of these flags will be explained in section

5.

0x01: tractable

0x02: explore branch

0x04: explore branch exhaustively

The destination address field has a unicast ad-

dress whose node appears last in the destination

bitmap that makes a pair with the destination

field of the IPv6 header.

Options other than the MDO6 option can be

packed in the Hop-by-hop option header. Appear-

ance order of the options is not specified, but it

is recommended to settle MDO6 options first. It

helps in handling hardware evaluation of tractable

list handling that is explained in section 2.1.

Routing Header

Complete list of unicast addresses of the desti-

nations is enclosed as a routing optional header.

An MDO6 routing header is defined as a variation

of an IPv6 routing header specified by RFC1883.

Following accordingly RFC1833 the Next

Header and Header Extension Length fields are

filled with the type of next header and length of

the routing header. The type value in the routing

header is YY temporarily.

RFC1833 stipulates that when the 4th octet of

the routing header is not 0 and it’s type is not

recognized by the router, the router must discard

the datagram and reply with an ICMP error to the

source of the datagram. This enables DoS spoof-

ing attacks, if combined with multicast delivery.

So MDO6 strongly recommends that 0 always fills

the 4th octet of the routing header. That guaran-

tees that routers that cannot recognize the MDO6

option only discard datagrams without replying

with an ICMP error.

The number of destination unicast addresses

must be stored in the 5th octet of the routing

header. The maximum number of destinations is

1.5.3 This restriction relates to the length limit

(8 * 255 octet) of

the routing header itself. The 6th to 8 octet are

filled by the padding option.

In the 9th to 24th octet, the destination bitmap

is stored, that indicates which unicast destinations

in the address list that follows are to be sent to. 1

represents “send-to” and 0 is done. If the number

of destinations is less than 126, 0 must fill the

following bitmap field.

Destination Option Header

In the IPv6 specification, it has been carefully

determined that the ICMP error reply for multi-

W
I

D
E

P
R

O
J

E
C

T
1

9
9

9
a

n
n

u
a

l
r

e
p

o
r

t

130

W I D E P R O J E C T

8

cast datagrams must not occur in order to prevent

crackers from attacking by smurfing. But MDO6

datagrams are treated as simple unicast data-

grams by routers that cannot recognize MDO6.

So error reply may occur anyway.

To prevent this behavior, MDO6 datagram

must enclose the destination option header. The

prefix to 2 bits of the option type is 010 that mean

discard the datagram and do not reply with an

ICMP error if the node cannot recognize the op-

tion. All routers that diverge MDO6 datagrams

MUST check whether they have a legal destina-

tion option header or not. If they don’t have, they

MUST just discard the datagrams.

Sub option field is specified additional behavior

in the destination node as follows.

0: anti-smurfing stopper only.

1: port list

The port list mechanism is described in follow-

ing section.

The identifier is the last Identifier of the ICMP

branch explore when a tractable list is established.

If a datagram has no tractable list, the Identifier

field must be zero-filled.

1. Port list

In order to deliver the MDO6 datagram for dif-

ferent port of each receiver, transmitter can spec-

ify the port list in the destination header as fol-

lows.

The numbers of port including the list MUST

be equal to the number of destinations specified in

the routing header. The length of Option header

MUST be 8 octet aligned. The remains field of

the port MUST be filled by zero.

The port number field of the UDP header with

this option MUST be filled by zero.

1.5.4 Packet delivery

In this section, method of datagram delivery is

explained as scenario based behaviors.

Delivery Scenario with Non-tractable

Destination List.

This is a basic scenario. The sender of MDO6 an

datagram stores the destination unicast address

list in random order and transmits the packet for

the node or next hop router.

The router receives the datagram and checks

the hop-by-hop option. Because the MDO6 op-

tion type represents that it is a non-tractable list,

the router starts route evaluation for all unicast

addresses on the list of destinations that the des-

tination bitmap is set. The routers choose all uni-

cast addresses that have the same next hop result,

set these in destination bitmap to 1, and forward

the datagrams to the next hop routers.

When the final receiver captures a datagram,

the receiver searches for its unicast address in the

destination list, then passes it to the upper pro-

tocol layer.

Example:

131

●
第
8
部

次
世
代
イ
ン
タ
ー
ネ
ッ
ト
プ
ロ
ト
コ
ル

●第 8部 次世代インターネットプロトコル

An example network was built with 8 hosts con-

nected by 4 ethernets(W,X,Y,Z), 1 leased line and

2 routers. Each host has addresses a h. The

routers have an interface for leased line(r1,r2) and

2 interfaces for ethernet(w,x,y,z).

The routing table for each host and router is set

as below.

A process on host a sends a multicast datagram

for destinations b, c, d, e, f, g and h using sendmsg

(socket, msg, flags). A parameter msg includes

a list of unicast destination addresses in struct

iovec style. The protocol stack makes a datagram

referencing this iovec as below.

IPv6 src = a

IPv6 dst = b

IPv6 Opt = MDO6 followed

MDO6 option = None (= non tractable)

MDO6 dst = h

RouteType = MDO6

of dest = 7

dest addr = [b,c,d,e,f,g,h]

W
I

D
E

P
R

O
J

E
C

T
1

9
9

9
a

n
n

u
a

l
r

e
p

o
r

t

132

W I D E P R O J E C T

8

bitmap = [1,1,1,1,1,1,1]

Here is the detailed datagram format.

Host a looks up the next hop for each address

then gets the result below.

b: directly deliverable

via ethernet W.

c,d,e,f,g,h: relay via router w.

For host b, host a rewrites the header as below,

then transmit it to b.

IPv6 dest = b

bitmap = [1,0,0,0,0,0,0]

dest addr = [b,c,d,e,f,g,h]

Host b captures this datagram and checks the

MDO0 hop-by-hop option. A destination bitmap

in a routing header means only one destination is

to be sent to, and it find the destination host is

itself. Then it passes the datagram to the upper

level protocol stack.

For router w, host a rewrites the bitmap as be-

low.

IPv6 dest = c

bitmap = [0,1,1,1,1,1,1]

dest addr = [b,c,d,e,f,g,h]

Router R1 captures this datagram and checks

the MDO0 hop-by-hop option. It finds the data-

gram is not for this router and looks up the next

hop using the routing table as below.

c,d,g,h: to be relay via router r2.

e,f: directly deliverable

via ethernet Y.

Now, for c,d,g,h, r1 sends the datagram rewrit-

ing the bitmap as below.

IPv6 dest = c

bitmap = [0,1,1,0,0,1,1]

dest addr = [b,c,d,e,f,g,h]

In the same way,

IPv6 dest = e

bitmap = [0,0,0,1,0,0,0]

dest addr = [b,c,d,e,f,g,h]

for e and

IPv6 dest = f

bitmap = [0,0,0,0,1,0,0]

dest addr = [b,c,d,e,f,g,h]

133

●
第
8
部

次
世
代
イ
ン
タ
ー
ネ
ッ
ト
プ
ロ
ト
コ
ル

●第 8部 次世代インターネットプロトコル

and for f.

R2 relays the datagrams as well as R1. Then

datagrams can reach every destination.

1.5.5 Impact for Upper Layer Protocol

MDO6 datagrams have option headers that are

related to other options and upper layer protocols.

In this section, we describe the impact for upper

layer protocols.

The fields below for MDO6 options are rewrit-

ten as it travels along the delivery path.

• Destination address of IPv6 header.

• Hop-by-hop option header.

• Destinations bitmap in the routing header.

This has an impact on i) checksum calculation

in UDP and ICMP headers and ii) IPsec Authen-

tication Header.

i) Checksum calculation in UDP and ICMP

In both UDP and ICMP, the target of the check-

sum calculation includes the pseudo header, trans-

port header and payload. Optional headers are

not target. In the target, only the destination ad-

dress of the pseudo header may be rewritten.

UDP and ICMP datagrams on MDO6 must use

0::0(address all zeros) as the destination address

of the pseudo header for calculating a checksum.

ii) IPsec Authentication header

Unlike checksum calculation, optional headers

are the target of the calculation of hashed value

of the IPsec Authentication header. It must be

controlled as to which option should be the target

of hash value calculation.

• Hop-by-hop option header and routing

header must be rewritten by intermediate

routers. Third bit of the MDO6 option type

must be 1 so that the hop-by-hop option

header is excluded from the calculation of

the hash value.

• Destination option header of MDO6 is not

rewritten by intermediate routers. So it

should be included in target. The third bit

of the MDO6 option type must be 0 so that

the hop-by-hop option header is included in

the calculation of the hash value.

1.5.6 Tractable Order List

As described in section 3, intermediate routers

must look up the next hop for all destinations, if

addresses are put in random order. It is too ex-

pensive. It will not be compatible with the hard-

ware routing facility because the destination list

would have variable length.

A tractable ordered list is a list of destination

addresses that has been ordered so that the in-

termediate router can skip looking up the rout-

ing entry. An MDO6 application delivers data-

grams for a small number of receivers sparsely

distributed over the Internet. Most intermediate

routers only relay from an interface to an inter-

face without diverging. With a tractable ordered

list, such routers can found that they need not

to diverge by looking up the routing entry only 2

times.

To make the tractable ordered list, the sender

searches the multicast spanning tree and lines up

the leaf destinations in depth first search order.

With the example described in section 3, the mul-

ticast delivery spanning tree is as below.

Then [b,e,f,g,h,d,c] is a result of depth first

search, and it is tractable ordered.

A tractable ordered tree has the characteristic

that on every stems of the delivery tree, the series

W
I

D
E

P
R

O
J

E
C

T
1

9
9

9
a

n
n

u
a

l
r

e
p

o
r

t

134

W I D E P R O J E C T

8

of 1 in the destination bitmap are always contin-

uous. This means that if an intermediate router

determines the first and last destinations to be

sent have the same next hop, they also can deduce

that destinations between the two have the same

next hop without looking up the routing entry. In

order for intermediate routers to determine eas-

ily whether or not they must diverge the MDO6

datagram or not, the first destination address to

be sent is stored in the destination address field

of the IPv6 header and last destination address is

stored in the MDO6 Hop-by-hop option header.

To make the tractable ordered list, three addi-

tional types of ICMP datagram(explore branch,

branch history and request for re-explore) are in-

troduced. Tractable ordered lists are combined

using the procedure outlined below.

1. The sender of MDO6 transmits

ICMP EXPLORE datagrams encapsulated

by MDO6 datagrams.

2. Intermediate routers route the ICMP data-

grams recording branch histories at diverging

points.

3. The receiver sends back the

ICMP EXPLORE datagrams to the trans-

mitter with the branch history.

4. The sender the calculates spanning tree from

branch histories.

After the sender has probed the branch envi-

ronment, the unicast routing may be changed by

the alteration of the network topology. That may

destroy the tractability of the destination list. Re-

ceivers are able to determine some kinds of rout-

ing environment changes by observing the TTLs

of received datagrams. Receivers notify senders

by ICMP REQ EXPLORE when they detect the

variation of TTLs to recombine tractable ordered

list.

Detailed Behavior of MDO6 Data-

gram with Tractable Ordered List

The example below details how an MDO6 data-

gram with a tractable ordered list is relayed by

intermediate routers. Host a transmits the data-

gram to destinations c,d,g,h with the MDO6 op-

tion header as below.

IPv6 src = a

IPv6 dst = c

IPv6 Opt = MDO6 followed

MDO6 option = tractable

MDO6 dst = h

RouteType = MDO6

of dest = 4

bitmap = [1,1,1,1]

dest addr = [c,d,g,h]

As explained in section 3, in case the destina-

tion list is not tractable, intermediate router R1

must check all destination addresses and deter-

mines that all four destinations have same next

hop r2.

At this time, MDO6 specifies that the list is

tractable ordered. R1 looks up the routing ta-

ble with IPv6 destination address “c” and with

MDO6 dest address “h”. These have the same

next hop and it reasons that destination between

c and h also has the same next hop without look-

ing it up. Then R1 forwards datagram toward

next hop r2.

R2 captures the datagram then looks up with c

and h. At this time, it is found that the next hop

for c is X and for h is Z. R2 also needs to look up

the next hop for d and h. It found X and Z are

next hops. R2 also checks the

Toward X, R2 modifies the bitmap of the rout-

ing header, destination addresses of IPv6 header

and MDO6 hop-by-hop option header and hop

limit counter as below, then forwards it.

IPv6 src = a

IPv6 dst = c

IPv6 Opt = MDO6 followed

MDO6 option = tractable

135

●
第
8
部

次
世
代
イ
ン
タ
ー
ネ
ッ
ト
プ
ロ
ト
コ
ル

●第 8部 次世代インターネットプロトコル

MDO6 dst = d

RouteType = MDO6

of dest = 4

bitmap = [1,1,0,0]

dest addr = [c,d,g,h]

The same as in the above, R2 modifies headers

as below and forwards toward Z.

IPv6 src = a

IPv6 dst = g

IPv6 Opt = MDO6 followed

MDO6 option = tractable

MDO6 dst = h

RouteType = MDO6

of dest = 4

bitmap = [0,0,1,1]

dest addr = [c,d,g,h]

Explore Branches

MDO6 system sorts the list of destination ad-

dresses into tractable order exploring the topol-

ogy of the multicast delivery tree. The transmit-

ter sends ICMP datagram assembled as a MDO6

datagram itself. Intermediate routers relays the

MDO6 datagram recording the histories of di-

vergence. The exploring datagrams reaches the

destination then the receiver sends them back to

the transmitter in a unicast ICMP datagram with

the branch history. The transmitter collects the

histories, analyzes the topology of the multicast

spanning tree and sorts the destination list into

tractable order.

Two types of ICMP datagrams were needed to

explore.

• ICMP MDO6 explore branch

• ICMP MDO6 branch history

Explore branch has 2 modes: effective explor-

ing and exhaustive exploring. Effective exploring

means omit exploring sub-trees if the tractable or-

dered list of a sub-tree is able to be combined triv-

ially.

Exploring is needed in the case below.

• When a new receiver is subscribed to the

list.

• When the routing environment is changed.

It is allowable but not recommended to explore

periodically because of the cost of processing on

intermediate routers. Instead of periodical explor-

ing, it is recommended for receivers to observe the

TTLs of received datagrams. The receiver notifies

a transmitter when TTLs change, then the trans-

mitter starts re-exploring.

ICMP explore branches

ICMP explore branches datagrams have the for-

mat below.

W
I

D
E

P
R

O
J

E
C

T
1

9
9

9
a

n
n

u
a

l
r

e
p

o
r

t

136

W I D E P R O J E C T

8

As well as ordinal MDO6 datagrams, the first

address of the destination addresses must be set

in the destination address of the IPv6 header

of ICMP explore branches. The MDO6 hop-by-

hop option must be set no-tractable & explore

branches, and tail destination address must be set.

To prevent a source address spoofing attack,

the ICMP explore branch must be protected by

an IPsec Authentication Header. Because branch

history is appended by intermediate routers, the

target area or AH hash calculation are from IPv6

header to the identifier field. The transmitter and

receivers must exchange Security Association in-

formation before exploring branches.

The type field of an ICMP header must be

MDO6 explore branch(XXX) and the code field

must be explore(YY). Checksum must be a calcu-

lated result the same as in ordinal ICMP headers.

The number of recorded history must be stored

in the # of the bitmap field. The identifier is a

unique ID that identifies each explore datagram.

It is also embedded in the ICMP branch history

datagram so that transmitter can collect result

datagrams for the explore request. Branch his-

tory bitmaps are a series of branch records.

When intermediate MDO6 routers capture the

ICMP explore branch datagrams, they check

whether they need to diverge them or not. If they

need to diverge them, they append a new desti-

nation bitmap to the tail of branch history and

increment # of bitmaps. If the exploring mode is

exhaustive, they forward the datagram for all next

hop routers. If the mode is effective they choose

a direction to forward in the way described later.

ICMP branch history

ICMP MDO6 branch history is a type of

datagram that contains the result of exploring

branches sent from receivers back to the trans-

mitter.

137

●
第
8
部

次
世
代
イ
ン
タ
ー
ネ
ッ
ト
プ
ロ
ト
コ
ル

●第 8部 次世代インターネットプロトコル

This datagram is delivered by an ordinal unicast

IP datagram.

IPv6 Header:

Destination address:

unicast address of transmitter.

Source address:

unicast address

that send back this history

ICMP header:

Type: ICMP branch explore(= XX)

Code: history(= ZZ)

of destination addresses:

Destination Addresses:

Identifier:

copy of the ICMP explore branch datagram.

of bitmap:

number of branch history records.

Branch history:

series of history records.

Forming a Tractable List from History

As explained in the above section, the trans-

mitter can get branch history records from re-

ceivers. Remember the example described in 3.1.

A transmitter a wants to sort the destination

list [b,c,d,e,f,g,h] then send ICMP MDO6 explore

branch datagram. Receivers send back the data-

grams below as a result of exploring.

[b,c,d,e,f,g,h] [b,c,d,e,f,g,h]

=============== ===============

b: [1,0,0,0,0,0,0] c: [0,1,1,1,1,1,1]

[0,1,1,0,0,1,1]

[0,1,1,0,0,0,0]

[0,1,0,0,0,0,0]

[b,c,d,e,f,g,h] [b,c,d,e,f,g,h]

=============== ===============

d: [0,1,1,1,1,1,1] e: [0,1,1,1,1,1,1]

[0,1,1,0,0,1,1] [0,0,0,1,1,0,0]

[0,1,1,0,0,0,0] [0,0,0,1,0,0,0]

[0,0,1,0,0,0,0]

W
I

D
E

P
R

O
J

E
C

T
1

9
9

9
a

n
n

u
a

l
r

e
p

o
r

t

138

W I D E P R O J E C T

8

[b,c,d,e,f,g,h] [b,c,d,e,f,g,h]

=============== ===============

f: [0,1,1,1,1,1,1] g: [0,1,1,1,1,1,1]

[0,0,0,1,1,0,0] [0,1,1,0,0,1,1]

[0,0,0,0,1,0,0] [0,0,0,0,0,1,1]

[0,0,0,0,0,1,0]

[b,c,d,e,f,g,h]

===============

h: [0,1,1,1,1,1,1]

[0,1,1,0,0,1,1]

[0,0,0,0,0,1,1]

[0,0,0,0,0,0,1]

The transmitter sorts the list by the

procedure "make_tractable_list()"

explained below.

/* branch_tree is temporal data that

holds such spanning tree structures.

o: divergent point

(e,f) attached by divergent point

means that the destination that is

diverged at this point but the

topology is not yet known below the

point.

Right example is final structure

of analyzing. Left one is

intermediate one.

*/

make_tree() { /* procedure to

combine spanning tree structure. */

make root node and attach all nodes

by the root.

/* o(b,c,d,e,f,g,h) */

for (i = 0; i < # of node ; i++)

{ /* for all destination nodes */

check the history result from node_i

depth = length of history node_i /*

depth(b) = 1 , depth(h) = 4 */

hang node_i at a divergent point

it is attached \\

with a stem that has new divergent

points \\

(depth - depth(divergent point)).

foreach(j = i; i < # of nodes; i++)

{ /* for nodes remains */

if (node_j is located on the path

from root to the node_i) {

attach node_j at the divergent

point that fork with node_i;

}

}

}

make_regular_list(tree) {

retrieve tree in depth first order

and pick nodes up.

}

make_tractable_list () {

make_tree(); /* compose spanning tree */

make_list(); /* make tractable

ordered list */

}

With this procedure, spanning tree and

tractable list are composed as followed.

139

●
第
8
部

次
世
代
イ
ン
タ
ー
ネ
ッ
ト
プ
ロ
ト
コ
ル

●第 8部 次世代インターネットプロトコル

Effective Exploring

In the example above, the transmitter can com-

pose a complete spanning tree even if the result of

exploring from node h is lost because g returns a

branch history that shows that h forks at the last

divergent point on the way to g.

Effective exploring is an exploring method cut-

ting unnecessary exploring datagrams at diver-

gent points for nodes that are trivially settled.

To cut off the exploring stems, MDO6 routers

group the to-be-sent destinations by the next hop.

Next, they count the number of groups that have

only one destination and two destinations. 6 cases

can be considered.

2 dest 1 dest no group 1 group 2 or more

groups

no group (i) (ii) (iii)

1 or more group (iii) (iii) (iii)

1. All groups have three or more destinations.

And they need to be explored for a tractable

list. Then transfer ICMP explore history

datagram for all next hops.

2. Only one group has one destination. Routers

can cut off this group. The transmitter can

determine that this node forks at this diver-

gent point by collecting other history branch

results.

3. Two or more groups have one destination or

one or more groups have two or more destina-

tions. Routers can select and cut off 2 groups

that have a destination or 1 group that has 2

destinations, because the transmitter can de-

termine that these 2 nodes fork at this diver-

gent point by collecting other history branch

result and it is trivial that 2 variation of se-

quence of these nodes are also tractable or-

dered.

The transmitter specifies the modes of exploring

by setting MDO6 hop-by-hop options. It is rec-

ommended to begin exploring in effective mode.

In case exploring fails because of lost datagrams,

try to explore exhaustively.

ICMP Re-explore Branch

Because the tractable list that is ordered by ex-

ploring the multicast spanning tree is reflect the

unicast routing environment, transition of routing

environment may break the tractability of the list.

The transmitter can collaborate with a receiver

to reform the tractable list. A receiver records

the identifier of tractable lists and it’s ordinal hop

limit count, continuously observes the TTLs of the

captured datagrams and notifies the transmitter

when it changes. The transmitter can explore the

branch again.

An ICMP type value of MDO6 Request re-

explore must be XX, and sub-code must be YY. In

W
I

D
E

P
R

O
J

E
C

T
1

9
9

9
a

n
n

u
a

l
r

e
p

o
r

t

140

W I D E P R O J E C T

8

the identifier field the receiver set the last ICMP

explore branch receiver captured.

When the transmitter receives the ICMP re-

quest re-explore the first time, it starts the ex-

ploring procedure. The receiver can notify the

transmitter again because ICMP datagrams lost

on the way to the transmitter. When the trans-

mitter receives a datagram that has the same iden-

tifier again, it must discard it.

ICMP tractability survey

By the hop-limit observation of the ordinal

datagrams, there remains possibility that nei-

ther transmitter nor receivers cannot detect the

tractability in case short cut path is opened. In

order to discover the short cut path, transmitters

can through the ICMP tractability survey data-

gram and probe the multicast spanning tree.

This datagram is an ICMP dtagram encapsu-

lated by the MDO6 headers. The type of this

141

●
第
8
部

次
世
代
イ
ン
タ
ー
ネ
ッ
ト
プ
ロ
ト
コ
ル

●第 8部 次世代インターネットプロトコル

ICMP header is same as other MDO6 ICMP data-

grams and the sub code is XY.

In a 5th octet of the header, the type number of

the transport protocol that the transmitter use to

transfer it ordinal datagrams. In current version

of this draft, only UDP(17) is permitted.

Following that, the exploring identifier of the

list is stored.

The source and the destination port of the ordi-

nal datagrams must be specified in order to iden-

tify the UDP circuit. This field will be varied by

the upper transport protocol, in future.

This surveying datagram travels from the trans-

mitter to the receivers as a non-tractable MDO6

datagram while decrementing the hop-limit count.

The destination node receive this and search the

corresponding UDP circuit. Then it compares

the identifier and hop-limit with last one. If the

node detect that hop-limit is altered, it requests

the transmitters an ICMP re-explore branch in a

same way described in Section 5.3 to trigger re-

exploring.

1.5.7 Peeling MDO6 option headers

After a MDO6 datagram passed last branching

router, it is unnecessary for routers on a remained

stem of a spanning tree to check the MDO6 op-

tions. In order to avoid the checking, the MDO6

routers may check the number of destinations

while diverging the datagram. If the lists has

only one destination, they MAY strip the hop-by-

hop option and the routing option headers. But

routers MUST leave the destination headers be-

cause the destination nodes MUST check the des-

tination option to against smurfing, as argued in

Section 2.4.

The routers MAY strip the hop-by-hop option

and the routing one, while prematurely cloning

the datagrams. [68]

1.5.8 Discussion

Security

Many ISP prohibit source routing to prevent

packets from passing along the route the ISP

cannot control. Using the MDO6 tractable list,

a cracker transmits a datagram for the target

destination along an illegal relay point while

putting target address between relay point ad-

dress. Routers can discard such illegal datagrams

checking the head and tail TLA with other desti-

nations. If head and tail have the same TLA but

others are different, the router discards it.

A host that recognizes MDO6 options replies

with an ICMP error to the sender. It may cause

a spoofing attack. In order to prevent it, MDO6

datagram must include a destination header that

causes discarding by a non-MDO6 host. And all

MDO6 routers that diverge the datagram MUST

check they have legal destination option header or

not.

MTU

MDO6 option can have up to 126 destinations.

But it shares a 2064 octet length and it is longer

than the Ethernet MTU. MDO6 is mainly focused

on the usage for small groups of participants.

Many multicast applications transmit 1024-length

payloads. In this case up to 16 participants can

join to the group. (IPv6, UDP, RTP header was

under consideration.)

1.6 IPv6 multihoming support at site exit

routers

1.6.1 Problem

IPv6 specifications try to decrease the number

of backbone routes, to cope with possible mem-

ory overflow problem in the backbone routers.

To achieve this, the IPv6 addressing architec-

ture [125] only allows the use of aggregatable ad-

dresses. Also, IPv6 network administration rules

[69] do not allow non-aggregatable routing an-

nouncements to the backbone.

In IPv4, a multihomed site uses either of the

following technique to achieve better reachability:

• Obtain a portable IPv4 address prefix,

W
I

D
E

P
R

O
J

E
C

T
1

9
9

9
a

n
n

u
a

l
r

e
p

o
r

t

142

W I D E P R O J E C T

8

and announce it from multiple upstream

providers.

• Obtain single IPv4 address prefix from ISP

A, and announce it from multiple upstream

providers the site is connected to.

The above two methodologies are not available

in IPv6, but on the other hand IPv6 sites and

hosts may obtain multiple simultaneous address

prefixes to achieve the same result.

The document provides a way to configure site

exit routers and ISP routers, so that the site can

achieve better reachability from multihoming con-

nectivity, without violating IPv6 rules. The tech-

nique uses already-defined routing protocol (BGP

or RIPng), and tunnelling of IPv6 packets, and

introduces no new protocol standard.

The document is largely based on RFC2260 [70]

by Tony Bates.

1.6.2 Goals and non-goals

The goal of this document is to achieve better

packet delivery from a site to the outside, or from

the outside to the site, even when some of site exit

link is down.

Non goals are:

• Choose the “best” exit link as possible (How

do you measure “best” exit link anyway?).

• Achieve load-balancing between multiple

exit links.

1.6.3 Basic mechanisms

We use technique described in RFC2260 sec-

tion 5.2 onto our configuration. To summarize,

for IPv4-only networks, RFC2260 says that:

• We assume that our site is connected to 2

ISPs, ISP-A and ISP-B.

• We are assigned IP address prefix, Pref-A

and Pref-B, from ISP-A and ISP-B respec-

tively. Hosts near ISP-A will get an address

from Pref- A, and vice versa.

• In the site, we locally exchanage routes for

Pref-A and Pref-B, so that hosts in the site

can communicate with each other without

using external link.

• ISP-A and our site is connected by “primary

link” between ISP router ISP-BR-A and our

router E-BR-A. ISP B and our site is con-

nected by primary link between ISP router

ISP-BR-B and our router E-BR-B.

• Establish a secondary link, between ISP-

BR-A and E-BR-B, and ISP-BR-B and E-

BR-A, respectively. Secondary link usually

is IP-over-IP tunnel. It is important to have

secondary link on top of different medium

than primary link, so that one of them sur-

vives link failure. For example, secondary

link between ISP-BR-A and E-BR-B should

go through different medium than primary

link between ISP-BR-A and E-BR- A. If

secondary link is an IPv4-over-IPv4 tunnel,

tunnel endpoint at E-BR-A needs to be an

address in Pref-A, not in Pref-B (tunnelled

packet needs to travel from ISP-BR-B to E-

BR-A, over the primary link between ISP-

BR-A and E-BR-A).

143

●
第
8
部

次
世
代
イ
ン
タ
ー
ネ
ッ
ト
プ
ロ
ト
コ
ル

●第 8部 次世代インターネットプロトコル

• For inbound packets, E-BR-A will advertise

(1) Pref-A toward ISP-BR-A with strong

preference over primary link, and (2) Pref-

B toward ISP- BR-B with weak preference

over secondary link. Similarly, E-BR-B will

advertise (1) Pref-B toward ISP-BR-B with

strong preference over

primary link, and (2) Pref-A toward ISP-BR-A

with weak preference over secondary link. Note

that we always announce Pref-A to ISP-BR-A,

and Pref-B to ISP- BR-B.

• For outbound packets, ISP-BR-A will ad-

vertise (1) default route (or specific routes)

toward E-BR-A with strong preference over

primary link, and (2) default route (or spe-

cific routes) toward E-BR-B with weak pref-

erence over secondary link. Similarly, ISP-

BR-B will advertise (1) default route (or

specific routes) toward E-BR-B with strong

preference over primary link, and (2) default

route (or specific routes) toward E-BR-A

with weak preference over secondary link.

Under this configuration, both inbound and

outbound packet can survive link failure on either

side. Routing information with weak preference

will be available as backup, for both inbound and

outbound cases.

1.6.4 Extensions for IPv6

RFC2260 is written for IPv4 and BGP. With

IPv6 and BGP4+, or IPv6 and RIPng, similar re-

sult can be achieved, without violating IPv6 ad-

dressing/routing rules.

IPv6 rule conformance

In RFC2260, we announce Pref-A toward ISP-

BR-A only, and Pref-B toward ISP-BR-B only.

Therefore, there will be no extra routing an-

nouncement to the outside of the site. This con-

forms to the aggregation requirement in IPv6 doc-

uments. Also, RFC2260 does not require portable

addresses.

Address assignment to the nodes

In IPv4, it is usually assumed that a node

will be assigned single IPv4 address. Therefore,

RFC2260 assumed that addresses from Pref-A will

be assigned to nodes near E-BR-A, and vice versa

(second bullet in the previous section).

With IPv6, a node can be assigned multiple

IPv6 addresses. So we can assign (1) one address

from Pref-A, (2) one address from Pref-B, or (3)

two addresses from both address prefixes, to single

node in the site.

This will allow more flexibility to nodes in the

site. However, this may make source address se-

lection on a node more complex. Source address

selection itself is out of scope of the document.

Configuration of links

With IPv6, primary link can be IPv6 native

connectivity, RFC1933 [56] IPv6-over-IPv4 con-

figured tunnel, 6to4 [64] IPv6-over-IPv4 encapsu-

lation, or some others.

If tunnelling-based connectivity is used in some

of primary links, administrators may want to

avoid IPv6-over-IPv6 tunnels for secondary links.

For example, if:

• primary links to ISP-A and ISP-B are

RFC1933 IPv6-over-IPv4 tunnels, and

• ISP-A, ISP-B and the site have IPv4 con-

W
I

D
E

P
R

O
J

E
C

T
1

9
9

9
a

n
n

u
a

l
r

e
p

o
r

t

144

W I D E P R O J E C T

8

nectivity with each other,

it makes no sense to configure a secondary link

by IPv6-over-IPv6 tunnel, since it will actually

be IPv6-over-IPv6-over-IPv4 tunnel. In this case,

IPv6-over-IPv4 tunnel should be used for sec-

ondary link. This configuration has a big win as

secondary link will be able to have the same path

MTU than the primary link.

Using RFC2260 with IPv6 and

BGP4+

RFC2260 approach on top of IPv6 will work

fine as documented in RFC2260. There will be no

extra twists necessary.

Using RFC2260 with IPv6 and RIPng

It is possible to run RFC2260-like configuration

with RIPng [Malkin, 1997] , with careful control

of metric. Routers in the figure needs to increase

RIPng metric on secondary link, to make primary

link a preferred path.

If we denote the RIPng metric for route an-

nouncement, from router R1 toward router R2,

as metric(R1, R2), the invariants that must hold

are:

• metric(E-BR-A, ISP-BR-A) < metric(E-

BR-B, ISP-BR-A)

• metric(E-BR-B, ISP-BR-B) < metric(E-

BR-A, ISP-BR-B)

• metric(ISP-BR-A, E-BR-A) < metric(ISP-

BR-A, E-BR-B)

• metric(ISP-BR-B, E-BR-B) < metric(ISP-

BR-B, E-BR-A)

Note that smaller metric means stronger route

in RIPng.

1.6.5 Issues with ingress filters in ISP

If the upstream ISP imposes ingress filters [71]

to outbound traffic, story becomes much more

complex. A packet with source address taken

from Pref-A must go out from ISP-BR-A. Sim-

ilarly, a packet with source address taken from

Pref-B must go out from ISP-BR-B. Since none

of the routers in the site network will route pack-

ets based on source address, packets can easily be

routed to incorrect border router.

One possible way is to negotiate with both ISPs,

to allow both Pref-B and Pref-A to be used as

source address. This approach does not work if

upstream ISP of ISP-A imposes ingress filtering.

Since there will be multiple levels of ISP on top

of ISP-A, it will be hard to understand which up-

stream ISP imposes the filter. In reality, this prob-

lem will be very rare, as ingress filter is not suit-

able for use in large ISPs where smaller ISPs are

connected beneath.

Another possibility is to use source-based rout-

ing at E-BR-A and E-BR-B. In this case, sec-

ondary link needs to be IPv6-over-IPv6 tunnel.

When an outbound packet arrives to E-BR-A with

source address in Pref-B, E-BR-A will forward it

to secondary link (tunnel to ISP-BR-B) based on

source- based routing decision. The packet will

look like this:

• Outer IPv6 header: source = address of E-

BR-A in Pref-A, dest = ISP- BR-B

• Inner IPv6 header: source = address in Pref-

B, dest = final dest

Tunneled packet will travel across ISP-BR-A

toward ISP-BR-B. The packet can go through

ingress filter at ISP-BR-A, since it has outer IPv6

source address in Pref-A. Packet will reach ISP-

BR-B and decapsulated before ingress filter is ap-

plied. Decapsulated packet can go through ingress

filter at ISP-BR-B, since it now has source address

in Pref-B (from inner IPv6 header). Notice the

following facts when configuring this:

• Not every router implements source-based

routing.

145

●
第
8
部

次
世
代
イ
ン
タ
ー
ネ
ッ
ト
プ
ロ
ト
コ
ル

●第 8部 次世代インターネットプロトコル

• Interaction of normal routing and source-

based routing at E-BR-A (and/or E-BR-B)

can be vary by router implementations.

• Interaction of tunnel egress and filter rules

at ISP-BR-B (and/or ISP-BR-A) can be

vary by router implementations and filter

configurations.

1.6.6 Observations

We limited the number of ISPs to 2 in the doc-

ument, but it can easily be extended to the cases

where we have 3 or more upstream ISPs.

If you have many upstream providers, you

would not make all ISPs backup each other, as

it requires O(N2) tunnels for N ISPs. Rather, it

is better to make N/2 pairs of ISPs, and let each

pair of ISP backup each other. It is important to

pick pairs which are unlikely to be down simulta-

neously. In this way, number of tunnels will be

O(N).

Suppose that the site is very large and it has

ISP links in very distant locations, such as in US

and in Japan. In such case, it is wiser to use this

technique only among ISP links in US, and only

among ISP links in Japan. If you use this tech-

nique between ISP A in US and ISP B in Japan,

the secondary link make packets travel very long

path, for example, from host in the site in US, to

E-BR-B in Japan, to ISP-BR-B (again in Japan),

and then to the final destination in US. This may

not make sense for actual use, due to excessive

delay.

Similarly, in a large site, addresses must be as-

signed to end nodes with great care, to minimize

delays due to extra path packets may travel. It

may be wiser to avoid assigning an address in a

prefix assigned from Japanese ISP, to an end node

in US.

If one of primary link is down for a long time,

administrators may want to control source address

selection on end hosts so that secondary link is less

likely to be used. This can be achieved by mark-

ing unwanted prefix as deprecated. Suppose the

primary link toward ISP-A has been down. You

will issue router advertisement [Thomson, 1998;

Narten, 1998] packets from routers, with preferred

lifetime set to 0 in prefix information option for

Pref-A. End hosts will consider addresses in Pref-

A as deprecated, and will not use any of them as

source address for future connections. If an end

host in the site makes new connection to outside,

the host will use an address in Pref-B as source ad-

dress, and reply packet to the end host will travel

primary link from ISP-BR-B toward E-BR-B.

Some of non-goals (such as “best” exit link se-

lection) can be achieved by combining technique

described in this document, with some other tech-

niques. One example of the technique would be

the source/destination address selection heuristics

on the end nodes.

1.6.7 Security considerations

The configuration described in the document in-

troduces no new security problem.

If primary links toward ISP-A and ISP-B

have different security characteristics (like en-

crypted link and non-encrypted link), administra-

tors needs to be careful setting up secondary links

tunneled on them. Packets may travel unwanted

path, if secondary links are configured without

care.

1.7 Overview of Transition Techniques

1.7.1 Introduction

In the early stage of the migration from IPv4[57]

to IPv6[125], it is expected that IPv6 sites will

be connected to the IPv4 Internet. On the other

hand, in the late stage of the migration, IPv4 sites

will be connected to the IPv6 Internet. IPv4 hosts

need to be connected to the Internet even after the

IPv4 address space is exhausted. So, it is neces-

sary to develop translators to enable direct com-

munication between IPv4 hosts and IPv6 hosts.

This memo assumes the following for the prac-

tical migration scenario from IPv4 to IPv6:

W
I

D
E

P
R

O
J

E
C

T
1

9
9

9
a

n
n

u
a

l
r

e
p

o
r

t

146

W I D E P R O J E C T

8

1. We cannot modify both IPv4 hosts and IPv6

hosts in typical environments.

2. A small space of IPv4 address is also assigned

to an IPv6 site according to the current severe

address assignment policy.

3. An IPv4 site can also obtain a large space of

IPv6 address.

In this memo, the word “translator” is used as

an intermediate component between an IPv4 host

and an IPv6 host to enable direct communica-

tion between them, without requiring any modifi-

cations to them according to the assumption (1)

above.

This memo is organized as follows: Three trans-

lation techniques are described in Section 2. Ad-

dress mapping between IPv4 and IPv6 is discussed

in Section 3.

Both SIIT[59] and SOCKS[216] are a kind of

translator between IPv4 and IPv6. This memo,

however, does not cover such technologies because

they require specific modifications to IPv4 and/or

IPv6 hosts. BIS[72] is a technology to make an

IPv4 host be dual-stack. So, BIS is outside the

scope of this memo.

1.7.2 Translation Techniques of IPv4 and IPv6

For translation between IPv4 and IPv6, three

technologies are available: header conversion,

transport relay, and application level gate-

way(ALG).

Header Conversion

Header conversion refers to converting IPv6

packet headers to IPv4 packet headers, or vice

versa, and adjusting (or re-calculating) checksums

if necessary. This is IP level translation. (Note

that NAT [62] is an IPv4-to-IPv4 header con-

verter.)

The procedure to translate IPv4 packets to IPv6

packets, or vice versa, is defined as a part of SIIT.

NATPT[60] (excluding its ALG portion) is an ex-

ample this kind of translator, which is based on

SIIT. (Note that generic concerns about header

translation were originally raised in [73].)

Header conversion could be fast enough, but it

has disadvantages in common with NAT. A good

example is difficulty in the translation of network

layer addresses embedded in application layer pro-

tocols, which are typically found in FTP and FTP

Extensions[74].

Also, header conversion has problems which are

not found in NAT: a large IPv4 packet is frag-

mented to IPv6 packets because the header length

of IPv6 is typically 20 bytes larger than that of

IPv4. Also not all the semantics of ICMP[75] and

that of ICMPv6[134] are inter-changeable. How-

ever, the latter problem is believed minor in prac-

tical cases.

Transport Relay

Transport relay refers to relaying a TCP,

UDP/IPv4 session and a TCP, UDP/IPv6 session

in the middle. This is transport level translation.

For example, a typical TCP relay server works

as follows: when a TCP request reaches a relay

server, the network layer tosses it up to the TCP

layer even if the destination is not the server’s ad-

dress. The server accepts this TCP packet and es-

tablishes a TCP connection with the source host.

Then the server also makes one more TCP con-

nection to the real destination. When two connec-

tions are established, the server reads data from

one of the two connections and writes the data to

the other.

Transport relay does not have problems like

fragmentation or ICMP conversion, since each ses-

sion is closed in IPv4 and IPv6, respectively, but it

does have problems like the translation of network

layer addresses embedded in application layer pro-

tocols.

Application Level Gateway (ALG)

An ALG for a transaction service is used to hide

site information and improve service performance

with a cache mechanism. An ALG can be a trans-

lator between IPv4 and IPv6 if it supports both

protocols. This is application level translation.

147

●
第
8
部

次
世
代
イ
ン
タ
ー
ネ
ッ
ト
プ
ロ
ト
コ
ル

●第 8部 次世代インターネットプロトコル

Since each service is closed in IPv4 and IPv6,

respectively, there are no disadvantages found in

header conversion, but ALGs for each service must

be capable of running over both IPv4 and IPv6

1.7.3 Address Mapping

Address mapping refers to the allocation of an

IPv6 destination address for a given IPv4 destina-

tion address, and vice versa. It also includes the

allocation of an IPv6 source address for a given

IPv4 source address, and vice verca. If transla-

tion is performed at the Internet protocol level or

transport level, address mapping is an essential

issue.

If an FQDN(Fully Qualified Domain Name) is

used to specify a target host, address mapping is

not necessary. So, the ALG is free of this problem.

In the case that address mapping is dynamic, it

must be implemented in interaction with DNS. If

it is static and proliferation of mapped addresses

is limited to a small region(i.e. Translator A, de-

scribed later), it can be implemented by extending

resolver libraries on local hosts. However, this vi-

olates the assumption (1). So, it is recommended

that DNS is used for address mapping even in the

static case.

Examples:

An example of static mapping: suppose that an

application tries resolving AAAA/A6[76] records

against a host name. A DNS server receives this

query but it can resolve only A record. In this case,

the server converts them to AAAA/A6 records

embedding them into the pre-configured prefix.

Then it returns these records to the application.

([60] also discusses this mechanism.)

An example of dynamic mapping: if a DNS

server receives a request to return A records for

a host name, but only an AAAA/A6 record is re-

solved, the server picks up an IPv4 address from

its address pool then returns it as A record.

There are two criteria for addresses to be as-

signed: (1) the assigned addresses must be reach-

able between a connection initiating host and a

translator, and (2) if addresses are assigned dy-

namically by DNS, it must be ensured that the

DNS cache doesn’t cause problems for further

communications.

If transport relay is used for translation, ad-

dress mapping is necessary only for destination

addresses since source address mapping is closed

in the relay server. In other words, the protocol

association of the first transport session is mapped

to a local port number on the relay server.

For header conversion, source address mapping

is not essential, either. A protocol association can

be represented by a local port of the conversion

router or by an address out of the pool or by both.

Translator Categories

This memo categorizes IPv4/IPv6 translators

from the address mapping point of view. The first

picture illustrates the Internet in the early stage

of the migration. The second one does that in the

late stage.

For simplicity, IPv4/IPv6 translators are cate-

gorized into four types. Note that practical trans-

lation stories could be combination of these four

types.

Translator A It is used in the early stage of

transition to establish a connection from an

IPv6 host in an IPv6 site to an IPv4 host in

the IPv4 Internet.

Translator B It is used in the early stage of

transition to establish a connection from an

IPv4 host in the IPv4 Internet to an IPv6

host in an IPv6 site.

W
I

D
E

P
R

O
J

E
C

T
1

9
9

9
a

n
n

u
a

l
r

e
p

o
r

t

148

W I D E P R O J E C T

8

Translator C It is used in the late stage of tran-

sition to establish a connection from an IPv4

host in an IPv4 site to an IPv6 host in the

IPv6 Internet.

Translator D It is used in the late stage of tran-

sition to establish a connection from an IPv6

host in the IPv6 Internet to an IPv4 host in

an IPv4 site.

Observations on Address Mapping for

Each Translator

Here are observations on address mapping for

each translator:

Translator A Destination address mapping:

global IPv4 to global IPv6 Static or dy-

namic: static Address pool: a part of

assigned global IPv6 addresses to the IPv6

site DNS cache problem: not encoun-

tered Implementation: straightforward

Note: IPv4 addresses can be embedded to

pre-configured IPv6 prefix.

Translator B Destination address mapping:

global IPv6 to global IPv4 Static or dy-

namic: dynamic Address pool: assigned

global IPv4 addresses to the IPv6 site DNS

cache problem: potentially proliferated

into the IPv4 Internet Implementation:

very hard Note: it is recommended to use

static address mapping for several IPv6

hosts(servers) in the IPv6 site to provide

their services to the IPv4 Internet or to use

dual-stack servers without translators.

Translator C Destination address mapping:

global IPv6 to private IPv4 Static or

dynamic: dynamic Address pool: a part of

private IPv4 addresses DNS cache problem:

closed to the IPv4 site Implementation:

possible Note: mapped addresses should

be reserved as long as possible for UDP

applications which can’t tell the end of

communications and for applications which

cache DNS entries.

Translator D Destination address mapping:

global IPv4 to global IPv6 Static or dy-

namic: static Address pool: assigned global

IPv6 addresses to the site DNS cache

problem: not encountered Implementation:

straightforward Note: IPv4 addresses can

be embedded to pre-configured IPv6 prefix.

Security Consideration

When one or more IPv4/IPv6 translators are

used in the intermediate path of an IPv4 host and

an IPv6 host, end-to-end authentication mecha-

nisms based on IPv4 and/or IPv6 address (includ-

ing IPsec[77]) is not available. This problem is

well-known in the case of NAT.

1.8 An Extension of Format for IPv6 Scoped

Addresses

1.8.1 Introduction

There are several types of scoped addresses de-

fined in the “IPv6 Addressing Architecture” [78].

Since uniqueness of a scoped address is guaranteed

only within a corresponding area of the scope, the

semantics for a scoped address is ambiguous on a

scope boundary. For example, when a user spec-

ifies to send a packet from a node to a link-local

address of another node, the user must specify the

link of the destination as well, if the node is at-

tached to more than one link.

This characteristic of scoped addresses may in-

troduce additional cost to scope-aware applica-

tions; a scope-aware application may have to pro-

vide a way to specify an instance of a scope for

each scoped address (e.g. a specific link for a link-

local address) that the application uses. Also, it

is hard for a user to “cut and paste” a scoped

address due to the ambiguity of its scope.

Applications that are supposed to be used in

end hosts like telnet, ftp, and ssh, are not usually

aware of scoped addresses, especially of link-local

addresses. However, an expert user (e.g. a net-

work administrator) sometimes has to give even

149

●
第
8
部

次
世
代
イ
ン
タ
ー
ネ
ッ
ト
プ
ロ
ト
コ
ル

●第 8部 次世代インターネットプロトコル

link-local addresses to such applications.

Here is a concrete example. Consider a multi-

linked router, called “R1”, that has at least two

point-to-point interfaces. Each of the interfaces

is connected to another router, called “R2” and

“R3”. Also assume that the point-to-point inter-

faces are “unnumbered”, that is, they have link-

local addresses only.

Now suppose that the routing system on R2

hangs up and has to be reinvoked. In this situa-

tion, we may not be able to use a global address of

R2, because this is a routing trouble and we can-

not expect that we have enough routes for global

reachability to R2.

Hence we have to login R1 first, and then try

to login R2 using link-local addresses. In such

a case, we have to give the link-local address of

R2 to, for example, telnet. Here we assume the

address is fe80::2.

Note that we cannot just type like

% telnet fe80::2

here, since R1 has more than one interface (i.e.

link) and hence the telnet command cannot detect

which link it should try to connect.

Although R1 could spray neighbor solicitations

for fe80::2 on all links that R1 attaches in order to

detect an appropriate link, we cannot completely

rely on the result. This is because R3 might also

assign fe80::2 to its point-to-point interface and

might return a neighbor advertisement faster than

R2. There is currently no mechanism to (auto-

matically) resolve such conflict. Even if we had

one, the administrator of R3 might not accept to

change the link-local address especially when R3

belongs to a different organization from R1’s.

This document defines an extension of the for-

mat for scoped addresses in order to overcome this

inconvenience. Using the extended format with

some appropriate library routines will make scope-

aware applications simpler.

1.8.2 Assumptions and Definitions

In this document we adopt the same assump-

tion of characteristics of scopes as described in

the scoped routing document [79].

We use the term “scope zone” to represent a

particular instance of a scope in this document.

Note, however, that the terminology for such a

notion is to be defined in a separate document.

1.8.3 Proposal

The proposed format for scoped addresses is as

follows:

<scoped_address>%<scope_id>

where <scoped address> is a literal IPv6 ad-

dress, <scope id> is a string to identify the scope

of the address, and ‘%’ is a delimiter charac-

ter to distinguish between <scoped address> and

<scope id>.

The following subsections describe detail defini-

tions and concrete examples of the format.

Scoped Addresses

The proposed format is applied to all kinds of

unicast and multicast scoped addresses, that is,

all non-global unicast and multicast addresses.

The format should not be used for global ad-

dresses. However, an implementation which han-

dles addresses (e.g. name to address mapping

functions) MAY allow users to use such a nota-

tion.

Scope Identifiers

An implementation SHOULD support at least

numerical identifiers as <scope id>, which are

non-negative decimal numbers. Positive identi-

fiers MUST uniquely specifies a single instance of

scope for a given scoped address. An implemen-

tation MAY use zero to have a special meaning,

for example, a meaning that no instance of scope

is specified.

An implementation MAY support other kinds

of strings as <scope id> unless the strings conflict

with the delimiter character. The precise seman-

tics of such additional strings is implementation

dependent.

W
I

D
E

P
R

O
J

E
C

T
1

9
9

9
a

n
n

u
a

l
r

e
p

o
r

t

150

W I D E P R O J E C T

8

One possible candidate of such strings would be

interface names, since interfaces uniquely disam-

biguate any type of scopes [79]. In particular, if

an implementation can assume that there is a one-

to-one mapping between links and interfaces (and

the assumption is usually reasonable,) using inter-

face names as link identifiers would be natural.

An implementation could also use interface

names as <scope id> for larger scopes than links,

but there might be some confusion in such use.

For example, when more than one interface be-

longs to a same site, a user would be confused

about which interface should be

used. Also, a mapping function from an address

to a name would encounter a same kind of problem

when it prints a scoped address with an interface

name as a scope identifier. This document does

not specify how these cases should be treated and

leaves it implementation dependent.

It cannot be assumed that a same identifier is

common to all nodes in a scope zone. Hence the

proposed format MUST be used only within a

node and MUST NOT be sent on a wire.

Examples

Here are examples. The following addresses

fe80::1234 (whose link identifier is 1)

fec0::5678 (whose site identifier is 2)

ff02::9abc (whose link identifier is 5)

ff08::def0 (whose organization identifier is 10)

would be represented as follows:

fe80::1234%1

fec0::5678%2

ff02::9abc%5

ff08::def0%10

If we use interface names as <scope id>, the

followings could also be represented as follows:

fe80::1234%ne0

fec0::5678%ether2

ff02::9abc%pvc1.3

ff08::def0%interface10

where the interface “ne0” belongs to link 1,

“ether2” belongs to site 2, and so on.

Omitting Scope Identifiers

This document does not intend to invalidate the

original format for scoped addresses, that is, the

format without the scope identifier portion. An

implementation SHOULD rather provide a user

with a “default” instance of each scope and allow

the user to omit scope identifiers.

Also, when an implementation can assume that

there is no ambiguity of any type of scopes on a

node, it MAY even omit the whole functionality

to handle the proposed format. An end host with

a single interface would be an example of such a

case.

1.8.4 Combinations of Delimiter Characters

There are other kinds of delimiter characters

defined for IPv6 addresses. In this section, we

describe how they should be combined

with the proposed format for scoped addresses.

The IPv6 addressing architecture [78] also de-

fines the syntax of IPv6 prefixes. If the ad-

dress portion of a prefix is scoped one and the

scope should be disambiguated, the address por-

tion SHOULD be in the proposed format. For

example, the prefix fec0:0:0:1::/64 on a site whose

identifier is 2 should be represented as follows:

fec0:0:0:1::%2/64

There is the preferred format for literal IPv6 ad-

dresses in URL’s [80]. When a user types the pre-

ferred format for an IPv6 scoped address and the

scope should be explicitly specified, the address

part in brackets SHOULD be in the proposed for-

mat. Thus, for instance, the user should type as

follows:

http://[fec0:0:0:2::1234%10]:80/index.html

1.8.5 Related Issues

In this document, it is assumed that an iden-

tifier of a scope is not necessarily common in a

151

●
第
8
部

次
世
代
イ
ン
タ
ー
ネ
ッ
ト
プ
ロ
ト
コ
ル

●第 8部 次世代インターネットプロトコル

表 1.1 KAME のマージ状況

IPv4-IPsec IPv6 IPv6-IPsec KAME パッチ

BSD/OS 3 なし なし なし あり

BSD/OS 4.1 NRL NRL NRL あり

FreeBSD 2.2.8 なし なし なし あり

FreeBSD 3.4 なし なし なし あり

FreeBSD 4.0 KAME KAME KAME あり

FreeBSD-current KAME KAME KAME なし

NetBSD 1.4.2 なし なし なし あり

NetBSD-current KAME KAME KAME なし

OpenBSD 2.6 オリジナル なし なし あり

OpenBSD-current オリジナル KAME オリジナル なし

scope zone. However, it would be useful if a com-

mon notation is introduced (e.g. an organization

name for a site). In such a case, the proposed for-

mat could be commonly used to designate a single

interface (or a set of interfaces for a multicast ad-

dress) in a scope zone.

When the network configuration of a node

changes, the change may affect <scope id>. Sup-

pose that the case where numerical identifiers are

sequentially used as <scope id>. When a net-

work interface card is newly inserted in the node,

some identifiers may have to be renumbered ac-

cordingly. This would be inconvenient, especially

when addresses with the numerical identifiers are

stored in non-volatile storage and reused after re-

booting.

1.8.6 Security Considerations

The use of this approach to represent IPv6

scoped addresses does not introduce any known

new security concerns, since the use is restricted

within a single node.

1.9 KAMEのマージ状況

最後に KAME ソフトウェアのマージ状況につい

てまとめる。

今までバラバラだった各 BSD の IPv6、IPv4-

IPsec、IPv6-IPsec コードは、KAME パッケージ

を採用した。現状を表 1.1 にまとめる。2000 年 3

月現在 KAME が正式に組み込まれているのは、

{FreeBSD,NetBSD,OpenBSD}-currentである。そ
の他の BSDの各バージョンには、パッチ形式として

KAMEパッケージを提供している。なお、BSD/OS

も KAME に移行する作業が進められている。

W
I

D
E

P
R

O
J

E
C

T
1

9
9

9
a

n
n

u
a

l
r

e
p

o
r

t

152

