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2.1 Introduction

In this paper, we introduce an on-going effort
within the WIDE project to collect a set of free
tools to build a traffic data repository containing
detailed information of our backbone traffic. The
WIDE project makes the resulting data sets pub-
licly accessible so that this project is not only on
freely-redistributable software but also on freely-
redistributable traffic data sets.

The WIDE project is a research consortium in
Japan established in 1987. The members of the
project include network researchers, engineers and
students of universities, industries and govern-
ment. The focus of the project is empirical study
on a live large scale internet. Thus, WIDE runs
its own internet testbed carrying both commodity
traffic and research experiments. WIDE is also re-
sponsible for various Internet operations including
M-root name server, NSPIXP(Network Service
Provider Internet eXchange Point), AI3(Asian In-
ternet Interconnection Initiatives), and 6Bone in
Japan.

The goals of our traffic repository are to pro-
mote traffic analysis research as well as to pro-
mote development of tools. Traffic characteristics
in a backbone network are considerably different
from those in a local area network but few peo-
ple have access to traffic traces from backbone
networks. Obtaining details of backbone traffic
is getting harder as more backbone networks are
shifting to commercial ISPs, which motivate us to
build a traffic repository [8].

Traffic traces are collected at several points
within the WIDE backbone. Traces are in tcp-
dump raw format so that all header information
is available and can be used for detailed analysis.

We use commodity hardware and the existing
freely-available tools for building our traffic repos-

itory so that it has nothing technically fancy. Our
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focus is rather continuity in making the latest
traces available. At this writing, daily traces at
one sample point have added up to the record of

more than a year.

2.2 Related Work

Packet Monitoring

Packet capturing were brought with the advent
of Ethernet. The first personal computer, Xe-
rox Alto, already had programs to monitor Eth-
ernet. As Ethernet came into wide use, dedicated
network monitors became indispensable to devel-
opers and operators. The CMU/Standford enet
packet filter is the first UNIX based packet fil-
ter developed in 1980 [9)].
into the Ultrix Packet Filter at DEC, NIT under
SunOS, and BPF.

Userland programs that prints the headers of

It eventually evolved

packets appeared with UNIX workstation. Sun
implemented NIT (Network Interface Tap) to cap-
ture packets and etherfind to print packet headers.
The advantage of UNIX-based monitoring tools is
that users can use other software tools available
on UNIX for manipulating and analyzing packet
traces.

tepdump [10] is probably the most popular
packet capturing tool in the UNIX community.
tepdump first appeared in 1989 and merged into
BSD Net Release2 in 1991. tcpdump is based on
a powerful filtering mechanism, the BSD packet
filter (BPF) [11]. The packet capturing and filter-
ing facilities of tcpdump are implemented in a sep-
arate library, pcap [12]. The pcap library became
independent from tcpdump in 1994, and there are
a wide range of network monitoring or analysis
tools which integrate the pcap library. In 1999,
tecpdump.org [13] was organized by volunteers to
maintain the tcpdump code.

High-performance monitoring systems are ex-
plored by OC3MON [14] and its successors that
are based on a PC hardware but exclusively for

ATM . CoralReef [15] is a package developed at
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CAIDA to analyze the output of OCxMON.
Packet monitoring techniques have been used to
gather long-term statistics. A pioneering work is
statspy [16] in the NNStat package developed at
ISI. As SNMP becomes widely available, network
statistics tools are geared toward SNMP. MRTG
[17] and its successor RRDtool [18] are popu-
lar tools to collect traffic counters from routers
through SNMP. More recently, cflowd [19] is de-
veloped at CAIDA to make use of Cisco’s NetFlow

[20] that exports statistics of flow cache entries.
Traffic Archive

The Internet Traffic Archive (ITA) [21] was cre-
ated in 1995 by Danzig et al. to promote re-
search on network analysis. ITA has several traces
studied in published papers as well as unstudied
traces. ITA is an important step towards open
traffic data sets because research based on open
data sets can be confirmed or further analyzed by
someone else, which leads to deeper studies.

There are several different formats in the ITA
archives but the majority of the available traces
are in the tcpdump ascii output format. A set of
shell scripts, called sanitize, are written by Pax-
son and used to scramble addresses in the tcpdump
ascii output format to provide anonymity to net-
work users.

Our traffic repository was motivated in part by
the effort at ITA. We employ automatic traffic
sampling at regular intervals since the archives at
ITA do not seem to be updated much. We also
thought that the tepdump raw format is preferable
to the ascii format because the raw format has
more information and powerful tools are available

to manipulate the raw format.

2.3 Motivation

WIDE installed several traffic sampling points
within the backbone since traffic data has been
essential to both network research and operation.
However, traffic information tend to be confined

to a small set of members, and it is difficult to



share detailed information without a framework to
support sharing. This leads to the idea of a traffic
trace repository in which detailed traffic traces are
archived and easily accessible to everyone.

In order to build a traffic trace repository and
make good use of traces, we had to solve two prob-
lems. One is to create a safety measure for han-
dling traces that include privacy information. The
other is automation of the trace acquisition pro-
cess.

Traffic traces include private information of the
network users. Special care is needed to handle
traces, and thus, only limited members are al-
lowed to handle raw traces. Still, there is always
a risk of accidents when we handle raw traces.
Hence, even if traces are available only for lim-
ited members, it is important to make traces safe
enough to prevent possible accidents. On the
other hand, if traces are made free from user pri-
vacy, we can make the traces open to the public
since WIDE does not need to worry about its im-
pact to stock prices.

Automation of the maintenance process is the
other important factor. Collecting traffic traces
in a long term needs perseverance, and cannot be
achieved unless most of the work are automated.
Not only automation of acquisition but also au-
tomation of summarization and visualization are
essential to maintaining the repository because
people tend to run out of energy if no feedback
is given.

There are strong concerns about security and
privacy with regard to making traces publicly
available. After a long discussion, we have reached
a conclusion that the benefits outweigh the risks.

Or, at least, it is worth a challenge.

2.4 Privacy Issues

Traffic traces contain privacy information in-
cluding network addresses and application pay-
load so that it is important to understand issues
involved in user privacy.

There are 2 major issues regarding user privacy.

W I D E

Removing user data: User private data must
be removed from traces. Traffic traces
should have only protocol headers and pro-
tocol payload which contains user data

should be removed.

Providing anonymity: [P address is unique
and can be used to identify a user, and thus,
addresses should be scrambled to provide

anonymity to users.

There are a wide variety of research purposes
that have different requirements for traces. No
single method will satisfy all the requirements and
still keep user privacy. We are trying to provide
traces which can be used for a wide range of re-
search. For research which has specific require-
ments, our traces will provide a starting point,
and can be used to narrow down its requirements.
Then, it will be easier to find a specific method to

meet the requirements.

2.4.1 Removal of Payload

As a general rule, we should remove the pay-
load of TCP or UDP that contains users’ private
information. If another protocol header exists on
top of a TCP or UDP header and the inner header
does not contain user private information, the in-
ner header may be maintained. If it is difficult
to judge whether a header contains user private
information or not, the header should be removed
as a precaution.

Once protocol payload is removed, the risk of
jeopardizing user privacy is considerably reduced.
It would be safe enough for use within a closed
group. However, in order to make traces open
to the public, we need a further level of security.
That is, we need to provide anonymity to network

users.

2.4.2 Address Scrambling

We should provide anonymity to individuals
and organizations by scrambling source and des-
tination addresses in IP headers. IP addresses,

however, have hierarchical structures and special
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addresses such as broadcast addresses, multicast
addresses and private addresses. It is not easy
to provide anonymity but still keeping the struc-
tures and special meanings. We should chose an
appropriate method according to the importance
of anonymity in traces and the purpose of the data

set.
Address Scrambling Methods

Address scrambling maps one IP address to an-
other IP address. There are a number of methods

to scramble addresses.

1. the sequential numbering method maps each
IP address occurrence to a sequential number.
Although this method is easy to understand,
it is difficult to preserve other meanings of
addresses.

2. the hash method maps an IP address to an-
other IP address using a hash function in or-
der to provide random mapping. It is also

possible to preserve the common address pre-

fix between 2 addresses by maintaining an or-
dered tree of addresses similar to a routing
table. In this method, if 2 IP addresses have

a common address prefix, they are mapped

to addresses with a common address prefix of

the same length. Note that, although it pre-
serves routing information, this method has

a risk of being reverse-engineered. For exam-

ple, one can use a well-known server’s address

as a clue to de-scramble the address prefix

[22]. The impact of this threat, however, de-

pends on the importance of hiding the net-

work topology.

There are several choices regarding address con-

sistency between two or more data sets.

1. all occurrences of an address are to be
mapped to a single address within a data set.
2. all occurrences of an address are to be
mapped to a single address across different

data sets.
Longer consistency is convenient for analysis but
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it also makes reverse-engineering easier.
Address Issues

non-unique addresses Addresses not contain-
ing user identifiers may be left without
scrambling. Those addresses include broad-
multicast addresses, and

In the case of IPv6,

cast addresses,
private addresses.
link-local addresses and site-local addresses
could contain unique interface identifier
(e.g., MAC address). A solicited-node mul-
ticast address contain lower bits of the
Therefore, these IPv6 ad-

dresses should be scrambled as well.

global address.

addresses in upper layers IP addresses could
be contained in an upper protocol message.
For instance, ICMP and DNS contain IP ad-
dresses in the protocol payload. These ad-
dresses must be scrambled in the same man-

ner, or removed.

MAC addresses Link-layer headers (e.g., Eth-
ernet headers) contain MAC addresses. A
MAC address contains vendor and model
information which could be part of user
privacy or lead to a security hole. How-

ever, traces from backbone networks do not

contain MAC addresses of user nodes since

MAC addresses recorded in the trace are

only from local nodes on the same segment.

IP/TCP options An IP options can contain IP
addresses. Addresses in IP options should
be scrambled in the same manner. Other-
wise, IP options should be replaced by NOP

options, or removed.

On the other hand, TCP options do not
contain privacy information. TCP options
carry useful information to analyze TCP be-
haviors so that TCP options may be pre-

served.



2.5 Methods

We use several tools to automatically maintain
the traffic repository. The details of these tools are
described later in this section. New trace data is
collected from sampling points to the repository
during the night. A web page for the new trace is
automatically created.

At a sampling node, a script is invoked from
cron to run tepdump and compress the trace. The
raw trace file is placed under a certain directory.

At the repository node, another script is in-
voked from cron to fetch the raw trace and process
it. The script copies the compressed raw trace
from the sampling point over a secure session us-
ing scp. Then, the script uncompresses the trace
and invokes tcpdpriv to remove privacy informa-
tion from the trace. The trace is fed into tcpdstat
to get a summary output. The script creates a
web page for the trace, and updates the index
page to include the newly created page. Finally,
the script compresses the trace data again, and

place it for ftp.

2.5.1 tcpdump

64-bit timestamp

32-bit captured data length

32-bit packet length

MAC header

IP Header (20 bytes)

IP options (if any)

TCP Header + TCP options (if any)
or UDP Header ot ICMP Header or ...

— NN NN
NN

0 2.1 Pcap header format

We use tcpdump to obtain traffic traces because
tepdump is widely used, and installed as part of
the default tools on many systems. In addition,
there are many tools that integrates the pcap li-
brary and be able to read tcpdump output files.
Those tools include teptrace, tepslice, tepdstat and
ttt.

tepdump, by default, puts the network interface

W I D E

into promiscuous mode to capture every packet
going across the wire. In the BSD-derived kernel,
BPF is implemented as a packet capture mecha-
nism. When BPF is enabled, the network driver in
the kernel passes both sending and receiving data-
link level frames to BPF. BPF performs packet
filtering if necessary, adds timestamp, and copies
the fixed length from the head of the frame into
the store buffer. tcpdump can read multiple frames
in a single read from the store buffer in the ker-
nel in an efficient manner. tcpdump, by default,
prints the header information of each packet in a
text format. With -w option, tepdump writes out
the packet frames into a specified file. With -r
option, tcpdump reads from a saved file instead
of a network interface to replay a saved file. The
pcap library is used to read or write data in the
raw format. Thus, it is easy to write a program
to read or write packets in the tcpdump format.

Figure 2.1 shows the format of raw tcpdump out-
put. In the BSD systems, the kernel uses micro-
time() for timestamp so that the precision of the
timestamp depends on the machine architecture.
Also, the timestamp is taken when a packet is
passed to BPF from the network driver so that it
is the time that the driver sees that packet.

2.5.2 tcpdpriv

We use tepdpriv to remove user data and scram-
ble addresses. tcpdpriv was developed by Greg
Minshall at Ipsilon Networks in 1996. tcpdpriv re-
moves privacy information in a raw tcpdump out-
put. tepdpriv uses the pcap library to read and
write tepdump output files. tepdpriv removes the
payload of TCP and UDP, and the entire IP pay-
load for other protocols. tcpdprivimplements sev-
eral address scrambling methods; the sequential
numbering method and its variants, and the ad-
dress prefix preserving method.

However, the original tcpdpriv lacks several fea-

tures we need:
e it does not support IPv6.

e it does not preserve TCP options that are

65

PR OUJECT

OJOoO0OOooooooooooooooooono oo e




e[ 50 OO0OOOOOOOOOOOOODOOOODOOOO

essential to analyzing TCP behaviors.

e we also want to preserve other protocols

such as ICMP, ARP and DNS.

Thus, we have modified the original tcpdpriv to
support these features. The default settings are
also changed to meet our requirements since the
options seem to be too complex and a mistake of

option selection could be fatal to user privacy.

2.5.3 tcpdstat

We developed tcpdstat to get summary informa-
tion of a tepdump file. tcpdstat reads a tepdump
file using the pcap library and prints the statistics
of a trace. The output includes the number of
packets, the average rate and its standard devia-
tion, the number of unique source and destination
address pairs, and the breakdown of protocols.

tepdstat is intended to provide a rough idea
of the trace content, and to be processed for a
web page. It provides helpful information to find
anomaly in a trace. For example, if the traffic
volume of ICMP or DNS is unusually large, or if
the traffic volume of a specific address pair is un-

usually large, it is a sign of some form of a DoS
attack.

2.5.4 Other Tools

There are other tools that are not used to create
the traffic repository but can read tcpdump files
and useful for analyzing traces afterwards.

tepslice by Vern Paxon extracts portions of a
trace. tcptrace by Shawn Ostermann produces
detailed information about each TCP connection
in a trace. tracelook by Greg Minshall provides
zgraph plots of TCP connections in a trace. flstats
also by Minshall prints flow statistics. ethereal by
Gerald Combs is a traffic analizer with a graphi-
cal user interface. ethereal uses the pcap library,
and thus, can replay a tepdump file. Our ttt (Tele
Traffic Tapper) tool displays composition graphs
of protocols and host addresses in real time. ttt

can replay a trace file at a given speed so that it

is possible to replay a 1-hour trace in 1 minute.
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2.6 Current Status

Currently, we are collecting daily-traces from

the following sampling points.

trans-pacific is a 1.5Mbps T1 line, one of the
several international links of WIDE. The
sampling point is on an Ethernet segment
one hop before the T1 line. The incoming
traffic (from U.S. to Japan) of this link is

fairly congested.

6Bone is located on a FastEthernet segment con-
nected to NXPIXP-6 (An IPv6 internet ex-
change point in Tokyo) [23]. The segment
located at an AS boundary, and the traffic
includes only native IPv6 and does not in-
clude IPv4 except tunneled IPv4 over IPv6.
Because NXPIXP-6 is built on a FastEther-
net switch, only a small portion of the total

traffic can be captured.

Traces are sampled at a fixed time of day. This
is obviously not desirable and we need to find a
better sampling method.

We started daily data collection at the trans-
pacific point in February 1999. Since WIDE has
a number of connections to the Internet exchange
points, the return path of a session does not nec-
essarily go through the same link.

The size of each trace file is about 100M bytes
(about 40MB when compressed). We believe
100MB is an appropriate size for handling on a
commodity PC as well as for fetching over the net-
work, still has enough information for statistical
analysis.

Figure 2.2 is a sample output of tcpdstat from
the trans-pacific point on February 12, 2000. This
1-hour-long trace contains about 2 million pack-
ets, the number of unique address pairs is about
56K. HTTP is dominant in the trace, 70% of the
total packets and 62% of the total bytes.

Among the collected traces, some data sets con-
tain traces of DoS attacks such as portscan and
smurf. These traces could be useful for develop-

ment of tools to detect such attacks.



DumpFile: 200002121359.dump
FileSize: 140.35MB
Id: 200002121359

StartTime: Sat Feb 12 13:59:00 2000

EndTime: Sat Feb 12 15:06:29 2000
TotalTime: 4048.47 seconds
TotalCapSize: 108.37MB CapLen: 76
# of packets: 2095754 (449.89MB)

AvgRate: 932.21Kbps stddev:312.68K

Packet Size Histogram (including MAC headers)

[ 32- 63]: 1315693
[ 64- 127]: 258761
[ 128- 255]: 121532
[ 256- 511]: 113037
[ 512- 1023]: 137300
[ 1024- 2047]: 149431

IP flow (unique src/dst pair) Information
# of flows: 56157 (avg. 37.32 pkts/flow)

Top 10 big flow size (bytes/total

8.0% 6.0% 4.8}, 2.8% 2.6% 2.0% 1.4}, 1.2% 0.8% 0.7%

Protocol Breakdown
protocol packets

W I D E PR OUJECT
bytes
in %):
bytes bytes/pkt

total 2095754 (100.00%) 471744043 (100.00%) 225.10

ip 2095736 (100.00%) 471743089 (100.00%) 225.10
tcp 1768533 ( 84.39%) 400258906 ( 84.85%) 226.32
http 1474686 ( 70.37%) 292981631 ( 62.11%) 198.67
squid 42778 ( 2.04%) 36118457 ( 7.66%) 844.32
smtp 74280 ( 3.54%) 29130167 ( 6.17%) 392.17
nntp 1270 ( 0.06%) 101659 ( 0.02%)  80.05
ftp 23779 ( 1.13%) 7180413 ( 1.52%) 301.96
pop3 5601 ( 0.27%) 2537763 ( 0.54%) 453.09
telnet 995 ( 0.05%) 88678 ( 0.02%) 89.12
ssh 1950 ( 0.09%) 230243 ( 0.05%) 118.07
dns 1169 ( 0.06%) 94179 ( 0.02Y% 80.56
bgp 6090 ( 0.29%) 419164 ( 0.09%)  68.83
other 135935 ( 6.49%) 31376552 ( 6.65%) 230.82
udp 264967 ( 12.64%) 62915121 ( 13.34%) 237.45
dns 187377 ( 8.94%) 20884111 ( 6.33%) 159.49
rip 135 (. 0.01%) 8910 ( 0.00%)  66.00
other 77455 ( 3.70%) 33022100 ( 7.00%) 426.34
icmp 51228 ( 2.44%) 5609707 ( 1.19%) 109.50
igmp 801 ( 0.04%) 48060 ( 0.01%)  60.00
ospf 8909 ( 0.43%) 2283318 ( 0.48%) 256.29
ipip 3 ( 0.00%) 246 ( 0.00%)  82.00
ip6 1295 ( 0.06%) 627731 ( 0.13%) 484.73
frag 112 ( 0.01%) 157111 ( 0.03%) 1402.78

tcpdump file: 200002121359.dump.gz (45.94 MB)

0 2.2 sample output of tcpdstat at trans-pacific

The 6bone point has been added in January
2000. The traffic volume of the 6bone point is
still low; the average rate is around 100Kbps and
the mojority of traffic is BGP and ICMPv6. How-
ever, we expect IPv6 traffic will increase in a few
years as major router or OS vendors have started
shipping IPv6 in their base systems. Our inten-

tion is to record the evolution of IPv6 traffic in a

long term.

Figure 2.3 is the output of t¢cpdstat from the
6Bone point on the same day. This 3.5-hour long
trace contains about 200K packets, the number of
unique address pairs is about 270.

We expect that IPv6 traces will be useful for
development of tools to support IPv6 since IPv6

traffic traces, especially on a backbone link, are
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DumpFile: 200002120900.dump

FileSize: 17.64MB

Id: 200002120900

StartTime: Sat Feb 12 09:00:00 2000
EndTime: Sat Feb 12 12:33:45 2000

TotalTime: 12825.20 seconds
TotalCapSize: 14.69MB CapLen: 94 bytes
# of packets: 193424 (48.84MB)
AvgRate: 40.31Kbps stddev:63.46K

Packet Size Histogram (including MAC headers)

[ e64- 127]: 100654
[ 128- 255]: 66924
[ 256- 511]: 1179
[ 512- 1023]: 2322
[ 1024- 2047]1: 22345

IP flow (unique src/dst pair) Information
# of flows: 270 (avg. 716.39 pkts/flow)
Top 10 big flow size (bytes/total in %):

53.9% 4.0% 3.8% 3.7% 3.6% 3.6% 3.1% 2.9% 2.9% 2.9%
Protocol Breakdown

protocol packets bytes bytes/pkt
total 193424 (100.00%) 51210692 (100.00%) 264.76
ip6 193424 (100.00%) 51210692 (100.00%) 264.76
tcp6 184430 ( 95.35%) 49453242 ( 96.57%) 268.14
smtp 402 ( 0.21%) 54893 ( 0.11%) 136.55
ftp 51229 ( 26.49%) 29569720 ( 57.74%) 577.21
ssh 63 ( 0.03%) 6820 ( 0.01%) 128.68
bgp 132476 ( 68.49%) 19798783 ( 38.66%) 149.45
othe 270 ( 0.14%) 23026 ( 0.04%) 85.28
udp6 469 ( 0.24%) 36610 ( 0.07%) 78.06
othe 469 ( 0.24%) 36610 ( 0.07%) 78.06
icmp6 7346 ( 3.80%) 1489628 ( 2.917) 202.78
ip4 1179 ( 0.61%) 231212 ( 0.45%) 196.11

tcpdump file: 200002120900.dump.gz (2.99

0 2.3

not widely available.

Although we started collecting traces and made
them available, we have not studied the traces
throughly. Rather, one of the purposes of our
open traffic repository is to leave analysis to those
who are interested in doing it.

If other organizations start building similar but
possibly closed traffic repositories, it would be
possible to share experiences and development of
tools. Especially, packet traces could be a counter
measure against the ever-growing threat of DoS

attacks.
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MB)

sample output of tcpdstat at 6bone

2.7 Future Work

Our focus at this moment is long-term data col-
lection. So far, we have set sampling points only
on relatively slow connections. Data collection
from faster links is an obvious direction, but we
have limited storage capacity and network capac-
ity.

As for high-performance packet capturing, we
can benefit from advanced research such as
OC3MON [14]. OC3MON uses a DOS-based cap-
turing tool to monopolize CPU, and takes advan-
tage of the processor on the ATM card for offload-
ing.

However, today’s commodity PC is already
Gigabit Ethernet

quite powerful: is about



125MB/sec. The bus bandwidth of 32bit PCI at
33MHz is 132MB/sec, and 64bit PCI at 66MHz
is 528MB/sec. The disk interface is getting faster
as well. Ultral60 SCSI provides 160MB/sec. A
single high-end disk has sustained rate of about
30MB/sec but disks can be used in parallel so that
4 disks provide about 120MB/sec. CPU power
itself seems to be catching up, but it would be
tricky to efficiently run tepdump on non-realtime
UNIX. It seems to be doable by a commodity PC
to capture packets even at a gigabit network if the

system is correctly tuned.

2.8 Conclusion

We have presented the WIDE traffic repository,
an on-going effort to create archives of tcpdump
files collected at several points within the WIDE
backbone. Our attempt is a challenge to the legit-
imacy of concerns about revealing detailed traces
for privacy and security reasons. We hope our
repository will be useful for traffic analysis and

for development of tools.
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0 40 A TRAFFIC PATTERN MATCHING
TECHNIQUE

4.1 INTRODUCTION

The measurement and management of the Inter-
net is a challenge that needs to be addressed. In-
ternet traffic Measurement technologies provides
the base for effective network management and
operation, e.g. locating bottlenecks, planning net-
works, managing QoS, and etc. Yet there is to
date no generic solution to the Internet measure-
ment problem. [24] has attempted to construct
a globally scalable Internet measurement facility.
The IETF [25] WG is defining the framework for
distributed management. The IETF [26] WG is
defining the metrics for measuring the Internet.
The absence of a measurement nfrastructure has
slowed down the deployment of informed and in-
telligent management and control.

The size, spread and heterogeneity of the Inter-
net means that there will be parts of it which will
appear like a black box. E.g. An ATM backbone
or the telephone network which supports the IP
network. In general one will not have access to
management information related to the internal

state of the black box. In such cases one can only
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build a picture from the input and output charac-
teristics.

One of the major problems of traffic measure-
ment in distributed environment is synchroniza-
tion of the information observed at different inde-
pendent point. The time stamps at different point
are in general not synchronized. This makes it dif-
ficult to build a picture of the functioning of the
intervening network. We cannot say how much
traffic was handled by the network, at a given in-
terval of time. [26] broached the importance of
the clock issue.

Global time synchronization is one of the solu-
tions. For this purpose, NTP [27] can be used.
It provides statistical clock synchronization. GPS
can also being used for long distant end-to-end
measurement across a ocean [28]. Another NTP-
like approach, centralized clock management, is
considered for a LAN/MAN environment [29].
However, those are either statistical or require
special devices and are thus not very appropriate
in the context of Internet Measurement.

To avoid this problem, we propose the novel
idea for synchronization of measurement informa-
tion by using the traffic characteristics at each ob-
served point. The technique uses pattern match-
ing of the characteristics. This technology will
synchronize the information observed at indepen-
dent points. In this paper, we explain the concept

and show the experimental results.

4.2 BLACK-BOX IN MEASUREMENT

Historically, the structure of Internet was sim-
ple. It typically consisted of one broadcast
(shared) media and several connected nodes. In
such cases, it is relatively easy to measure the
network characteristics by using single traditional
tools like [10] or [30].

However, the network has evolved to include
many types of elements and sub networks. The
observation points too are distributed. An ob-
server can at best collect information from several

points to know the network usage and character-
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istics across several segments.

Fig. 4.1 shows the common monitoring environ-
ment. The network consists of switches and nodes.
Each interface may be monitored. The links may

be monitored using devices like RMON.

O points of observation

0 4.1 Black-Box in the Internet

4.3 INFORMATION SYNCHRONIZATION

In this section, we explain the necessity and
significance of synchronizing the information ob-
served at different independent points. For in-
stance, Fig. 4.2 shows a simple example of the
necessity of synchronization. Say one is measur-
ing the traffic from Net A to Net C. Ni is the
traffic observed at OP;. N3 is the traffic observed
at OP,. Now, N1, N2 represent the traffic passing
through NetB (including traffic originating and
destined to B), However, to get an exact picture
of the traffic through Net B, N1 and N2 need to

be synchronized.

OoP1

COECD"CD

OoP2

0 4.2 Observation point

Furthermore, we can also find out the num-
ber of dropped packets in Net B using incom-
ing/outgoing traffic observed at OP; and OPs, if
we can know the delay caused by Net B.

For these measurements, the accurate time syn-

chronization is indispensable.



Among the candidates for time synchronization,
NTP or GPS are worth mention. NTP is a pro-
tocol with an algorithm to synchronize the clocks
connected to the Internet. GPS provides more
accurate time than NTP using the signals from
satellites.

However, the former is statistical and the later
requires the special devices. Furthermore, some
equipment like HUBs, PCs etc. may not have the
capability of handling and/or using such special
devices.

In this context we propose a way to synchronize
independent information by traffic pattern match-
ing. This allows the information observed at in-

dependent points to be compared and collated.

4.4 TRAFFIC PATTERN MATCHING

4.41 HETEROGENEOUS NETWORKS

Today’s networks are characterized by their het-
erogeneity. For instance, in a LAN environment,
there are few server machines and many client
nodes typically. So, the amount of traffic gener-
ated in such a network leans heavily to the server
side. Fig. 4.3 shows the sample of a heteroge-
neous usage of network. The traffic observed at
the different points show similarity in their pat-

terns.

4.4.2 COMPARE THE TRAFFIC PATTERN

Fig. 4.4 shows a network model, which has n
links, and each link has paths for both incom-
ing and outgoing. We correlate them by following

pattern matching method.
MODELING THE TRAFFIC PATTERN

To capture the transition pattern, we make the
vector model, which represents the amount of traf-
fic of each time-slot.

The characteristics for a duration t, which is
divided into slots of size. So it has m = A/§
elements (Fig. 4.5). In the case of the network

as illustrated in Fig. 4.5, the characteristics is
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0 4.3 Traffic transition similarity

Inz

L; 1»0\\

0 4.4 N-Links connected network

defined as follows:
L;, = (a1, a2:,a3i, -+, Qts, a%i)
Ljo = (buj, b2, bajy -+, beji bs ;)
L;,;: number of input packets at Link ¢

75

PR OUJECT

OJOoO0OOooooooooooooooooono oo e




e[ 50 OO0OOOOOOOOOOOOODOOOODOOOO

slot size

number of packets

sampling window

0 4.5 Traffic pattern model
Lj,: number of input packets at Link j

COMPARING THE PATTERNS

To compare the similarities of the characteris-
tics, correlation coefficient between incoming and
outgoing traffic is used. That is calculated as fol-

lows.
where
oin: standard deviation of L,

Oout: standard deviation of Ly,

rij(Lig, Ljo) =
L ST (L (4L ) (Lo (k) L)

—X
NTinOout P

L;, average of L;,
Lj, average of Lj,

ri; are calculated for all combinations of i, j.
Then the max value of r;; is selected from all of

them.

4.5 RESULT OF MEASUREMENT

This section shows the remarkable results of
our proposed method. We evaluate the method
on two types of operational network. The first
is a 100Mbps FDDI backbone network, [31] (To-
hoku OPen Internet Community), which pro-

76

vides connectivity to some big universities, col-
leges, and museums. The other is 10Mbps Eth-
ernet Internet-eXchange, [32] (Tohoku Regional
Internet-eXchange, which provides connectivity
to some commercial ISPs. TOPIC has n = 20
links, and TRIX has n = 5 links.

The calculation is based on the data at
the interfaces, which are entry points of the
FDDI/Ethernet. We monitored the traffic in the
networks using TCPDUMP to evaluate the accu-

racy of our technique.

4.5.1 OVERALL EVALUATION

Table 4.1 shows the overall result of our pro-
posed method. The success rate shows the rate
of the exact matches between the logged packets
and calculated packets by proposed method. The
interval is the sampling rate, that is § in fig. 4.5.

The value shown in the table is derived heuristi-

cally.
0 4.1 Overall evaluation
interval § (sec)  success rate (%)
100M-FDDI 0.01 84.6
10M-Ethernet 0.1 91.9

Fig. 4.6 shows the result of the effect of our
proposed method. The top graph represents the
result of our method, the next graph shows the
logged data. The two graphs are compared in the
third graph. They are almost same. The lowest

graph is a close-up of the area of mismatch.

4.5.2 WHAT IS THE TRAFFIC IN THE NET-
WORK?

Fig. 4.7 shows a 5 minutes throughput ob the

backbone. This information could not be obtained

using existing measurement technology without

some synchronizing technique.

4.5.3 WHO IS USING THE BANDWIDTH

Fig. 4.8 shows the ranking of the usage of the
bandwidth. Lines with rectangles represent the
calculated values. Lines with circles are based

on data derived from logs. The two are closely
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0 4.6 Sample synchronizing result

similar. Significantly, the top 10 links are heavy
consumer of the network resources, especially top
2, that information is useful for future topology

design or dynamic rerouting techniques.

4.5.4 SWITCHING HUB VIEW

Fig. 4.9 shows the sample application of our
method. This is a matrix view of a Switching
HUB. The information observed at each port is

synchronized, so we can see the view of the net-
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0 4.9 Matrix monitor for SW-HUB

work.

4.6 ISSUES

This proposed method is a way to synchronize
the management information obtained from differ-
ent points in the network. The method is scalable
and works well in the case of networks with small
latency. Recent technology has led to very high-
speed and high-capacity networks. This technol-
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ogy is expected to be useful in the measurements
of such networks.

Since the proposal does not involve the addi-
tion of additional devices the method can be im-

plemented using current management framework.

4.7 CONCLUSION

In this paper, we discussed strong requirement
of measurement of the present day Internet. We
have also explained the difficulty in doing the
same. This problem makes effective network man-
agement and control difficult.

We have proposed a methodology for informa-
tion synchronization. We have also established its
efficacy by deploying a pilot version of our method

on an operational network.
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