50

ooty ood
Juood

W I D E

o110 MAWIOOOOOOOOO

0 20 WIDE Traffic Data Repository

MAWI(Measurement and Analysis on the
WIDE Internet) 000 0000000000000
goboooooooobobooooooboooooboboo
goooooboobobobo

gobooobooooboocooooooooooo
gbobooooooooooooooooooooboog
goooooooooobooooooooooooo
goooooboooooobobobobobon
goooobooooooooooboboooboooaa

goboooooooboocooobooooooooo
gboooobooooooboobooboobooboooo
goooooboooooobobobobobon
gboooooooobooocobooooooboo
gooooooooooOooO0o0o0o0oooooooo
goooooboooooobobobobobon
goboooboooooooooooooooo

goooooboooooobocoooooobooooo
gooooooooooboboooboooooooooo
goooooboooooobobobobobon
gbobooooboooboboooooobooooooo
gboboooooooboooooooboooooboo
gooooooooo0o0ooooooooooooa
goooooboooooobobobobobon
gbobooooboooboboooooobooooooo
gbobooooboocoooooooooooo

gobooomookbbooooooooooo
goobooooOowlbEODODQOOOOooooDooo

oboddddooooooooodeeon 50 13
gbooooobooooboooooboobooboooo
gooooood

goboooboooobooooooooooooo
gboooooobooobooboocooboOoboboooo
goboooobooooboooooo

gobobooooooooooooboooooooo
goboooboooooooooboooooooo

2.1 Introduction

In this paper, we introduce an on-going effort
within the WIDE project to collect a set of free
tools to build a traffic data repository containing
detailed information of our backbone traffic. The
WIDE project makes the resulting data sets pub-
licly accessible so that this project is not only on
freely-redistributable software but also on freely-
redistributable traffic data sets.

The WIDE project is a research consortium in
Japan established in 1987. The members of the
project include network researchers, engineers and
students of universities, industries and govern-
ment. The focus of the project is empirical study
on a live large scale internet. Thus, WIDE runs
its own internet testbed carrying both commodity
traffic and research experiments. WIDE is also re-
sponsible for various Internet operations including
M-root name server, NSPIXP(Network Service
Provider Internet eXchange Point), AI3(Asian In-
ternet Interconnection Initiatives), and 6Bone in
Japan.

The goals of our traffic repository are to pro-
mote traffic analysis research as well as to pro-
mote development of tools. Traffic characteristics
in a backbone network are considerably different
from those in a local area network but few peo-
ple have access to traffic traces from backbone
networks. Obtaining details of backbone traffic
is getting harder as more backbone networks are
shifting to commercial ISPs, which motivate us to
build a traffic repository [8].

Traffic traces are collected at several points
within the WIDE backbone. Traces are in tcp-
dump raw format so that all header information
is available and can be used for detailed analysis.

We use commodity hardware and the existing
freely-available tools for building our traffic repos-

itory so that it has nothing technically fancy. Our

61

PR OUJECT

OJOoO0OOooooooooooooooooono oo e

e[50 OO0OOOOOOOOOOOOODOOOODOOOO

focus is rather continuity in making the latest
traces available. At this writing, daily traces at
one sample point have added up to the record of

more than a year.

2.2 Related Work

Packet Monitoring

Packet capturing were brought with the advent
of Ethernet. The first personal computer, Xe-
rox Alto, already had programs to monitor Eth-
ernet. As Ethernet came into wide use, dedicated
network monitors became indispensable to devel-
opers and operators. The CMU/Standford enet
packet filter is the first UNIX based packet fil-
ter developed in 1980 [9)].
into the Ultrix Packet Filter at DEC, NIT under
SunOS, and BPF.

Userland programs that prints the headers of

It eventually evolved

packets appeared with UNIX workstation. Sun
implemented NIT (Network Interface Tap) to cap-
ture packets and etherfind to print packet headers.
The advantage of UNIX-based monitoring tools is
that users can use other software tools available
on UNIX for manipulating and analyzing packet
traces.

tepdump [10] is probably the most popular
packet capturing tool in the UNIX community.
tepdump first appeared in 1989 and merged into
BSD Net Release2 in 1991. tcpdump is based on
a powerful filtering mechanism, the BSD packet
filter (BPF) [11]. The packet capturing and filter-
ing facilities of tcpdump are implemented in a sep-
arate library, pcap [12]. The pcap library became
independent from tcpdump in 1994, and there are
a wide range of network monitoring or analysis
tools which integrate the pcap library. In 1999,
tecpdump.org [13] was organized by volunteers to
maintain the tcpdump code.

High-performance monitoring systems are ex-
plored by OC3MON [14] and its successors that
are based on a PC hardware but exclusively for

ATM . CoralReef [15] is a package developed at

62

CAIDA to analyze the output of OCxMON.
Packet monitoring techniques have been used to
gather long-term statistics. A pioneering work is
statspy [16] in the NNStat package developed at
ISI. As SNMP becomes widely available, network
statistics tools are geared toward SNMP. MRTG
[17] and its successor RRDtool [18] are popu-
lar tools to collect traffic counters from routers
through SNMP. More recently, cflowd [19] is de-
veloped at CAIDA to make use of Cisco’s NetFlow

[20] that exports statistics of flow cache entries.
Traffic Archive

The Internet Traffic Archive (ITA) [21] was cre-
ated in 1995 by Danzig et al. to promote re-
search on network analysis. ITA has several traces
studied in published papers as well as unstudied
traces. ITA is an important step towards open
traffic data sets because research based on open
data sets can be confirmed or further analyzed by
someone else, which leads to deeper studies.

There are several different formats in the ITA
archives but the majority of the available traces
are in the tcpdump ascii output format. A set of
shell scripts, called sanitize, are written by Pax-
son and used to scramble addresses in the tcpdump
ascii output format to provide anonymity to net-
work users.

Our traffic repository was motivated in part by
the effort at ITA. We employ automatic traffic
sampling at regular intervals since the archives at
ITA do not seem to be updated much. We also
thought that the tepdump raw format is preferable
to the ascii format because the raw format has
more information and powerful tools are available

to manipulate the raw format.

2.3 Motivation

WIDE installed several traffic sampling points
within the backbone since traffic data has been
essential to both network research and operation.
However, traffic information tend to be confined

to a small set of members, and it is difficult to

share detailed information without a framework to
support sharing. This leads to the idea of a traffic
trace repository in which detailed traffic traces are
archived and easily accessible to everyone.

In order to build a traffic trace repository and
make good use of traces, we had to solve two prob-
lems. One is to create a safety measure for han-
dling traces that include privacy information. The
other is automation of the trace acquisition pro-
cess.

Traffic traces include private information of the
network users. Special care is needed to handle
traces, and thus, only limited members are al-
lowed to handle raw traces. Still, there is always
a risk of accidents when we handle raw traces.
Hence, even if traces are available only for lim-
ited members, it is important to make traces safe
enough to prevent possible accidents. On the
other hand, if traces are made free from user pri-
vacy, we can make the traces open to the public
since WIDE does not need to worry about its im-
pact to stock prices.

Automation of the maintenance process is the
other important factor. Collecting traffic traces
in a long term needs perseverance, and cannot be
achieved unless most of the work are automated.
Not only automation of acquisition but also au-
tomation of summarization and visualization are
essential to maintaining the repository because
people tend to run out of energy if no feedback
is given.

There are strong concerns about security and
privacy with regard to making traces publicly
available. After a long discussion, we have reached
a conclusion that the benefits outweigh the risks.

Or, at least, it is worth a challenge.

2.4 Privacy Issues

Traffic traces contain privacy information in-
cluding network addresses and application pay-
load so that it is important to understand issues
involved in user privacy.

There are 2 major issues regarding user privacy.

W I D E

Removing user data: User private data must
be removed from traces. Traffic traces
should have only protocol headers and pro-
tocol payload which contains user data

should be removed.

Providing anonymity: [P address is unique
and can be used to identify a user, and thus,
addresses should be scrambled to provide

anonymity to users.

There are a wide variety of research purposes
that have different requirements for traces. No
single method will satisfy all the requirements and
still keep user privacy. We are trying to provide
traces which can be used for a wide range of re-
search. For research which has specific require-
ments, our traces will provide a starting point,
and can be used to narrow down its requirements.
Then, it will be easier to find a specific method to

meet the requirements.

2.4.1 Removal of Payload

As a general rule, we should remove the pay-
load of TCP or UDP that contains users’ private
information. If another protocol header exists on
top of a TCP or UDP header and the inner header
does not contain user private information, the in-
ner header may be maintained. If it is difficult
to judge whether a header contains user private
information or not, the header should be removed
as a precaution.

Once protocol payload is removed, the risk of
jeopardizing user privacy is considerably reduced.
It would be safe enough for use within a closed
group. However, in order to make traces open
to the public, we need a further level of security.
That is, we need to provide anonymity to network

users.

2.4.2 Address Scrambling

We should provide anonymity to individuals
and organizations by scrambling source and des-
tination addresses in IP headers. IP addresses,

however, have hierarchical structures and special

63

PR OUJECT

OJOoO0OOooooooooooooooooono oo e

e[50 OO0OOOOOOOOOOOOODOOOODOOOO

addresses such as broadcast addresses, multicast
addresses and private addresses. It is not easy
to provide anonymity but still keeping the struc-
tures and special meanings. We should chose an
appropriate method according to the importance
of anonymity in traces and the purpose of the data

set.
Address Scrambling Methods

Address scrambling maps one IP address to an-
other IP address. There are a number of methods

to scramble addresses.

1. the sequential numbering method maps each
IP address occurrence to a sequential number.
Although this method is easy to understand,
it is difficult to preserve other meanings of
addresses.

2. the hash method maps an IP address to an-
other IP address using a hash function in or-
der to provide random mapping. It is also

possible to preserve the common address pre-

fix between 2 addresses by maintaining an or-
dered tree of addresses similar to a routing
table. In this method, if 2 IP addresses have

a common address prefix, they are mapped

to addresses with a common address prefix of

the same length. Note that, although it pre-
serves routing information, this method has

a risk of being reverse-engineered. For exam-

ple, one can use a well-known server’s address

as a clue to de-scramble the address prefix

[22]. The impact of this threat, however, de-

pends on the importance of hiding the net-

work topology.

There are several choices regarding address con-

sistency between two or more data sets.

1. all occurrences of an address are to be
mapped to a single address within a data set.
2. all occurrences of an address are to be
mapped to a single address across different

data sets.
Longer consistency is convenient for analysis but

64

it also makes reverse-engineering easier.
Address Issues

non-unique addresses Addresses not contain-
ing user identifiers may be left without
scrambling. Those addresses include broad-
multicast addresses, and

In the case of IPv6,

cast addresses,
private addresses.
link-local addresses and site-local addresses
could contain unique interface identifier
(e.g., MAC address). A solicited-node mul-
ticast address contain lower bits of the
Therefore, these IPv6 ad-

dresses should be scrambled as well.

global address.

addresses in upper layers IP addresses could
be contained in an upper protocol message.
For instance, ICMP and DNS contain IP ad-
dresses in the protocol payload. These ad-
dresses must be scrambled in the same man-

ner, or removed.

MAC addresses Link-layer headers (e.g., Eth-
ernet headers) contain MAC addresses. A
MAC address contains vendor and model
information which could be part of user
privacy or lead to a security hole. How-

ever, traces from backbone networks do not

contain MAC addresses of user nodes since

MAC addresses recorded in the trace are

only from local nodes on the same segment.

IP/TCP options An IP options can contain IP
addresses. Addresses in IP options should
be scrambled in the same manner. Other-
wise, IP options should be replaced by NOP

options, or removed.

On the other hand, TCP options do not
contain privacy information. TCP options
carry useful information to analyze TCP be-
haviors so that TCP options may be pre-

served.

2.5 Methods

We use several tools to automatically maintain
the traffic repository. The details of these tools are
described later in this section. New trace data is
collected from sampling points to the repository
during the night. A web page for the new trace is
automatically created.

At a sampling node, a script is invoked from
cron to run tepdump and compress the trace. The
raw trace file is placed under a certain directory.

At the repository node, another script is in-
voked from cron to fetch the raw trace and process
it. The script copies the compressed raw trace
from the sampling point over a secure session us-
ing scp. Then, the script uncompresses the trace
and invokes tcpdpriv to remove privacy informa-
tion from the trace. The trace is fed into tcpdstat
to get a summary output. The script creates a
web page for the trace, and updates the index
page to include the newly created page. Finally,
the script compresses the trace data again, and

place it for ftp.

2.5.1 tcpdump

64-bit timestamp

32-bit captured data length

32-bit packet length

MAC header

IP Header (20 bytes)

IP options (if any)

TCP Header + TCP options (if any)
or UDP Header ot ICMP Header or ...

— NN NN
NN

0 2.1 Pcap header format

We use tcpdump to obtain traffic traces because
tepdump is widely used, and installed as part of
the default tools on many systems. In addition,
there are many tools that integrates the pcap li-
brary and be able to read tcpdump output files.
Those tools include teptrace, tepslice, tepdstat and
ttt.

tepdump, by default, puts the network interface

W I D E

into promiscuous mode to capture every packet
going across the wire. In the BSD-derived kernel,
BPF is implemented as a packet capture mecha-
nism. When BPF is enabled, the network driver in
the kernel passes both sending and receiving data-
link level frames to BPF. BPF performs packet
filtering if necessary, adds timestamp, and copies
the fixed length from the head of the frame into
the store buffer. tcpdump can read multiple frames
in a single read from the store buffer in the ker-
nel in an efficient manner. tcpdump, by default,
prints the header information of each packet in a
text format. With -w option, tepdump writes out
the packet frames into a specified file. With -r
option, tcpdump reads from a saved file instead
of a network interface to replay a saved file. The
pcap library is used to read or write data in the
raw format. Thus, it is easy to write a program
to read or write packets in the tcpdump format.

Figure 2.1 shows the format of raw tcpdump out-
put. In the BSD systems, the kernel uses micro-
time() for timestamp so that the precision of the
timestamp depends on the machine architecture.
Also, the timestamp is taken when a packet is
passed to BPF from the network driver so that it
is the time that the driver sees that packet.

2.5.2 tcpdpriv

We use tepdpriv to remove user data and scram-
ble addresses. tcpdpriv was developed by Greg
Minshall at Ipsilon Networks in 1996. tcpdpriv re-
moves privacy information in a raw tcpdump out-
put. tepdpriv uses the pcap library to read and
write tepdump output files. tepdpriv removes the
payload of TCP and UDP, and the entire IP pay-
load for other protocols. tcpdprivimplements sev-
eral address scrambling methods; the sequential
numbering method and its variants, and the ad-
dress prefix preserving method.

However, the original tcpdpriv lacks several fea-

tures we need:
e it does not support IPv6.

e it does not preserve TCP options that are

65

PR OUJECT

OJOoO0OOooooooooooooooooono oo e

e[50 OO0OOOOOOOOOOOOODOOOODOOOO

essential to analyzing TCP behaviors.

e we also want to preserve other protocols

such as ICMP, ARP and DNS.

Thus, we have modified the original tcpdpriv to
support these features. The default settings are
also changed to meet our requirements since the
options seem to be too complex and a mistake of

option selection could be fatal to user privacy.

2.5.3 tcpdstat

We developed tcpdstat to get summary informa-
tion of a tepdump file. tcpdstat reads a tepdump
file using the pcap library and prints the statistics
of a trace. The output includes the number of
packets, the average rate and its standard devia-
tion, the number of unique source and destination
address pairs, and the breakdown of protocols.

tepdstat is intended to provide a rough idea
of the trace content, and to be processed for a
web page. It provides helpful information to find
anomaly in a trace. For example, if the traffic
volume of ICMP or DNS is unusually large, or if
the traffic volume of a specific address pair is un-

usually large, it is a sign of some form of a DoS
attack.

2.5.4 Other Tools

There are other tools that are not used to create
the traffic repository but can read tcpdump files
and useful for analyzing traces afterwards.

tepslice by Vern Paxon extracts portions of a
trace. tcptrace by Shawn Ostermann produces
detailed information about each TCP connection
in a trace. tracelook by Greg Minshall provides
zgraph plots of TCP connections in a trace. flstats
also by Minshall prints flow statistics. ethereal by
Gerald Combs is a traffic analizer with a graphi-
cal user interface. ethereal uses the pcap library,
and thus, can replay a tepdump file. Our ttt (Tele
Traffic Tapper) tool displays composition graphs
of protocols and host addresses in real time. ttt

can replay a trace file at a given speed so that it

is possible to replay a 1-hour trace in 1 minute.

66

2.6 Current Status

Currently, we are collecting daily-traces from

the following sampling points.

trans-pacific is a 1.5Mbps T1 line, one of the
several international links of WIDE. The
sampling point is on an Ethernet segment
one hop before the T1 line. The incoming
traffic (from U.S. to Japan) of this link is

fairly congested.

6Bone is located on a FastEthernet segment con-
nected to NXPIXP-6 (An IPv6 internet ex-
change point in Tokyo) [23]. The segment
located at an AS boundary, and the traffic
includes only native IPv6 and does not in-
clude IPv4 except tunneled IPv4 over IPv6.
Because NXPIXP-6 is built on a FastEther-
net switch, only a small portion of the total

traffic can be captured.

Traces are sampled at a fixed time of day. This
is obviously not desirable and we need to find a
better sampling method.

We started daily data collection at the trans-
pacific point in February 1999. Since WIDE has
a number of connections to the Internet exchange
points, the return path of a session does not nec-
essarily go through the same link.

The size of each trace file is about 100M bytes
(about 40MB when compressed). We believe
100MB is an appropriate size for handling on a
commodity PC as well as for fetching over the net-
work, still has enough information for statistical
analysis.

Figure 2.2 is a sample output of tcpdstat from
the trans-pacific point on February 12, 2000. This
1-hour-long trace contains about 2 million pack-
ets, the number of unique address pairs is about
56K. HTTP is dominant in the trace, 70% of the
total packets and 62% of the total bytes.

Among the collected traces, some data sets con-
tain traces of DoS attacks such as portscan and
smurf. These traces could be useful for develop-

ment of tools to detect such attacks.

DumpFile: 200002121359.dump
FileSize: 140.35MB
Id: 200002121359

StartTime: Sat Feb 12 13:59:00 2000

EndTime: Sat Feb 12 15:06:29 2000
TotalTime: 4048.47 seconds
TotalCapSize: 108.37MB CapLen: 76
of packets: 2095754 (449.89MB)

AvgRate: 932.21Kbps stddev:312.68K

Packet Size Histogram (including MAC headers)

[32- 63]: 1315693
[64- 127]: 258761
[128- 255]: 121532
[256- 511]: 113037
[512- 1023]: 137300
[1024- 2047]: 149431

IP flow (unique src/dst pair) Information
of flows: 56157 (avg. 37.32 pkts/flow)

Top 10 big flow size (bytes/total

8.0% 6.0% 4.8}, 2.8% 2.6% 2.0% 1.4}, 1.2% 0.8% 0.7%

Protocol Breakdown
protocol packets

W I D E PR OUJECT
bytes
in %):
bytes bytes/pkt

total 2095754 (100.00%) 471744043 (100.00%) 225.10

ip 2095736 (100.00%) 471743089 (100.00%) 225.10
tcp 1768533 (84.39%) 400258906 (84.85%) 226.32
http 1474686 (70.37%) 292981631 (62.11%) 198.67
squid 42778 (2.04%) 36118457 (7.66%) 844.32
smtp 74280 (3.54%) 29130167 (6.17%) 392.17
nntp 1270 (0.06%) 101659 (0.02%) 80.05
ftp 23779 (1.13%) 7180413 (1.52%) 301.96
pop3 5601 (0.27%) 2537763 (0.54%) 453.09
telnet 995 (0.05%) 88678 (0.02%) 89.12
ssh 1950 (0.09%) 230243 (0.05%) 118.07
dns 1169 (0.06%) 94179 (0.02Y% 80.56
bgp 6090 (0.29%) 419164 (0.09%) 68.83
other 135935 (6.49%) 31376552 (6.65%) 230.82
udp 264967 (12.64%) 62915121 (13.34%) 237.45
dns 187377 (8.94%) 20884111 (6.33%) 159.49
rip 135 (. 0.01%) 8910 (0.00%) 66.00
other 77455 (3.70%) 33022100 (7.00%) 426.34
icmp 51228 (2.44%) 5609707 (1.19%) 109.50
igmp 801 (0.04%) 48060 (0.01%) 60.00
ospf 8909 (0.43%) 2283318 (0.48%) 256.29
ipip 3 (0.00%) 246 (0.00%) 82.00
ip6 1295 (0.06%) 627731 (0.13%) 484.73
frag 112 (0.01%) 157111 (0.03%) 1402.78

tcpdump file: 200002121359.dump.gz (45.94 MB)

0 2.2 sample output of tcpdstat at trans-pacific

The 6bone point has been added in January
2000. The traffic volume of the 6bone point is
still low; the average rate is around 100Kbps and
the mojority of traffic is BGP and ICMPv6. How-
ever, we expect IPv6 traffic will increase in a few
years as major router or OS vendors have started
shipping IPv6 in their base systems. Our inten-

tion is to record the evolution of IPv6 traffic in a

long term.

Figure 2.3 is the output of t¢cpdstat from the
6Bone point on the same day. This 3.5-hour long
trace contains about 200K packets, the number of
unique address pairs is about 270.

We expect that IPv6 traces will be useful for
development of tools to support IPv6 since IPv6

traffic traces, especially on a backbone link, are

67

OJOoO0OOooooooooooooooooono oo e

e[50 OO0OOOOOOOOOOOOODOOOODOOOO

DumpFile: 200002120900.dump

FileSize: 17.64MB

Id: 200002120900

StartTime: Sat Feb 12 09:00:00 2000
EndTime: Sat Feb 12 12:33:45 2000

TotalTime: 12825.20 seconds
TotalCapSize: 14.69MB CapLen: 94 bytes
of packets: 193424 (48.84MB)
AvgRate: 40.31Kbps stddev:63.46K

Packet Size Histogram (including MAC headers)

[e64- 127]: 100654
[128- 255]: 66924
[256- 511]: 1179
[512- 1023]: 2322
[1024- 2047]1: 22345

IP flow (unique src/dst pair) Information
of flows: 270 (avg. 716.39 pkts/flow)
Top 10 big flow size (bytes/total in %):

53.9% 4.0% 3.8% 3.7% 3.6% 3.6% 3.1% 2.9% 2.9% 2.9%
Protocol Breakdown

protocol packets bytes bytes/pkt
total 193424 (100.00%) 51210692 (100.00%) 264.76
ip6 193424 (100.00%) 51210692 (100.00%) 264.76
tcp6 184430 (95.35%) 49453242 (96.57%) 268.14
smtp 402 (0.21%) 54893 (0.11%) 136.55
ftp 51229 (26.49%) 29569720 (57.74%) 577.21
ssh 63 (0.03%) 6820 (0.01%) 128.68
bgp 132476 (68.49%) 19798783 (38.66%) 149.45
othe 270 (0.14%) 23026 (0.04%) 85.28
udp6 469 (0.24%) 36610 (0.07%) 78.06
othe 469 (0.24%) 36610 (0.07%) 78.06
icmp6 7346 (3.80%) 1489628 (2.917) 202.78
ip4 1179 (0.61%) 231212 (0.45%) 196.11

tcpdump file: 200002120900.dump.gz (2.99

0 2.3

not widely available.

Although we started collecting traces and made
them available, we have not studied the traces
throughly. Rather, one of the purposes of our
open traffic repository is to leave analysis to those
who are interested in doing it.

If other organizations start building similar but
possibly closed traffic repositories, it would be
possible to share experiences and development of
tools. Especially, packet traces could be a counter
measure against the ever-growing threat of DoS

attacks.

68

MB)

sample output of tcpdstat at 6bone

2.7 Future Work

Our focus at this moment is long-term data col-
lection. So far, we have set sampling points only
on relatively slow connections. Data collection
from faster links is an obvious direction, but we
have limited storage capacity and network capac-
ity.

As for high-performance packet capturing, we
can benefit from advanced research such as
OC3MON [14]. OC3MON uses a DOS-based cap-
turing tool to monopolize CPU, and takes advan-
tage of the processor on the ATM card for offload-
ing.

However, today’s commodity PC is already
Gigabit Ethernet

quite powerful: is about

125MB/sec. The bus bandwidth of 32bit PCI at
33MHz is 132MB/sec, and 64bit PCI at 66MHz
is 528MB/sec. The disk interface is getting faster
as well. Ultral60 SCSI provides 160MB/sec. A
single high-end disk has sustained rate of about
30MB/sec but disks can be used in parallel so that
4 disks provide about 120MB/sec. CPU power
itself seems to be catching up, but it would be
tricky to efficiently run tepdump on non-realtime
UNIX. It seems to be doable by a commodity PC
to capture packets even at a gigabit network if the

system is correctly tuned.

2.8 Conclusion

We have presented the WIDE traffic repository,
an on-going effort to create archives of tcpdump
files collected at several points within the WIDE
backbone. Our attempt is a challenge to the legit-
imacy of concerns about revealing detailed traces
for privacy and security reasons. We hope our
repository will be useful for traffic analysis and

for development of tools.

030 00O0OO0OO0O0opDoooooooo

31 000000000000 00000

gbooobooocooooooboooooo
gobooobooooboboooooooooooboboo
goooboooooooobooboobobbooonbo
gbobooooboooboboooooobooooooo
gboboooooboooboooooooboooooDoo
goboooooooboooooooboooooDooo
gooooobooooooooboobooooo
gobooobooooboobocoooo

goboooobooooboocooobooooooooo
gbooooobooooOoooooooboobooooo
gobooooooboooooobooooboo
goooooocooo

W I D E

3.2 00000000000

WIDEODOOODOOOOs50 130000000
obobooooooob 4Mbps OO 11Mbps DO OO
goooooooooocoooooooboosio 11d
oosb010000000o0o0o00o0o0o0ooog
goooooo

Ooobo0o0o00O0Otepdump 0000000
goboocooooooooooboooobooooon

gboooooooooooooooboooooo
gobooooooobboooobooobbooooo
gooobooobbooooooooooboooooa
oboooooooooobooobooobooooboo
gobooooooobobooooboboo

33 0000

goooboooooooooobooooooon
gobobooooooboooooboooboooooa
Ooooooooo 340000000ooTCpO
ubpPpOOO0OO0OOOOO0OOOOOOOO3S50000
TCpOOOODODOOODOTCPOOOOOO
ooooooobboooos3e0OoooubPOO
doooooooooooobbboboboooooo
ooboooooooboooooboooboobooooo
ooo

34 00000000

3441 000O00OO0OO0OOOOO
gobooooobooooooooobooobooboooon
gobooooooobooobooobboooo
0 31000tepsliceODO10000000O
oo s3sgoboboooooooboooooooona
goooooooobobooooboo

e JOUODOODDOODOODOODODOO
ooo TCPpOOOOOODO

e JO0DOOOOODO TCPOUODOODOOO
goooooo

e JO0OOODOOCODUDPOOOOODOOO
gooooooo

69

PR OUJECT

OJOoO0OOooooooooooooooooono oo e

e[50 OO0OOOOOOOOOOOOODOOOODOOOO

goboooooooooooooobooooon
goboooooooooooboooboobooooo
goboooboooooobbooobobooooo
goboooooooo

9000

8000 icmp
7000
6000

5000

kbps

4000

3000 |

2000

1000

o S - ...
5/11 5112 5/13 5/14 5/15

0 3.1 ODO0Oooooooooooboo

0 3200tcpslice00000O0O0OOOOOODO
gsbboooooooooooooboooooobod
gobooooos3s3booooooooooobo1d
goboooooooooooboboooboobooooo
oooo
u32fjbooooooobooobbooboooood
gbobobooooooooooboooboooooo
ooooooooooboobooooooobobobbobooo
gobooooboooooobbooobobooooo
goooog

e IOOOOOOOOOOODODOSO 1300 15
028000 150290000000

e JO0O0OOOUDLOOOOOUOODODLDODOO
goboocooon

e 0000 OOOOOOLOODOOOOODOO
gooooooo

342 000000000000 500 teptrace
0340000000000D00CS00000O

70

9000

8000

7000

6000

5000

kbps

4000

3000

2000

1000

0
15:06 15:15 15:24 156:33 15142 1551

0 3.2 JOOoOoOoooooooOd

1400
1200
1000

800 : R —

byte

0
15:28 15:29

0 3.3 0O0O00ooooO

OO teptracel 00 0OO0OOOOOOOOOO
uoboooobooobooooooobooboooono
gooooo IpOo0OCcOOO0OOOOODOOO
gobooobooooboooooobbooooDo
dooooooooooooooooobooboobooo
oboooobooobooooooobooooonoo
goboooooooooooboooboooon 310
goboooboooboooooobboooono
oboouoboooboooooooboooooo
ooooboocoooooboocobooOoobooonon
oobooooobooooboboooooobooooon

gbobooooboobooooboooooooboooooboo
O0Obeforejafter 00000000000 00DO0O
teptrace 000000000 O0OOOOOODOO
oo
O00tcpdump 00 OO0O00OOOSYNOODOODO
goboooooooobooooooobooooboboo
gooooooooosyNOOoooooooooo
goboooboooobooooooooooooo

25000

20914 20553

20000
15000
10000
5000
0

before after

034 0O0O0O00OO0ODOODOOOOOOOO

3.5 00oooouTCPO

351 00000O0OOOOOO

goooooTCcpOODOOOODOOOOOTCP
goooooooobooooooooTepOOonO
g0 TcpodoooooooOoOooooooon
gbooooooooogo3suoboooobooood
TCPOOUOOODOODOOOOOOOOOOOOO
goooooooooooooooooboooOog
0000000000 tepslice0O00000OODODO
gobooooooooO00tepdumpO0OOO00OOO
goboooooooboooooooa
oooooogd tepdump 00 O00COOOODODO
gooboooobobooobobobobogoong
gboboooobooooboooooobooooobooo
oo

W I D E

e HTTPOOOOODOOOODDOOODODDODOO
goooo

e JJIUIUOOHTTPOOOOOOOOOOO
oon

o 000D OHTTPODOOOODOOODDOO
gooooooo

8000

7000 http

6000 nntp -
p

others

5000

4000

kbps

3000

2000 A s . '

1000

5/13 5/14

0385 0O00O0DDOOO TCPOOODOOO

352 1000000000000 RTTOOO
RITTOOOOOOOOOOOOODOOODOOOO
goooooooorrroobooooooboboog
gobooooboooooooooobo 3etonO
Uooooo teptracelddoooooooood
gooooooooooobooooooooboooo
gobooooooobbooobooobbooooo
goboboooooobooooboooboooooa
OO0 RTTOOOOOOOODOOOOOOODO
gooooooooo rRTTOO00O00O0O0O0DO
goooooon
oooooooooo RTTOOOOOOOODO
ORTTODODOOOOOOOODOOOOOODO
RITTOOO00000O0O0O0O00000000000
gooooooooooooo

o 000D OUO RTTUODOOOOOO

e RTT O 500msec 0O OODODODOOODODOO
oono

71

PR OUJECT

OJOoO0OOooooooooooooooooono oo e

e[50 OO0OOOOOOOOOOOOODOOOODOOOO

2500

2000 |

1500

msec

1000 |

500 3
[

before after

0 3.6 000000 SS000000000C00 RTT

3.5.3 Reset 0 FinO OO
goobobooooboooboboouobboooo
000000000000 Reset DOODOODOODO
gdobo0ooooooooooooono s000
goobodbOteptracel 0O ODOOOOODO
0oooo TCeOOOODOODOODOOOO
O00OReset OOOODOOOODOOOO FinDOODO
0o0oooooooooooooooooooono
3.7000n
jooboooooboooobooooo

e unidirectional 00000000 0OOOO0O

e JIUIOOODODO FinO Reset DO DO DOOO
gooocooon

gooobooououooon WIDEinternet O
gobbodouooboooooooboboooboooooa
ooboocooon

3.6 00JOJO0OOOUDPO

361 0D00OCOOOOOOOOOOQd
Oo38b00ooooboooubpPbOOOOOOO

goobobooooboooobobooooooobooooa

oooooboooooboooooobooboobobooooo

72

16000

14000 unidirectional : 13592
unidirectional : 12661

12000
10000
8000

6000
reset : 4300

4000 Hin : 3601

reset : 4315

fin : 3007

2000

before after

0 8.7 ResetO FinO QOO

tepslice 0O O0O0O00O0DO0OOO0OOOCOOOOO
O0tecpdump 0000000000000 tepdump
O000oooo0ooooooooooooooo
O000oooOoO0oooooooooooooo
O0o0o0oooooooooo

uobooooboboooboooooooa

e DNSOODOOOOO

e Others 00O DOODODODODOCOCODOD

e JO00D0O0ODOODLOOOOODODOODOODO
ogooooobooooobod

600

500 snmp -

400

300

kbps

200

100

5/11 5/12 5/13 5114 5/15

0 3.8 ODO00OO0OOOOO UDPOOOOOO

0 3.1 D000ooooooooooooooooooo

ooooo | 00000000
2300-2400 DirectXODOOOODOOOOOO
2425 IP Messenger
4000 1CQ

5000 Ultima Online
5001-5500 hotline
6112 Diablo,StarCraft
6970-6999 QuickTime4
7000 VDO Live
7648-7652 CU-SeeMe
27910 Quake

362 0000000COOOOOO0OOOO
gobouppO00OO0OOOOoOOODOOOODO
gdooobbboooooooooobobbooooooon
gboboooooooboocoooooboooooboo
goboooooooobooooooobooooboo
gooooooobobb saooboooobobbobo
gboooobooooooooboooboooooboa
gbobooooooobooooooobooooooo
gobooooooooocooon

goboooooobooooooooooooo
gbobooooooobooooooobooooooo

oood

3.7 00O

gooooobooooooooboobooooooo
oooooooooooooooTepO UDPOO
gboboooobooboooobooboooooobooooboboo
gboooooboooooooooboobooooo
gobooooooooboboooooobooooboo
goood

e IOOODOOOO

- goooooo

- Tcpooood

e OOODOOOODO

- UubpPOOOOO

W I D E

- TCPODOOOOODOO
- TCcpOOOOO0O0000O0ORTT

gobooooooboooooooo

e wellknown 000 UDPOOOOOOOOO
gobobooooooobobo

o TCPOODODODODO RTTO 500ms 0000
gooocooo

goooobooboooobooboboboooooooooo
goboooooooboooooboooboobooooo
goboooooboooboooooboooobobooooo
gobooooooobooooobooooboooooo
oono

PR OUJECT

0 40 A TRAFFIC PATTERN MATCHING
TECHNIQUE

4.1 INTRODUCTION

The measurement and management of the Inter-
net is a challenge that needs to be addressed. In-
ternet traffic Measurement technologies provides
the base for effective network management and
operation, e.g. locating bottlenecks, planning net-
works, managing QoS, and etc. Yet there is to
date no generic solution to the Internet measure-
ment problem. [24] has attempted to construct
a globally scalable Internet measurement facility.
The IETF [25] WG is defining the framework for
distributed management. The IETF [26] WG is
defining the metrics for measuring the Internet.
The absence of a measurement nfrastructure has
slowed down the deployment of informed and in-
telligent management and control.

The size, spread and heterogeneity of the Inter-
net means that there will be parts of it which will
appear like a black box. E.g. An ATM backbone
or the telephone network which supports the IP
network. In general one will not have access to
management information related to the internal

state of the black box. In such cases one can only

73

OJOoO0OOooooooooooooooooono oo e

e[50 OO0OOOOOOOOOOOOODOOOODOOOO

build a picture from the input and output charac-
teristics.

One of the major problems of traffic measure-
ment in distributed environment is synchroniza-
tion of the information observed at different inde-
pendent point. The time stamps at different point
are in general not synchronized. This makes it dif-
ficult to build a picture of the functioning of the
intervening network. We cannot say how much
traffic was handled by the network, at a given in-
terval of time. [26] broached the importance of
the clock issue.

Global time synchronization is one of the solu-
tions. For this purpose, NTP [27] can be used.
It provides statistical clock synchronization. GPS
can also being used for long distant end-to-end
measurement across a ocean [28]. Another NTP-
like approach, centralized clock management, is
considered for a LAN/MAN environment [29].
However, those are either statistical or require
special devices and are thus not very appropriate
in the context of Internet Measurement.

To avoid this problem, we propose the novel
idea for synchronization of measurement informa-
tion by using the traffic characteristics at each ob-
served point. The technique uses pattern match-
ing of the characteristics. This technology will
synchronize the information observed at indepen-
dent points. In this paper, we explain the concept

and show the experimental results.

4.2 BLACK-BOX IN MEASUREMENT

Historically, the structure of Internet was sim-
ple. It typically consisted of one broadcast
(shared) media and several connected nodes. In
such cases, it is relatively easy to measure the
network characteristics by using single traditional
tools like [10] or [30].

However, the network has evolved to include
many types of elements and sub networks. The
observation points too are distributed. An ob-
server can at best collect information from several

points to know the network usage and character-

74

istics across several segments.

Fig. 4.1 shows the common monitoring environ-
ment. The network consists of switches and nodes.
Each interface may be monitored. The links may

be monitored using devices like RMON.

O points of observation

0 4.1 Black-Box in the Internet

4.3 INFORMATION SYNCHRONIZATION

In this section, we explain the necessity and
significance of synchronizing the information ob-
served at different independent points. For in-
stance, Fig. 4.2 shows a simple example of the
necessity of synchronization. Say one is measur-
ing the traffic from Net A to Net C. Ni is the
traffic observed at OP;. N3 is the traffic observed
at OP,. Now, N1, N2 represent the traffic passing
through NetB (including traffic originating and
destined to B), However, to get an exact picture
of the traffic through Net B, N1 and N2 need to

be synchronized.

OoP1

COECD"CD

OoP2

0 4.2 Observation point

Furthermore, we can also find out the num-
ber of dropped packets in Net B using incom-
ing/outgoing traffic observed at OP; and OPs, if
we can know the delay caused by Net B.

For these measurements, the accurate time syn-

chronization is indispensable.

Among the candidates for time synchronization,
NTP or GPS are worth mention. NTP is a pro-
tocol with an algorithm to synchronize the clocks
connected to the Internet. GPS provides more
accurate time than NTP using the signals from
satellites.

However, the former is statistical and the later
requires the special devices. Furthermore, some
equipment like HUBs, PCs etc. may not have the
capability of handling and/or using such special
devices.

In this context we propose a way to synchronize
independent information by traffic pattern match-
ing. This allows the information observed at in-

dependent points to be compared and collated.

4.4 TRAFFIC PATTERN MATCHING

4.41 HETEROGENEOUS NETWORKS

Today’s networks are characterized by their het-
erogeneity. For instance, in a LAN environment,
there are few server machines and many client
nodes typically. So, the amount of traffic gener-
ated in such a network leans heavily to the server
side. Fig. 4.3 shows the sample of a heteroge-
neous usage of network. The traffic observed at
the different points show similarity in their pat-

terns.

4.4.2 COMPARE THE TRAFFIC PATTERN

Fig. 4.4 shows a network model, which has n
links, and each link has paths for both incom-
ing and outgoing. We correlate them by following

pattern matching method.
MODELING THE TRAFFIC PATTERN

To capture the transition pattern, we make the
vector model, which represents the amount of traf-
fic of each time-slot.

The characteristics for a duration t, which is
divided into slots of size. So it has m = A/§
elements (Fig. 4.5). In the case of the network

as illustrated in Fig. 4.5, the characteristics is

W I D E

Input packet stream
2500 —_—

"In-Packets —

2000

a

=]

S
T

o

o

o
T

number of packets

o
=]
o

0 L L L L L L L L
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
time [sec]

Output packet streaml
2500 ——

" OUT-Packets 1 ——

2000 | 4
1500 | 4

1000 | E

number of packets

[4)]
o
o
%
\

0 L L L L L L A
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
time [sec]

Output packet stream?2
2500 ——

Out-Packets 2 ——

2000 |

1500 |

1000 [

number of packets

o
=]
S

0
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
time [sec]

0 4.3 Traffic transition similarity

Inz

L; 1»0\\

0 4.4 N-Links connected network

defined as follows:
L;, = (a1, a2:,a3i, -+, Qts, a%i)
Ljo = (buj, b2, bajy -+, beji bs ;)
L;,;: number of input packets at Link ¢

75

PR OUJECT

OJOoO0OOooooooooooooooooono oo e

e[50 OO0OOOOOOOOOOOOODOOOODOOOO

slot size

number of packets

sampling window

0 4.5 Traffic pattern model
Lj,: number of input packets at Link j

COMPARING THE PATTERNS

To compare the similarities of the characteris-
tics, correlation coefficient between incoming and
outgoing traffic is used. That is calculated as fol-

lows.
where
oin: standard deviation of L,

Oout: standard deviation of Ly,

rij(Lig, Ljo) =
L ST (L (4L) (Lo (k) L)

—X
NTinOout P

L;, average of L;,
Lj, average of Lj,

ri; are calculated for all combinations of i, j.
Then the max value of r;; is selected from all of

them.

4.5 RESULT OF MEASUREMENT

This section shows the remarkable results of
our proposed method. We evaluate the method
on two types of operational network. The first
is a 100Mbps FDDI backbone network, [31] (To-
hoku OPen Internet Community), which pro-

76

vides connectivity to some big universities, col-
leges, and museums. The other is 10Mbps Eth-
ernet Internet-eXchange, [32] (Tohoku Regional
Internet-eXchange, which provides connectivity
to some commercial ISPs. TOPIC has n = 20
links, and TRIX has n = 5 links.

The calculation is based on the data at
the interfaces, which are entry points of the
FDDI/Ethernet. We monitored the traffic in the
networks using TCPDUMP to evaluate the accu-

racy of our technique.

4.5.1 OVERALL EVALUATION

Table 4.1 shows the overall result of our pro-
posed method. The success rate shows the rate
of the exact matches between the logged packets
and calculated packets by proposed method. The
interval is the sampling rate, that is § in fig. 4.5.

The value shown in the table is derived heuristi-

cally.
0 4.1 Overall evaluation
interval § (sec) success rate (%)
100M-FDDI 0.01 84.6
10M-Ethernet 0.1 91.9

Fig. 4.6 shows the result of the effect of our
proposed method. The top graph represents the
result of our method, the next graph shows the
logged data. The two graphs are compared in the
third graph. They are almost same. The lowest

graph is a close-up of the area of mismatch.

4.5.2 WHAT IS THE TRAFFIC IN THE NET-
WORK?

Fig. 4.7 shows a 5 minutes throughput ob the

backbone. This information could not be obtained

using existing measurement technology without

some synchronizing technique.

4.5.3 WHO IS USING THE BANDWIDTH

Fig. 4.8 shows the ranking of the usage of the
bandwidth. Lines with rectangles represent the
calculated values. Lines with circles are based

on data derived from logs. The two are closely

calculated pattern
30 —_—

T T T
calculated packets

number of packets
- - n n
o (&) o o

o

o

time [sec]

observed pattern

W
S

) obser{/ed pat’:kets

number of packets
- - n n
o (&) o o
T T T

o

0 L L L L L L L L L
0 0.2 0.4 06 08 1 1.2 1.4 1.6 1.8 2
time [sec]

difference between calculated and observed
30

"calculated pat':kels

observed packets - - -

oy - o o
o o o a

number of packets

o

time [sec]

detail of the difference

calc'ulated packéts
observed packets - - |-

number of packets

15 . . 1.8
time [sec]

0 4.6 Sample synchronizing result

similar. Significantly, the top 10 links are heavy
consumer of the network resources, especially top
2, that information is useful for future topology

design or dynamic rerouting techniques.

4.5.4 SWITCHING HUB VIEW

Fig. 4.9 shows the sample application of our
method. This is a matrix view of a Switching
HUB. The information observed at each port is

synchronized, so we can see the view of the net-

W I D E

4500 T T T T T
Total Throughput

4000
23500
S
83000
S2500
8
£2000
2
1500
1000
500 L L L L L
0 100 200 300 400 500 600
time [sec]
0 4.7 Network throughput
8000 T T T T
calculated packets —&—
7000 observed packets - ©-
2 6000 E
S
g 5000 1
S 4000 E
8
€ 3000 1
2
2000 1
1000 1
! o,
0 L 5 &
5 10 15 20 25 30
time [sec]
0 4.8 Ranking of the network usage
=]
Fib & Ve 6o Gommey vl |
G)
Y
Get Al Interval | 0
10BASE_HUB
cerberus | i pecol00
100BASE_HUB——— —————kujyaku
musashi— “—100BASE_SWHUB
kaguya ~—techno
JBase_SWHUB-708—— ——parfait1 00
UNIV——— ~————phantom
o J \ ke
nandora
By
e _:J, i
=l Y aP @ 2

PR OUJECT

0 4.9 Matrix monitor for SW-HUB

work.

4.6 ISSUES

This proposed method is a way to synchronize
the management information obtained from differ-
ent points in the network. The method is scalable
and works well in the case of networks with small
latency. Recent technology has led to very high-
speed and high-capacity networks. This technol-

"

OJOoO0OOooooooooooooooooono oo e

e[50 OO0OOOOOOOOOOOOODOOOODOOOO

ogy is expected to be useful in the measurements
of such networks.

Since the proposal does not involve the addi-
tion of additional devices the method can be im-

plemented using current management framework.

4.7 CONCLUSION

In this paper, we discussed strong requirement
of measurement of the present day Internet. We
have also explained the difficulty in doing the
same. This problem makes effective network man-
agement and control difficult.

We have proposed a methodology for informa-
tion synchronization. We have also established its
efficacy by deploying a pilot version of our method

on an operational network.

050 0O00D0DODO0OODODODODOWWWOOD
gbooooobao

51 0000

World Wide Web(WWW) OO OOOO0OO0O00O
gooooogssooooooo Www oooo
000000 B3J0WWW OOOU0OOO Internet
JoooOoOoOoooDooo sowuoooooooon
O [34)0

goooobo0oooooboooooo WWwW
Joo00ooooooboooooDooo0OoowWwWwW
gooboooooooobooooboboooo
goooooboooooooowwwooooo
gooooboooobogleesogobooobogon
gooboooooboooboboobobooooo

wwwiooooooooooooooooooo
godoodooooboooooooboooooo
goopooowwwiooooooooooooo
goobooooobooobobooboboooooo
go0ob0o0ooooDbOooobobooboboooooo
Oo0oddooooobooooooooooooon
goooooooog
ooowwwioooooooooooooooo

78

000000o0o0ooooooooooooooo
00000000000o0o0o0oooooooooo
000o0o0o0oo0o0oo0ool)oooooooo
gooUooooUoUo2)ooooooooooo
gooUooo3)oooooooooooooooo
00000000o0oo0oD0ooOooooooooo
0o0ooooooboooooooooooooono
0000oo0ooUoooooooooooooooo
oooboooo0oooooooooooono Wwww
00000000ooooooooooooooon
0ooooooobooooooooooooono
0000ooooUoooooooooooooooo
ooo

00000DO0o0oDoooDoooDo WWW OO
gdooooobooooobooooooboooo
000000 Enhanced Network Measurement
Agent(ENMA) 0000000000 OOOOOO
goooooboobooooooooooooono
OO0 ENMADOOOOOOOOOOOO

52 J0000OoOoooowwwoooooooo
good

oooooooooooowwwooooono
oobooooboooobooooooobobooooo
goboooobooobooooooobbooooDo
oooood

521 00O0OOOO
wwwiooooogooooooboo 4000
gooooooon

1. OO0O0o0oooooo
goboooooooobboooobooooooo
coowwwioooooooooono 200
gooooooboooobooooobooooooo
ooooo

2. DO0OoOooooOwwwiooOooooooono
ooooooobooooboocooon
gobooobobowwwgoooooooooo
gooooooooobboooobooooooo
oooooooooowwwooooooono
gooooooboooobooooobooooooo
goooooboooooooooooon

3. toooboooooooooooboooobooo
gooooo
gobooooooooooobooobooo
goboooooooooobooooboooo
oowwwoooooooooooooooo
goboooooooooooboooooboooo
goboooooooon

4. J0OO0O0O0OO0OO0oOoOooOoOoOobOOoOooooooo
goboooooooooo
wwwiooooogooooooooooooo
gobooooooooooobooooboooo
oood

ooowwwooooooooooooooo
goowwwoooooooooouoboo2sd
gboboooobooboooobooooooobooooboboo
goboooooooobooooooobooooboboo
gooo

5.22 0000
goooowwwoooooooooooooo
goboobooooooooooooo

client T
SYN| SYN |ACK ::rp ACK | FIN

uest
+ACK
112 3 4 |5 6
monitor- -@-- B [-
Response and Data FIN ACK

server —
! A

R
d |

(@]

0 5.1 0000

000000000 (V)

goooooooocowwwioooooooo
goooooooo HTTPOOOOOOOODDO
gboboooobooooobooooooobooooboboo
goboooooooobooooooobooooboo
gooo

0ooooooooo (T

goooooooooooTrTepoOoooOoOOonO
goboooooooboboooooobooooboo
00o00ooooooooooooo syNooogo
(0510 1H)OOUOOoOooUooUoO AcCKOOO
0O(@5106) 0000000000000 (O 5.1

W I D E

OoU0 c)boooUoooooUoUoooooo
goboooooooooooobooobooboooon

0ooo (7y)

oooooooooooooooooDoOo HTTPO
gooooooooooooooooooo 5HTTP
gobooooooobbooobooobbooooo
Oooooooooo 51000 A000O000O
oooooooooowwwiooooooooo
gobooooooooooooboooboobooooo

0000000 (Ty)

gobooooooooooooboooobooooon
oooooooooooo grrp00000000
oooUoooooooooo (o 51000 B)O
O000o00oOo FINODODODODOOO ACKOOO
gobooooooobooooobooooboobooooo
goboooooooboooobooobobooooo
goboboooooooooobooooobooo

523 00O0O0O0O0O0O0O0OOOD

HE = P> (1) Statical Analysis on

,,,,,,,,,,,,,, logdata] Activity Log Data

Kemel | = p (2)Kernel-Level
Sooket Monitoring

Jo[E

P
memory €S Data Link
|

} o 1 % q
=1 (3)Benchmarks

0 5.2 DO00OwwwoOOoOOoOoooooo

wwwioooooooooooo 520000
gobooo3booooooooo

1.0000
2.0000000000DDO0O
. 000ooooon

gooboos2200000000000000A0O
goooooobooooooobooooooboo

1. 0oooobo oooooowwwooooo
ooboooooooooooboDoooowwwoono
goboooooooboooooboooboobooooo

79

PR OUJECT

OJOoO0OOooooooooooooooooono oo e

e[50 OO0OOOOOOOOOOOOODOOOODOOOO

gboboboooobooooooooboboooboooooo
gooooooooooooboobooooobooooon
gobooooobooooooobbooobobooooo
gobbodoooooooooboboooboooooa
goboocooboooobooobooooooboo

2. 0000000000000 oooooooo
ooooooooor/ooooooooooooo
gbobobooooboooooooboooboooooo
gobooooooooooobooobobooooo
gobooooobooooooobbooobobooooo
gooooboooodooooooooooooooon
oo oSOoOoOooooooooooooooo
goboooooboooooooboooboooooo
goboooobooooooobbooobobooooo
gobbodooooooooobooboooboooooa
oooooooooooowwwgooooooo
gobooooboooooooobooooobo

3.000000000 WwwOOOoOOoOoooo
00000000000000000SPECWeb96
[35] 0 WebStone [36) 1000000000000
00000000000000000000000
00000000000000000000000
00000000000000000000000
00000000000000000000000
0000 WWWOOOOODOOOO0O000000O
00000000000000000000000

524 J0O00O00O0OODODODWWWOOOOOOO
oo

oobooooooooooooboooobooooon
gobooooboooooobbooobbooooo
oooowwwooooowwwiooooooo
gbobobooooboooooooobooboooboooooo
gbooooooooooooooono www g
gobooooooobooooobogooo

WWW DOOOOOoO HITTP OOOOOOOOO
HTTPO TCPOOOOODOOTCPOOOOOO
ooooooo TCcpOoOODOOOOOOOODO
gobooooobooooooooo

goboooboooooooboooobooooon
gboboooooboooooooboboooboooooo
gobooooooooooobooobobooooo

80

0 5.1 0DOoO00oooooo

Kernel
Bench Packet
Log Level
-mark Monito
Analysis | Monitor
. Test -ring
-ing

A x o 0 o
B o x x o
C O X o
D 0 x o) o

oobooooobooo
gbobobobobobooobobobobo

A.0000D0OO00C0OOOCDOOOODOO Oo0o
ocooOooooooogoTrTepoOOoOooOoOooOO
gobooobooobooooooobboooono
oboouoboooboooooooboooooo
ooboooooooobooboooon

B.wwwioooooooooooooono o
oboobooboooooobbobooooobooooon
gooooooooobooobooOoooobo0oooOwWWW
gobooooboooobooooo

c.jooopooooooocoooooo ooo
gobooowwwioiooooooooooooo
gooooobooooooooobooooooooo
oboooobooobOooooooboooooo
goooobooooooooooobboobooooon
goboooboooboooooobbooooDo
oobooooboooooooooo

D.000bOooooooooooboo oooo
Owwwioooooooooooooooooao
ooooooooowww Oooooooooo
oSoogoooooooooooooooooo
goooooo

gobooooobooooobooboooooonon
os51000000

53 000000

ocooODooooooooOO0o0oo0oooo0 WWW
gboooooooboooooboooobooooboo

Monitor Host Analyzing Host A

Visualizer

ENMA Daemon S ~ . <\
il v Graph v Y.
{ { Cotlector {50 Sor’)1

// Packet "y Connection’,
T_\ Monitor,” "\ Analyzer ,

- Statistical™ :
"~ \analyzer /|

0 5.3 0D0OO0O0OO

000000 Enhanced Network Measurement
Agent(ENMA) 0 000 0 OENMA O 0ENMA
0000 (ENMA Daemon) 00000000 DODO
O (Performance Analysis Workbench) 0 0 00O
oooooooooo (O 53)0

5.3.1 ENMACOOODO
ENMAOOOOOODOOOOOOOOOODOOO
gooooOoooOO0 ENMAOODOOOOOOOOO
gbobooooboobooooboboooooobooooboboo
gb0200000000000000O000
O00oooooocooO0od ENMAOODODO
goooooooooo HTTPOODOOOOOD
gbobooobooooocobooooboooooobo
gooolpooooooooooooboooooo
gooooooo
gooooooboooooooooooboooooo

e HTTPOOODODDODOOOOOOOOOOO
gooooo

goo TcecpoOOoOOOOODOOOIPOO
gooooooooooooobooobooogrp
0oooooOoooooooOoo TepOO
goboooooooooboooobooooobo

o TCPOOOOOOOOODOOODODOOOO
goooooboobooobobbooobboooooog

o 1000ODOOOOOOO1IO0OO0O0OOOO
gobooooooooooo

goooooooooobooooboooooon
gooboooooooboboobooobooon
gobooooooooogoo

532 0D0O0OOOOOOOO
00000000000 ENMAODOOOOOO

W I D E

gobooooooobooooboooboooooo
goooboooo 2000000000

e J00O0IDOODUDLDODLOUDOODODLODLO
gogoooooooooooOOOOOOOoOon
000000000 0O0OOENMAOOOOO
gbooooooooooboobobooobooon
00000 ENMAOOOOODOODOOOO
gobooooooboooooobooooa

e 000D OOODOOOODDOODLOODO
dooooooooooooooboooooo
wwwiooooooooooooooooo
gbooooooobobooooobooooon
O0DoOOoO0oO0OO0O0O0O ENMACOOOOOO
gbooocooobobooooooooon
oono

54 00O

gboobooboo uNIXOooooooooooooo
O0o0ooOooOooOooOooUOoUOOoUdOoUdOoENMA
00000 CcOoooooooooooog AWKO
CcOO00D0DpDoOOoDOOOoO0oOoUDOO FreeBSD
2270 IRIX63000000O0O0O0O ENMA OO
gooooooooon

544 000O0O0O0O0OOOOODO

000000D0D000ooO0oooooooDoon
0000000000 DOOLawrence Berkeley Na-
tional Laboratory(LBNL) OO OOOOOOOOO
0000 (ibpeap [37) 000 000ODOO0OODOOO
00 BSD OO Berkeley Packet Filter(BPF [11]) O
System V O 0O Network Monitoring Protocol(the
packet snooper) 0000000000000 APIO
00000o0ooooooooooooooooon
gopPo0OooOoOO0oOOD0DOOOO0OO0OOooOOoOon
UNIXOOOOOODODOO ENMAOOOOOOO
oooooooo

542 00O0O0O0O0O0O0CCOODO
O0o0o0ooooooooogoooo TCcpoOOO

o000 TCpOOOOOODOODOOOODOOOOO

goobooooooooobooooooTepOOO

81

PR OUJECT

OJOoO0OOooooooooooooooooono oo e

e[50 OO0OOOOOOOOOOOOODOOOODOOOO

Packets

CS: Client State
SS: Server State

Packet Dropped

Packet monitoring module

Get TCP
Flags

TCP analysis module

Release memory block
@ YES*] and write to log file
NO
YES CS is ESTABLISHED
A SSis SYN_RCVD
NO
Allocate
YES® memory
NO block

Are SS and CS
ESTABLISHED?

CS is FIN_WAIT_1
SS is CLOSE_WAIT|

»| CSisLAST_ACK | |

NO SSis TIME_WAIT

SSis
ESTABLISHED

SSis
FIN_WAIT_2

Release memory block
and write to log file

0 5.4 O0O0O0OO0OOOOOOOOOO

gobooooboooooobobooobobooooo
gobbodooooooooooboboooboooooa
gooo 540000
Os4000000000000000C0OO0DO
OO0 TCpOOO0O0OOODOOOOODOOOOO
goboooooboouooboooo

1.RSTOODOO0OOOOOOOOOOOOOOO
gobooooooooooooooooooo
goooooooooboooooboo

2.SYN+ACK 0 O00O0OO0OOOoOOoooooao
SYN.RCVDOOOOOOOOOOOOoooOo
000 ESTABLISHED OO O OOoQOO

3.5YNOOOOoOoogoooogooooogoo
gooooood

4. FINOOOOOOOoOoOooooooooooo
goooooooooboooooo

()0 0000000000000 ESTAB-

82

LISHED 000 O0oooooooooo
FINWAIT.1OOODODOOOOOOOOO
CLOSE WAITOOOODOOO
(hOoOoOOOoOOOoOoOoUOoOoOoU ESTAB-
LISHEDOOOOOOOOooOoooooo
0O LAST ACKOOOODODOOODOOOoOOoOO
TIMEWAITOOOOOODO

5 ACKO0O0

(a) SYN+ACKODO OO ACKDOOOOoooo
00000 ESTABLISHEDOOOGOOOO

(h)OOD FINODDODOOODODO ACKOOOO
g0ooocoooo FINWAIT20000
oo

(c)2000 FINOOODOOODO ACKUOOO
goooobooobboooooooboobog
gooooooooobooboooooooooo
gooooo

oobooooboobooobooooooooooon
OSYNOOOOOOOooooooooo TCp O
gobooooobooooboooooooobooooonn
oooooooTcpOooOoOooOoOoOoooOoD
uoboouoboooboooooooboooooo
oboooobooobOooooooboooooo
ooboooooboooobOoooooobobooooo
gobooooboooboooooobbooooDo
oboouoboooboooooooboooooo
oo

543 00000O0OOOOO
gs30d0bpooboobooboonoonooboong
jodboo0ooobooboboouooboobo
0 (Reporter) OO0 OOO0O0OO0O (Visualizer)
O00000000000o0oO00odOoUOodENMA
00000 ENMAOODOOOOOOOOOODO
O000D0O0O0OENMAOOOOOOOODOOOOO
0000000000 00000ooguuENMA O
gbobooboobobooboooobooooooon
OO0OODENMAOOOOOOOOOOOOOOOO
gboobooobobooooooooooooob
ggobooobobooobbooobbooobo
goboobooooboboobooboobon 2
goobooboobobooooooooooboon
gbobobooboooooboooobooob

000000000 (Statistical Analyzer) O
ENMAOOOOOOOOOODOOOOOOOOOO
pgobobooobbooobbuooobboobo
gooooo

ooboocoooooooo

gooooboooooboobobo s3bbouooo
gboboooboooobooooooobooooooa
goboooooooobooooooo

gooooooo

normal sessions
I000
2400
1&00

1200

17h 18h 19h 28h 21h 2Zh 23h B8h 81h @zh @3h B4h
1999705720 1999,/05/21

5319140500 (9219573501
max 22195

0 5.5 0000000O0OODOOD(DODODOOODOOO)

goooboboooooooobbooooooo
goooooboboooooooobboooooooo
goboooooooboooooooboooooDooo
goboooooooooooboboOobO 55000
gobooobobooooboooooooonon

goooooooo

gooooooOoOogooENMAOOCOOOOODO
gboboooobooboooobooooooobooooboboo
gboboooooooobooooooobooooboboo
gooo

55 ENMACOOOOOODO

ENMAOOOOOOOOOOOOOENMAOO
gooooooowwwioooooooooooo
gobooooocooon

551 wwwoOooooooooooo
OOOOENMAODOOOOOO WWWOODO

gbobooooooooboboooooobooooboo

oo00oo20000000000000 (7)) O

W I D E

wwwiooooooooooooooooooog
goboooooooooooooboooono 200
000oooooooOo ENMAOOOODODODOO
gooooooo

gooogo

0000000OPentiumII 200MHz OO OO ADO
80486DX2 66MHz O O OO BO200 WWW OO
00000oooooooono OSSO FreeBSD 2.2.7
OwwwioooooDooooooooo Apache
131 0000000000000 00000O0000O
00ooooooooooooooooooo

gooooooooooowwwouooooo
00000oo0oooooooooooooogog 200
ooooodoooobobooooooobooood
gooboooooooooirooobooog 10,0000
0o0ooodT,., 7,.000000

oag
350 ‘
HostA ——
300 | ﬂ HostB -
250 |- ‘
5 |
9 200 | \
[
3 |
o 150 |
C ‘\
100 | ‘ ‘o‘
m
50 M) :
e
0 i ‘ ™
0.001 0.01 0.1 1 10
Response Time(sec)
0 5.6 ODOOOOOODOO
450 \
‘ﬂ‘ HostA ——
400 + M HostB -
|
350 ||
|
300 - ;’ |
3 [
< 250 ||
g [
[
g 200 | |
ool ||
[N
100 | \
I /
50 | (Ve
0 ‘ ‘ ‘
0.001 0.01 0.1 1 10

Connection Continuation Time(sec)

0 5.7 DOOOOO0OoOoOOOOObOOO

o se6s5700000000000O0 5600000
0(T,)0D00000000O0 56000000 A

83

PR OUJECT

OJOoO0OOooooooooooooooooono oo e

e[50 OO0OOOOOOOOOOOOODOOOODOOOO

O07T7.020msec00000000O0O0COOOO
gobooooBOOooOOoooooOobDOoOODT: 0 50
msecl 00000000000 O0OOOODO 560
00000 AO0O0O0OOO0OOO0OOO0OOOOoOO
oo s7oooooooboooobooooooboa
000 57000000 AQDODODOOOOOOOO
0 (T.)03msec000000DO0ODOOODODODO
OO0BOT.0200msecO0000O000O0O0DOO
0000000 A0OOOOO BOOOOOOOO
goboooooooooobooooboobooo

o00200000000000 AOCOOBO
0000000000000 0O0O0OENMADODOOD
ocoowwwoooooooooooooooo
oono

552 OO wwwooooono

ENMAOOUOOOOOODODODO WWWOOOO
gobooooboooooooboboooobobooooo
goobosobboooooooooooboboooa
ooooooooowwwoooooooooo
owwwiooooooliooooooooooo
oooo

gooooo

JooooooowwwiooooooOd Sun En-
terprise 450(CPU O Ultra SPARC IT 300MHz 2
00512MB 00 00) 000O0OS O Solaris 2.6
O WWWOOOOODOOOO Apache [38] 1.3.1
ODODODODENMA OOOOOOOOODOOOOO
0 IBM-PC(PentiumlII 300MHz0 64MB 0O 0O 0O)0
OS O FreeBSD 2.2.7-RELEASEO0 0O OOWWW
0000000 ENMAOODODOOOOOOOOO
gogoboooobooon

oo

0 5800000000000 (T,)00O0ODO
goooooowwwiooooooooooooo
oooooD T.0 1msecO00O0OOOOODODOO
OO0000 ENMAOOODOOOOOOOODOO
O020msec00000O00OO0OOODOOO

wwwiooooooooooooooooooo
goooooboooooooooooooooooo
gooooooobobo 7T.00 sa1000000O0DDO
accept OO0 OO0O0OO0DOODOONO close OO

84

1e+07

1e+06

100000 +

10000

1000 +

Frequency

0.001 0.01 0.1 1 10 100 1000 10000100000
Connection Continuation Time(sec)

0 5.8 JO0000O0ODODOOODOOOO

0.8

0.6

CDF

0.4 r

0.2

100 1000 10000
object size(bytes)

100000

0 5.9 JO000oOoooooobooooo

Client T T
ovn| svn |ack P ack | FIn
+ACK
12 3 4 s 6
Monitor - -9 -- d e @- -
Response and Data FIN | ACK
Server ‘ ‘) ‘
.
| %"@ @"o'%/'@%o |
| w87 |
| <—r—> WWW Server Log |
I I I I
T T v d
ENMA Log ‘> B ‘
9 A

0 5.10 ODO00O0OO0OO0OOoOoOoooooon

goooooooooobobooooboooooo1
msecUOO00O00OO0O0O0O0OO0OOOO 5.100
goboooboooboooooobboooono
doodooobbOwriteOODOOOOCOOOOOO
00000000000 Solaris2.60000000
gooboooon 8KByte OOOOOOOOOO
00000000000 8KByteD OODO (O 5.9)
UddddwriteUOOOOOO0O0Ooooooooo
oboooobooobooooooobooooo
oobooooboooobooooooobboooonoo

0000000000 T.o0o000000
OOODENMAOOO 7T.0000000000O
T.000O0TCcpO0OOoOoOoDoOOOOOOOOO
gobOo0ooObo0O0oob0ooO0oO00O0OOclese0nDO
goooooooooooSOoOoOoOoOoooooo
000000000000 DOUO0OOENMAOOOO
goooorT.0 TCpOOOOOOOOOOOOO
O00O0O0OOO0OOENMAOOOOOOOOOOOO
owwwioooooooooooooooooo
goboooooooooo

15000

10000 |

5000

number of connections

0 . . . n
0 20000 40000 60000 80000
time(sec)

0 5.11 ENMAOOOOOOOOOOOOOODOO

600

N
o
S

n
o
o

number of connections

0 20000 40000 60000 80000

time(sec)

0 5.12 wwwioOoOoooooooooooooooo
od

ooooooooo (Ne)Oo 5.11,5120000
WwwioOoOoooOd ENMAOOOOOOOOoO
or.00000000007T.000000 N OO
O0O0D0O0OODODODENMAOOOOO 7.0 WWW
goooopoooQ0 7. 000ENMAOOO T, O
goooooooooT.00000000000O
ooooooooonN. 000000000

Os511,5.1200 wwwiooooooooono

W I D E

00000000 N.O5B5000000000ENMA
goooooo N.O 130000000

400000

Serverlog ——
ENMA log ———

300000 -

200000 +

100000

number of connections

0O 20 40 60 80 100 120 140 160 180
time(10minute)

0 5.13 OD000000OO0O00ooooooood

ENMAOOOOOOOOOOOOOOOOOOO
goboooooooboooooboooboobooooo
oo0b 51300000 s13000WWWOOO
o000 ENMAOOOODOOOOOODOOOO
O0O00OO0OO0OOENMAOOOOOOOOOOCOO
gobooooooooooooon

O0O00OO0OO0ODOOENMAOOOODOOO WWW
oooooooobooooooooo WWw oo
gbobooooobooooboboooobooooao
ENMAOOOODOODODOOOO WWWOOOO
gobooooooobbooobooobbooooo
goood

56 00O

5.6.1 O0OOOODO
gobooooobooooooooboooboboooon
goboboooooobooooboooboooooa
O00D00O00OO0O0OOENMAOOOOOOOOOO
gooocooooooooon

1. boOoooobodobobooobooobobod
Www OoOooooooooooo ENMAOOO
ooooooooooooooobooowww g
goboooobooooboobobooobooobooobo
O000o00o0o00oo00ooo0o0oo0odoOoENMA
gobooooooobooooboooboooooa
oooocooo

85

PR OUJECT

OJOoO0OOooooooooooooooooono oo e

e[50 OO0OOOOOOOOOOOOODOOOODOOOO

2. 00000000CCOOOCOCOOOOOOOO
oo oOoOo0O0OuNIXOooooooooooo
ooooo MbpsOOOOOooOooOoOoOoOCOOO
oooosoOoO0o0oOoOUoOoooooooooooo
00000Gigabit Ethernet 0000000000
OO0 ENMAOOOOOODOODOOOOODOOOO
ooooSooooooooooooo

562 J00O0O0OOODOOOODO

goboooooboooooooobooooboooon
o0oDoOoOoooooooO0O0OoOoOOENMAOOO
gobbodoooboooooooboboooboooooa
goooooooooooooooobooooooon
goooowwwioooooobooooooo
gobooooobooooooobobooobobooooo
aoon

57 0000000000 00O00O00OO

goboooooooooobooooobod tep-
dump OO0 0 Otcpdump OO0 O0O00O0O00CODOO
gobooobooooooobobooobobooooo
obbodooooooooobobooooboooooa
O0oO0oooo HTTPOOOOOOODODOOODO
goboooooboooooooboooboobooooo
goboooobooooooobbooobobooooo
gooobobooooooooooooooooooo
ocooowwwiooooooooooooooo
goboooooboooooboo

O0O0O00O00OENMAODOOOOOOOO HTTP
goooooobooooooooobooboboooooo
goboooooooooooboboooboobooooo
goboooobooooooobbooobbooooo
gobooooboooboooooooooboo

58 0000

www ioooooooooooooooooo
ocooooowwwiooooooooooooo
gobobooooooooooboboooboobooooo
goboooobooooooobobooobbooooo
goooboooodoooobooooooooooooon
wwwioooooooooooooooooooo
goboooooooooooboooboobooooo

86

goboooooboooobooooon
gpoooooowwwioooogowwwioono
goboooboooboooooobboooono
goboooobooooodoooobobobooooao
goooooooooooooooooobobooooo

e WWW OOOOOOOOOODOODOOODO
oo

e WWWLHOOOOODOODODOOOUDDOO

e WWWIHODOOOOOOOOODODOOOODOO

e 00D OOLODOODODOOO

0000000000000 00000 ENMAD
OO00O0O0O0OC0OOOENMAOOOOOOODOD
goboouoboooboooooooboooooo
000000000000 00000000ENMA
goboooooowwwiooooooooooo
gobooooowwwgoooooooooooo
gobodoobooooooboobooooo

