
第 7部

次世代インターネットプロトコル

269

第 1章

v6 分科会

この章では、IPv6 と IPsec に関する研究に取り組んでいる v6 分科会が 1998年度に活
動した内容について報告する。

1.1 概要

1998年 4月から、IPv6 と IPsec のスタックを集中的に開発する KAMEプロジェクト
が始まった。KAMEプロジェクトには、v6 分科会で活発に活動していた 7 組織が参加し
ている。初期段階では、v6 分科会の参照コードであった Hydrangea に、各組織で実装さ
れた機能をマージした。マージの作業が終ってからは、マージされたコードの改良や新た
な機能の追加に取り組んでいる。
KAMEプロジェクトは、毎週 snap バージョン、2 ヵ月に 1 度 stable バージョンをリ
リースしている。現在このコードが v6分科会の参照コードとなっている。v6分科会では、
今年度はトランスレータの実装や運用に力を入れた。トランスレータや個々に開発された
アプリケーションの多くは、KAMEのコードに取り込まれ、portsとして配布されている。

このような活動に伴い、KAMEのコードの論文やトランスレータの Internet-Draftが出
版された。これらの文献を取りまとめる形でこの章は以下のように構成される。

� TCP とエニーキャストに関する Internet-Draft

� トランスレータの分類に関する Internet-Draft

� Bump In The Stackというトランスレータに関する Internet-Draft

� SOCKSに基づいたトランスレータに関する Internet-Draft

� KAME コードの実装方法に関する INET'99 の論文

� 1 年間の活動状況

271

272 1998 年度 WIDE 報告書

1.2 Disconnecting TCP connection toward IPv6 any-

cast address

1.2.1 Abstract

IPv6 speci�cation implicitly disallows TCP connection toward IPv6 anycast address.

However, if such a connection request happens by mistake, currently there is no way to

report the incident to the originator of the TCP connection. The document tries to de�ne

a way to disconnect TCP connections made toward IPv6 anycast addresses.

1.2.2 Problem

IPv6 speci�cation [42] de�nes \anycast address". Anycast addresses have the following

capabilities and restrictions:

� Anycast address is not distinguishable from non-anycast, unicast addresses.

� Anycast address can be assigned to multiple interfaces of multiple nodes.

� Anycast address MUST NOT be assigned to an IPv6 host. It can be assigned to an

IPv6 router only.

� Anycast address MUST NOT be used in source address �eld in IPv6 header.

Since anycast address MUST NOT be used as IPv6 source address, TCP connection

using anycast address MUST NOT be established. However, since anycast address is

indistinguishable from (non-anycast) unicast addresses, a TCP connection is sometimes

requested toward an anycast address, and in the TCP scheme there is no way to report the

error.

Consider the following scenario:

� We have Host A and router B on the network. The topology between host A and

router B has no e�ect to the following scenario, so we assume they share the same

network medium.

� An IPv6 anycast address, 3ffe:0501::1, is assigned to an interface of router B.

Since an anycast address is indistinguishable from non-anycast addresses, host A may

transmit TCP connection request toward IPv6 address 3ffe:0501::1, port X.

The standard behavior for TCP stack on router B is to transmit toward host A a TCP

packet, with RST bit set to disconnect the TCP connection. However, in this situation

第 7部 次世代インターネットプロトコル 273

A B

3ffe:0501::A
3ffe:0501::B
3ffe:0501::1 anycast

3ffe:0501::/64

3ffe:0502::/64

3ffe:0502::B’

SYN to 3ffe:0501::1 port X

What kind of error report is suitable?

図 1.1: TCP connection request toward anycast address.

router B cannot transmit TCP RST packet toward host A, since router B needs to put its

anycast address, 3ffe:0501::1, into source address �eld in IPv6 header to do this.

A non-active way of dealing with this problem is, silently ignore the TCP connection

request from host A to router B, and wait for host A to timeout. This is not a desired

behavior.

1.2.3 Solution

If a router gets TCP connection request (SYN packet) toward one of its anycast addresses,

the router SHOULD transmit an ICMPv6 [64] error packet, with type �eld 1 (destination

unreachable), code �eld 3 (address unreachable). Source address �eld of IPv6 header will

be �lled by an IPv6 (non-anycast) unicast address assigned to the router.

In the example illustrated in Problem section, router B SHOULD transmit an ICMPv6

error packet toward host A. The source address �eld of IPv6 header for the ICMPv6 packet

will be 3ffe:0501::B.

Implementation note: If the originating host of the TCP connection is a BSD-based

implementation, it will count the number of ICMPv6 error packets in tcp notify(). If

the number of ICMPv6 error packets exceeds the limit, the originating host drops the TCP

connection. In this case, TCP connection can be disconnected much quicker.

The proposed method MUST be removed when one of the following events happens in

the future:

� Restriction imposed on IPv6 anycast address is loosened, so that anycast address can

be placed into source address �eld of the IPv6 header, or

274 1998 年度 WIDE 報告書

� TCP-over-IPv6 is modi�ed to provide some way to accept a connection toward IPv6

anycast address.

1.2.4 Alternative solutions

We can try to de�ne some DNS resource record to denote if an IPv6 unicast address

is anycast address, or non-anycast address. However, it looks to be very hard to deploy.

Also, we must have a way to disconnect TCP connection request toward anycast address,

anyway.

1.2.5 Security considerations

The document only clari�es the use of TCP-over-IPv6 and ICMPv6, and the author

believes that the draft raises no new security problem.

Malicious intermediate router can transmit forged ICMPv6 error report packet, to pre-

vent two hosts from establishing TCP connection. This is known problem in ICMPv6, and

ICMPv6 speci�cation [64] provides a detailed discussions on this problem (see section 5 in

RFC1885 [37]).

ICMPv6 address unreachable packet provides a way to report an error in per-address, not

per-TCP-port, basis. Therefore, some implementation may lose all connections toward the

reported address, not the speci�c connection that caused the ICMPv6 error report. This

is not a problem for this draft, because no TCP connection toward IPv6 anycast address

is allowed at this moment.

1.3 Categorizing Translators between IPv4 and IPv6

1.3.1 Abstract

This memo categorizes translators between IPv4 and IPv6. The two components, address

interpretation and address mapping, are discussed. This draft is based on a paper appeared

in the proceedings of INET98[136]. The intention of this memo is circulation of such

knowledge.

1.3.2 Introduction

In the early stage of the migration from IPv4[107] to IPv6[42], it is expected that IPv6

islands will be connected to the IPv4 ocean. On the other hand, in the late stage of

the migration, IPv4 islands will be connected to the IPv6 ocean. IPv4 hosts need to be

第 7部 次世代インターネットプロトコル 275

connected to the Internet after the IPv4 address space is exhausted. So, it is necessary to

develop translators to enable direct communication between IPv4 hosts and IPv6 hosts.

This memo assumes the following for the practical migration scenario from IPv4 to IPv6:

1. We cannot modify IPv4 hosts, but we can implement IPv6 hosts as we like.

2. A small space of IPv4 address is also assigned to an IPv6 island according to the

current severe address assignment policy.

3. An IPv4 island can also obtain a large space of IPv6 address.

A typical translator consists of two components: interpretation between IPv4 packets

and IPv6 packets described in Section 1.3.3 and address mapping between IPv4 and IPv6

explained in Section 1.3.4.

1.3.3 Interpretation of IPv4 and IPv6

For interpretation of IPv4 and IPv6, three technologies are available: header conversion,

transport relay, and application proxy.

Header Conversion

Header conversion refers to converting IPv6 packet headers to IPv4 packet headers,

or vice versa, and adjusting (or re-calculating) checksums if necessary. This is IP level

translation. Examples are SIIT[98] and main part of NATPT[124]. Note that NAT[47] is

IPv4-to-IPv4 header converter.

Header conversion is fast enough, but it has disadvantages in common with NAT. A good

example is di�culty in the translation of network layer addresses embedded in application

layer protocols, which are typically found in FTP and FTP Extensions[14].

Also, header conversion has problems which are not found in NAT: a large IPv4 packet

is fragmented to IPv6 packets because the header length of IPv6 is typically 20 bytes

larger than that of IPv4, and the semantics of ICMP[106] and that of ICMPv6[39] are not

inter-changeable.

Transport relay

Transport relay refers to relaying a TCP, UDP/IPv4 session and a TCP, UDP/IPv6

session in the middle. This is transport level translation.

For example, a typical TCP relay server works as follows: when a TCP request reaches

a relay server, the network layer tosses it up to the TCP layer even if the destination is not

the server's address. The server accepts this TCP packet and establishes a TCP connection

from the source host. One more TCP connection is also made from the server to the real

276 1998 年度 WIDE 報告書

destination. Then the server reads data from one of the two connections and writes the

data to the other.

SOCKS[77] is an another example. A SOCKS based translator requires client hosts to

be \SOCKS-ready" by installing SOCKS libraries, etc.

Transport relay does not have problems like fragmentation or ICMP

conversion, since each session is closed in IPv4 and IPv6, respectively, but it does have

problems like the translation of network layer addresses embedded in application layer

protocols.

Application Proxy

An application proxy for a transaction service is used to hide site information and improve

service performance with a cache mechanism. An application proxy can be a translator

between IPv4 and IPv6 if it supports both protocols. This is application level translation.

Since each service is closed in IPv4 and IPv6, respectively, there are no disadvantages

found in header conversion, but servers for each service must be bilingual.

1.3.4 Address Mapping

Address mapping refers to the allocation of an IPv6 destination address for a given

IPv4 destination address, and vice versa. It also includes the allocation of an IPv6 source

address for a given IPv4 source address, and vice verca. If interpretation is performed at

the Internet protocol level or transport level, address mapping is an essential issue.

If an FQDN(Fully Quali�ed Domain Name) is used to specify a target host, address

mapping is not necessary. So, the application proxy is free of this problem. SOCKS

version 5 is a kind of TCP relay, but it is also free of this because it can make use of

FQDN.

In the case that address mapping is dynamic, it must be implemented in interaction with

DNS. However, if it is static and proliferation of mapped addresses is limited to a small

region(i.e. Translator A, described later), it can be implemented by extending resolver

libraries on local hosts. Of course, DNS can also map addresses statically.

An example of library extensions for static mapping: an application tries resolving AAAA

records against a host name. The resolver library requests DNS servers A or AAAA records

of the name. If only A records are returned, the library converts them to AAAA records

embedding them into the pre-con�gured pre�x. ([124] also discusses this mechanism.)

An example of DNS extensions for dynamic mapping: if a DNS server receives a request

to return A records for a host name, but only an AAAA record is resolved, the server picks

up an IPv4 address from its address pool then returns it as A record.

There are two criteria for addresses to be assigned: (1) the assigned addresses must

第 7部 次世代インターネットプロトコル 277

be reachable between the triggered host and translator, and (2) if addresses are assigned

dynamically by DNS, it must be ensured that the DNS cache doesn't cause problems for

further communications.

If transport relay is used for interpretation, address mapping is necessary only for desti-

nation addresses since source address mapping is closed in the relay server. In other words,

the protocol association of the �rst transport session is mapped to a local port number on

the relay server.

For header conversion, source address mapping is not essential, either. A protocol asso-

ciation can be represented by a local port of the conversion router or by an address out of

the pool or by both.

Translator Categories

To discuss address mapping, this memo categorizes IPv4/IPv6 translator into four types

illustrated by the following pictures:

IPv6 island The IPv4 ocean

Translator A

Translator B

図 1.2: In the early stage

IPv4 island IPv6 ocean

Translator C

Translator D

図 1.3: In the late stage

Translator A It is used in the early stage of transition to establish a connection from an

IPv6 host in an IPv6 island to an IPv4 host in the IPv4 ocean.

Translator B It is used in the early stage of transition to establish a connection from an

IPv4 host in the IPv4 ocean to an IPv6 host in an IPv6 island.

278 1998 年度 WIDE 報告書

Translator C It is used in the late stage of transition to establish a connection from an

IPv4 host in an IPv4 island to an IPv6 host in the IPv6 ocean.

Translator D It is used in the late stage of transition to establish a connection from an

IPv6 host in the IPv6 ocean to an IPv4 host in an IPv4 island.

Observations on Address Mapping for Each Translator

Here are observations on address mapping for each translator:

Translator A Destination address mapping: global IPv4 to global IPv6 Static or dy-

namic: static Address pool: a part of assigned global IPv6 addresses to the IPv6 site

DNS cache problem: not encountered Implementation: straightforward Note: IPv4

addresses can be embedded to pre-con�gured IPv6 pre�x.

Translator B Destination address mapping: global IPv6 to global IPv4 Static or dy-

namic: dynamic Address pool: assigned global IPv4 addresses to the IPv6 site DNS

cache problem: potentially proliferated into the IPv4 ocean Implementation: nearly

impossible Note: it is recommended to use static address mapping for several IPv6

hosts(servers) in the IPv6 site to provide their services to the IPv4 ocean(e.g. dual-

stack servers without translators).

Translator C Destination address mapping: global IPv6 to private IPv4 Static or dy-

namic: dynamic Address pool: a part of private IPv4 addresses DNS cache problem:

closed to the IPv4 site Implementation: possible Note: mapped addresses should be

reserved as long as possible for UDP applications which can't tell the end of commu-

nications and for applications which cache DNS entries.

Translator D Destination address mapping: global IPv4 to global IPv6 Static or dy-

namic: static Address pool: assigned global IPv6 addresses to the site DNS cache

problem: not encountered Implementation: straightforward Note: IPv4 addresses

can be embedded to pre-con�gured IPv6 pre�x.

1.4 Dual Stack Hosts using the \Bump-in-the-Stack"

Technique

1.4.1 Abstract

Especially in the early stage of the migration from IPv4 to IPv6, it is hard to prepare

IPv6 applications completely. This memo proposes a mechanism of dual stack hosts using

第 7部 次世代インターネットプロトコル 279

the technique called \Bump-in-the-Stack" in the IP security area. The mechanism enables

the hosts to communicate with other IPv6 hosts using IPv4 legacy applications.

1.4.2 Introduction

RFC1933 [58] proposed mechanisms to migrate from IPv4 [107] to IPv6 [42], including

dual stack and tunneling, for the early stage. Accordingly, hosts and routers are developed

for the IPv6 migration. But there are few applications for IPv6 compared to IPv4, where

a huge number of applications are available. In order to advance the migration to IPv6

smoothly, it is highly desirable to increase the availability of IPv6 applications to the same

level as IPv4. But unfortunately this is expected to take a very long time.

This memo proposes a mechanism of dual stack hosts using the technique called \Bump-

in-the-Stack" in the IP security area. The technique inserts modules into the hosts which

snoop data that
ows between a TCP/IPv4 module and network card driver modules,

and translate IPv4 into IPv6 and vice versa. It enables the hosts to communicate with

other IPv6 hosts using IPv4 legacy applications; thus making it seem as if the hosts have

applications for both IPv4 and IPv6.

This document uses the words de�ned in [107], [42], and [58].

1.4.3 Components

Dual stack hosts de�ned in RFC1933 [58] need applications, TCP/IP modules and ad-

dresses for both IPv4 and IPv6. The proposed hosts in this memo have 3 modules instead

of IPv6 applications, and communicate with other IPv6 hosts using IPv4 applications. The

3 modules are a translator, an extension name resolver and an address mapper.

Figure 1.4 illustrates a host which has the 3 modules described above installed.

Translator

The translator translates IPv4 into IPv6 and vice versa using the IP conversion mecha-

nism de�ned in [98].

When receiving IPv4 packets from IPv4 applications, the translator converts IPv4 packet

headers into IPv6 packet headers, then fragments the IPv6 packets (because header length

of IPv6 is typically 20 bytes larger than that of IPv4), and sends them to IPv6 networks.

When receiving IPv6 packets from the IPv6 networks, it works symmetrically to the pre-

vious case, except that there is no need to fragment the packets.

Extension Name Resolver

280 1998 年度 WIDE 報告書

IPv4 applications

TCP/IPv4

Network card drivers

Network cards

extension
name
resolver

address
mapper

translator

IPv6

図 1.4: The proposed dual stack host

The extension name resolver returns a \proper" answer in response to the IPv4 applica-

tion's request.

The application typically sends a query to its name server to resolve A records for the

target host name. The translator snoops the query, then creates another query to resolve

both A and

AAAA records for the host name, and sends the query to the server. If the A record

is resolved, it returns the A record to the application. In this case, there is no need for

translation by the translator above. If only the AAAA record is available, it requests the

mapper to assign an IPv4 address corresponding to the IPv6 address. Then it creates the

A record for the assigned IPv4 address and returns the A record to the application.

Address mapper

The address mapper maintains an IPv4 address spool. The spool, for example, consists

of private addresses [110]. Also, it maintains pairs consisting of an IPv4 address and an

IPv6 address in a table.

When the resolver or the translator requests the mapper to assign an IPv4 address for

an IPv6 address, it selects and returns an IPv4 address out of the spool, and then registers

a new entry into the table dynamically. The registration occurs in the following 2 cases:

1. When the resolver gets only an AAAA record for the target host name and there is not

a mapping entry for the IPv6 address.

2. When the translator receives an IPv6 packet and there is not a mapping entry for

the IPv6 source address.

第 7部 次世代インターネットプロトコル 281

NOTE: There is one exception to above. When initializing the table, it registers a pair

of its own IPv4 address and IPv6 address into the table statically.

1.4.4 Action Examples

This section describes action of the proposed dual stack host called \dual stack," which

communicates with an IPv6 host called \host6" using an IPv4 application.

Originator behavior

This subsection describes the originator behavior of \dual stack." The communication

is triggered by \dual stack."

The application sends a query to its name server to resolve A records for \host6."

The resolver snoops the query, and then creates another query to resolve both A and AAAA

records for the host name and sends it to the server. In the case, only the AAAA record is

resolved, so the resolver requests the mapper to assign an IPv4 address corresponding to

the IPv6 address.

NOTE: In the case of communication with an IPv4 host, the A record is resolved. The

resolver then returns it to the application, and there is no need for translation as follows.

The mapper selects an IPv4 address out of the spool and returns it to the resolver.

The resolver creates the A record for the assigned IPv4 address and returns it to the

application.

NOTE: See subsection 1.4.5 about in
uence on other hosts caused by the assigned IPv4

address.

The application sends an IPv4 packet to \host6."

The IPv4 packet reaches the translator. The translator tries translating the IPv4 packet

into an IPv6 packet but does not know how to translate the IPv4 destination address and

the IPv4 source address. So the translator requests the mapper to provide mapping entries

for them.

The mapper checks its mapping table and �nds entries for each of them, and then returns

the IPv6 destination address and the IPv6 source address to the translator.

NOTE: The mapper will register its own IPv4 address and IPv6 address into the table

beforehand.

The translator translates the IPv4 packet into an IPv6 packet then fragments the IPv6

packet if necessary and sends it to an IPv6 network.

The IPv6 packet reaches \host6." Then \host6" sends a new IPv6 packet to \dual stack."

The IPv6 packet reaches the translator of \dual stack." The translator gets mapping

entries for the IPv6 destination address and the IPv6 source address from the mapper in

282 1998 年度 WIDE 報告書

the same way as before. Then the translator translates the IPv6 packet into an IPv4 packet

and tosses it up to the application.

Diagram 1.5 illustrates the action described above:

IPv4
appli-
cation

TCP/
IPv4

extension
name
resolver

address
mapper

trans-
lator

IPv6

"dual stack" "host6"

<<Resolve an IPv4 address for "host6.">>

Query of ’A’ records for "host6."

Name
server

Query of ’A’ and ’AAAA’ records for "host6."

Reply only with ’AAAA’ record.

<<Only the ’AAAA’ record is resolved.>>

Request an IPv4 address corrsponding to the IPv6 address.

<<Assign an IPv4 address.>>

<<Create the ’A’ record for the IPv4 address.>>

Reply with the IPv4 address.

Reply only with the ’A’ record.

An IPv4 packet.

<<Send an IPv4 packet to "host6.">>

Request IPv6 addresses corresponding to the IPv4 addresses.

Reply with the IPv6 addresses.

<<Translate IPv4 into IPv6.>>

An IPv6 packet.

<<Reply an IPv6 packet to "dual stack.">>

An IPv6 packet.

An IPv4 packet.

図 1.5: Originator behavior

Recipient behavior

This subsection describes the recipient behavior of \dual stack." The communication is

triggered by \host6."

\host6" resolves the AAAA record for \dual stack" through its name server, and it then

sends an IPv6 packet to the resolved IPv6 address.

第 7部 次世代インターネットプロトコル 283

The IPv6 packet reaches the translator of \dual stack." The translator tries translat-

ing the IPv6 packet into an IPv4 packet but does not know how to translate the IPv6

destination address and the IPv6 source address. So the translator requests the mapper to

provide mapping entries for them.

The mapper checks its mapping table with each of them and �nds a mapping entry for

the IPv6 destination address.

NOTE: The mapper will register its own IPv4 address and IPv6 address into the table

beforehand.

But there is not a mapping entry for the IPv6 source address, so the mapper selects an

IPv4 address out of the spool for it, and then returns the IPv4 destination address and the

IPv4 source address to the translator.

NOTE: See subsection 1.4.5 about in
uence on other hosts caused by the assigned IPv4

address.

The translator translates the IPv6 packet into an IPv4 packet and tosses it up to the

application.

The application sends a new IPv4 packet to \host6."

The following behavior is the same as that described in subsection 3.1.

Diagram 1.6 illustrates the action described above:

1.4.5 Considerations

This section considers some issues with the proposed dual stack hosts.

IP conversion

In common with NAT [47], IP conversion needs to translate IP addresses embedded

in application layer protocols, which are typically found in FTP [108]. So it is hard to

translate all such applications completely.

IPv4 address spool and mapping table

The spool, for example, consists of private addresses [110]. So a large address space can

be used for the spool. Nonetheless, IPv4 addresses in the spool may be exhausted and

cannot be assigned to IPv6 target hosts if the host communicates with great many other

IPv6 hosts and the mapper never frees entries registered into the mapping table once. To

solve the problem, for example, it is desirable for the mapper to free the oldest entry in

the mapping table and re-use the IPv4 address for creating a new entry.

Internally assigned IPv4 addresses

284 1998 年度 WIDE 報告書

IPv4
appli-
cation

TCP/
IPv4

extension
name
resolver

address
mapper

trans-
lator

IPv6

"dual stack" "host6"

<<Reseive an IPv6 packet from "host6.">>

Query of ’A’ records for "host6."

Request an IPv4 address corrsponding to the IPv6 address

Reply with the IPv4 address.

Reply only with the ’A’ record.

An IPv4 packet.

<<Translate IPv6 into IPv4.>>

An IPv6 packet.

<<Reply an IPv4 packet to "host6.">>

An IPv4 packet.

An IPv6 packet.

<<Translate IPv4 into IPv6.>>

図 1.6: Recipient behavior

第 7部 次世代インターネットプロトコル 285

IPv4 addresses, which are internally assigned to IPv6 target hosts out of the spool, never

ow out from the host, and so do not negatively a�ect other hosts.

1.5 SOCKS64

1.5.1 Abstract

This memo describes an IPv4-IPv6 intercommunication method based on the SOCKS5

protocol. The method is called SOCKS64, and was �rst announced in the 40th IETF

meeting at Washington DC in December 1997 as one of three translators being developed in

the WIDE Project. SOCKS64 is a gateway system that accepts SOCKS5 connections from

IPv4 hosts and relays it to IPv4/IPv6 hosts using proper protocols. We have designed and

implemented a prototype SOCKS64 system and have been testing the prototype in many

environments. Also we are distributing the prototype as a KAME distribution package.

This article describes the SOCKS64; its principle, implementation, experimental results

and comparison to other IPv4-IPv6 intercommunication methods.

1.5.2 Principle

In this section, we describe the SOCKS system brie
y and �gure out a basic idea to use

it as an intercommunication gateway system for di�erent protocols.

The SOCKS protocol has been developed as a �rewall gateway protocol that provides

hosts in a �rewall with a relay service of transport layer (TCP) data to outside of the

�rewall. A SOCKS server, placed in a border of the �rewall, accepts a SOCKS connection

from a host inside the �rewall, makes a new connection to a host outside the �rewall, and

relays the transport layer data between these two connections.

IPv4 host
SOCKS/IPv4

SOCKS server
IPv4

IPv4 host

inside firewall outside firewall

Once the SOCKS scheme is understood, it is easy to imagine to connect di�erent proto-

cols in the similar way.

First, a host with a protocol-1 (P1) connects to a SOCKS server using the SOCKS

protocol over P1. Next the SOCKS server makes a connection to the destination host with

a protocol-2 (P2) using P2. Once the connections are established, the SOCKS server starts

to relay the transport layer data between these connections.

286 1998 年度 WIDE 報告書

P1 host
SOCKS/P1

SOCKS server
P2

P2 host

It seems to be a simple way to connect two protocols, though there is an big problem to

complete such a scheme, an addressing system problem.

Any protocol has its own addressing system. The P1 host should know an address of

the P2 host, when it wants to connect to. Generally, the P1 host has no way to get the P2

address because it does not know the P2 addressing system. To solve this problem, there

should be an addressing system that is recognized by both protocols.

Fortunately, in the world of Internet Protocol, we have the Domain Name System[DNS1,

DNS2] and the Fully Quali�ed Domain Name (FQDN) as a rigid solution. Using DNS, the

P1 host can address the P2 host using FQDN2, and the P2 host can address the P1 host

using FQDN1. In this case, the story goes like the following.

First, the P1 host asks the SOCKS server to connect to the P2 host specifying FQDN2

as the address. Then the SOCKS server asks the DNS server for the actual address of

FQDN2 and gets the P2 address. So the SOCKS server can make a connection with the

P2 host, and relay the transport layer data between two connections.

P1 host
SOCKS/P1

SOCKS server
P2

P2 host

FQDN2

DNS server

resolve FQDN2

Using this scheme, a SOCKS server that is constructed on an IPv4-IPv6 dual stack host

can act as such a transport relay gateway, if the SOCKS protocol has a capability to specify

connecting hosts by FQDN addresses.

Originally, SOCKS was for IPv4 and was not made to handle other protocols than IPv4.

The SOCKS protocol versions before SOCKS5 could treat only the IPv4 address, so it

could not relay connections between hosts with di�erent protocols. But when the SOCKS5

protocol[77] has introduced the FQDN address type, it became possible to use the SOCKS

protocol for an intercommunication gateway of di�erent network layer protocols, IPv4 and

IPv6.

In the case an IPv6 host wants to connect to an IPv4 host, a completely symmetric

scheme can be used.

第 7部 次世代インターネットプロトコル 287

IPv4 host
SOCKS/IPv4

SOCKS server
IPv6

IPv6 host

FQDN2

DNS server

resolve FQDN2 IPv6 (AAAA) address

IPv6 host
SOCKS/IPv6

SOCKS server
IPv4

IPv4 host

FQDN1

DNS server

resolve FQDN1 IPv4 (A) address

1.5.3 Implementation

Based on the principle described above, we have implemented a prototype SOCKS64

server based on the SOCKS5 reference code 1. The SOCKS64 prototype is distributed

freely2.

In this section, we describe an implementation of the SOCKS64 server based on our

experiences. Current implementation of the SOCKS64

prototype runs on BSD/OS 3.1 with the KAME IPv6 protocol stack 3. There is no

modi�cation in the client library for the IPv4 hosts. As for the client library for the IPv6

hosts, the new functions such as getaddrinfo() should be provided. However, our current

implementation does not provide such new functions.

Implementing the SOCKS64 server, there is no fundamental problem. Our implementa-

tion of the SOCKS64 server consists of two major modi�cations to the SOCKS5 reference

code. One is to make the SOCKS5 server IPv6 capable, and the other is to add a framework

which enables the SOCKS5 server to do application speci�c processings.

The former modi�cation includes the changes in \struct sockaddr", and making the

con�guration �le parser to be able to read IPv6 addresses as speci�ed in RFC2373[63].

The other modi�cation is needed because some applications use IP addresses in their

protocols. For example, FTP protocol[108] speci�es that an FTP server and an FTP client

exchange the IP addresses in text format. So it is required to realize a processing for FTP,

converting the PORT command into the LPRT command, the PASV command into LPSV

1http://www.socks.nec.com/
2ftp://ftp.kame.net/pub/kame/misc/socks64-v10r8-19990118.tgz
3http://www.kame.net/

288 1998 年度 WIDE 報告書

command, and translating between the IPv4 address and the IPv6 address. The LPRT

command and the LPSV command are described in RFC1639[105].

1.5.4 Experiments

We have been testing the SOCKS64 server in many environments. Since July 1998, we

have been running the SOCKS64 server in between the 6bone and the internal network

of Fujitsu Ltd., Japan. Computers in Fujitsu's internal network already have been \sock-

si�ed". So users can connect to 6bone hosts only selecting our SOCKS64 server as their

SOCKS gateway.

For an interoperability test, we have been providing a SOCKS64 server in the WIDE

Project 4 Camp, where about 200 Internet researchers attend. A temporary network called

\camp-net" is constructed at the camp for a variety of experiments and provides services

to the attendees. More than hundred hosts are connected to the camp-net.

In these environments, we have tested many types of SOCKS5 clients, including the

SocksCap32 5 on Windows and a variety of UNIX based SOCKS libraries, and con�rmed

any clients successfully connected to the IPv6 hosts using telnet, ftp, http, ssh.

Also we have tested much complicated interconnection of IPv4 and IPv6. At the WIDE

camp held in September 1998, we constructed a IPv4 over IPv6 tunnel using the SOCKS64

and the NAT based translator. In this system, the SOCKS5 clients could connect to the

IPv4 hosts with no problem through the IPv6 networks.

IPv4 host
SOCKS/IPv4

SOCKS64 server
IPv6

IPv4 hostIPv6 -IPv4
translator IPv4

Concluding, SOCKS64 provides an easy and sure way to let IPv4 hosts connect to IPv6

hosts.

1.5.5 Considerations

In this section, we compare the SOCKS64 method to other IPv4-IPv6 interconnection

methods.

The common way being developed is the \translator" based on the Network Address

Translation (NAT) technology. The translator translates IPv4 packets and IPv6 packets

one by one. To solve the addressing system problem, the translator has an association table

4http://www.v6.wide.ad.jp/
5http://www.socks.nec.com/sockscap.html

第 7部 次世代インターネットプロトコル 289

of IPv4 and IPv6 addresses, and uses these addresses to translate packets. This approach

requires an extension of DNS to manage the address association table. SOCKS64 does not

need such changes.

A shortcoming of the translator is a transport layer data processing. Because the trans-

lator works in the network layer, it has some di�culties when the transport layer data is

required to be changed. The FTP addresses embedded in the transport layer data is an

obvious example.

The application-level gateways can change the transport layer data naturally. FAITH,

distributed in the KAME distribution package, is an example of such approach. FAITH

does not require client hosts to change their software. But it requires special DNS treatment

as same as the NAT based translator.

On the other hand, the biggest shortcoming of SOCKS64 is that every clients should

be \socksi�ed". It should be a bothering work for network managers to support SOCKS

users.

Here is the summary of comparison described above.

Implementation DNS Address Client

Layer Change Table Library

NAT Network needed needed not needed

FAITH Application needed needed not needed

SOCKS64 Application not needed not needed needed

1.5.6 Conclusion

The SOCKS approach provides a reasonable way to construct an IPv4-IPv6 intercom-

munication gateway. Especially, many �rewall users who are already \SOCKS ready" can

communicate with IPv6 hosts with no special care. Firewall managers also need no ex-

tra care adopting SOCKS64, because SOCKS64 preserves all security features the original

SOCKS has.

1.6 An overview of the KAME network software

1.6.1 Abstract

The KAME Project is a joint e�ort by seven companies in Japan to develop a referen-

tial implementation of advanced networking protocols such as IPv6 and IP security. The

products are distributed as free software and are widely used in the 6bone. They are based

on BSD variants and are added several improvements to the original logic, which cannot

290 1998 年度 WIDE 報告書

handle advanced protocols. This paper describes such new mechanisms as e�cient header

processing, loop prevention for tunneling, and mobility support for IPv6 plug and play.

1.6.2 Introduction

With the rapid growth of the Internet, more and more signi�cant and unexpected prob-

lems have appeared. In response to some of these problems, IP security(IPsec) was de-

veloped as a security mechanism while IPv6 was designed to resolve the exhaustion of the

IPv4 address space. As BSD variants promoted to deploy TCP/IPv4, a free referential

implementation of IPsec and IPv6 is necessary for their wide and early deployment.

For this purpose, the KAME Project was initiated in April 1998 in Japan by seven

Japanese companies co-operating in the WIDE (Widely Integrated Distributed Environ-

ment) Project. It aimed to provide free, working, and "speci�cation conformant" code

based on BSD variants.

The logic of the network code of the current BSD variants are unsuitable for the new

protocols. For instance, using the old logic, e�cient processing of IPv6 extension headers

is not possible. Also, it is time-consuming to determine if an incoming packet should be

accepted or forwarded. To overcome these di�culties, the KAME Project has explored

some original approaches in its implementation.

This paper describes the implementation techniques developed by the KAME Project. It

is organized as follows: Section 2 brie
y describes KAME Project itself. Section 3 explains

the characteristics of KAME implementation. We describe future plans in section 4 and

conclude in section 5.

1.6.3 The KAME Project

The WIDE Project has organized the IPv6 working group and has been deeply involved

in IPv6 since 1995. More than one hundred researchers from universities and companies

have committed themselves to the working group. The working group has developed nine

independent IPv6 implementations, and the group has tested the interoperability between

them through its testbed, called the WIDE 6bone [136].

Such heterogeneity was important in the early stages of IPv6 development since it helped

to improve each implementation and to �nd out problems of speci�cation. As IPv6 has

been deployed, heterogeneity has performed its role, and instead, e�cient development of

products and early deployment of the products have become important.

Thus the WIDE IPv6 working group organized the KAME Project. Eight core developers

from seven companies came together to develop a single more e�cient referential imple-

mentation of the advanced networking protocols. The project chose several BSD variants

第 7部 次世代インターネットプロトコル 291

as its platform: FreeBSD, BSD/OS, and NetBSD. At the start, the product of the project

was provided in a form of patches for the original operating systems, but the project also

aimed to incorporate the product into o�cial releases of the operating systems.

To promote these advanced protocols, the product is freely distributed via the project

web site (http://www.kame.net/). The product is distributed in the following three ways:

� A SNAP release for active users such as researchers is released once a week. It includes

many experimental items, and thus may or may not be stable.

� A STABLE release for broader public is made twice a month. Since it is intended to

be a stable snapshot, experimental items are not included in a STABLE release.

� An o�cial release is called RELEASE.

The KAME product is actually used in the worldwide 6bone 6. It has also been tested

for interoperability and conformity at the InterOperability Laboratory at the University of

New Hampshire. The KAME Project is planning to start its own group to evaluate the

product. O�cial releases will be made after quality assurance testing by the group.

1.6.4 Implementation Characteristics

This section describes some of KAME's remarkable network software characteristics in-

cluding basic speci�cations and neighbor discovery. Loop prevention is related to IPsec as

well as to IPv6.

IPv6 Extension Headers

One remarkable feature of IPv6 is its
exible extension headers [42] combined with the

constant length IPv6 header. The limitations of each extension header's length and of

the number of extension headers are looser than those of IPv4 options. Thanks to this

exibility, we can try to introduce a new optional function as a separated extension header

or as an option of some existing options header.

Traditional BSD variants store an incoming packet in one or more mbufs [132]. There

are two types of mbuf. In this paper, we refer to them as an internal mbuf and an external

mbuf, respectively. By default, an internal mbuf can contain only 100 to 108 bytes of data.

An external mbuf has external storage, called a cluster, whose size is 2048 bytes by default.

If an incoming packet �ts in a single internal mbuf, the network driver simply stores the

packet in the mbuf. Otherwise, the network driver stores the packet into mbufs one of two

ways as follows:

6http://www.6bone.net/

292 1998 年度 WIDE 報告書

� The packet is stored in a single external mbuf. If the packet does not �t in the

external mbuf, the driver divides the packet into fragments, stores each fragment

into an external mbuf, and makes a chain of the mbufs.

� If the packet �ts in two internal mbufs, the driver divides the packet into two frag-

ments, stores each fragment into an internal mbuf, and makes a chain of the internal

mbufs. Otherwise, the driver stores the packet in the same as above, that is, stores

it in one or more external mbufs.

In the latter mode, there is a possibility that the �rst mbuf cannot contain all the headers

from the IPv6 header to an upper layer protocol header(e.g. a TCP header). Moreover, a

header may be divided and spread over two or more mbufs(Figure 1.7).

IPv6
header

Extension
header

First mbuf Second mbuf

Extension
header
(continued)

Upper layer
header and
data

図 1.7: An extension header may be spread over two mbufs

BSD variants usually expect that the network layer header and the transport layer header

of an incoming packet lie on a contiguous memory space. If this is not the case, they perform

the \pullup" operation, which copies speci�ed length of data into a contiguous space in a

single mbuf. If there are some IPv4 options, they strip the options before the operation.

This was a good idea when memory resource was a scarce commodity, but the overheads

of the copy operation are heavy. In addition, the pullup operation is not suitable for IPv6

environments from another point of view. We must retain all the intermediate extension

headers until the input operation terminates, since if we encounter an error while processing

an incoming packet, we have to return an ICMPv6 error message including as much of the

o�ending packet as will �t [39]. However, if we follow the original convention of BSD

variants, some intermediate headers may have been stripped or even discarded before the

pullup operation as mentioned above.

第 7部 次世代インターネットプロトコル 293

Since the cost of memory continues to rapidly decline, processor e�ciency should be

favored over memory e�ciency. From this perspective, we require network drivers to store

all the headers in a contiguous space in order to avoid pullup operations. That is, a network

driver that is suitable for the KAME network software is required to store an incoming

packet in the former of the two modes mentioned above.

To satisfy this requirement, we can write an input routine for a header more simply than

before. Each input routine �rst determines if the requirement is satis�ed, and if not, it

discards the packet. Otherwise, the routine gets the beginning of the header by the head of

the incoming packet and the o�set to the header. Then the routine can process the header

and, if necessary, the data following the header without any copies or deletions of other

headers.

Though we have to rewrite a network driver if it does not satisfy this requirement, most

recent network drivers do not have to be rewritten. This is a re
ection of the current

fashion wherein code simplicity is regarded as more important than memory e�ciency.

1.6.5 An E�cient Method to Examine Destination Addresses

For an incoming IPv4 packet, traditional BSD variants �rst determine whether the packet

is destined for the node or not. If the packet is destined for the node, the receiving node

passes the packet to an appropriate transport layer. Otherwise, the node tries to forward

the packet if it is con�gured to act as a router.

This determination is usually done by comparing the destination address of the incoming

packet with each address assigned to the interfaces of the node. Since the comparison

linearly examines the addresses, in the worst case, the node has to examine all the addresses.

However, this is not very harmful to IPv4 environments because even an IPv4 router does

not have many addresses. Moreover, it is a relatively inexpensive task for today's computers

to compare IPv4 addresses since the addresses are 32-bit integers.

In contrast, a linear comparison has more signi�cant e�ect on IPv6 environments. IPv6

capable nodes may assign multiple IPv6 addresses on a single interface, and consequently,

routers may have numerous IPv6 addresses. Also, because today's typical computers are

based on 32-bit(or at most 64-bit) architectures, it is fairly time-consuming to compare

IPv6 addresses, which are 128-bit integers.

Therefore, we have adopted a di�erent scheme for deciding whether an incoming IPv6

packet should be accepted or forwarded. The kernel �rst looks up the radix routing table

[114] to resolve the next hop of an incoming packet and the outgoing interface to the next

hop. If the interface is a loopback interface (usually called lo0 in BSD variants), it accepts

the packet. Otherwise, it uses the next hop information to forward the packet.

For a router, our method is e�cient since the number of packets to be forwarded is much

294 1998 年度 WIDE 報告書

higher than accepted packets, and there is no additional cost for forwarded packets. For

a host, if an incoming packet is destined for the host itself, our method needs a few of bit

tests (to reach a leaf node of the radix tree) and a comparison of two IPv6 addresses[14].

Figure 1.8 roughly depicts the process. The cost of the comparison can be ignored because

it is de�nitely necessary at least once for any method. Also, it can be safely assumed that

the radix tree for a host is not complex since a host usually has only a few host routes in

addition to the default route, and, consequently, the cost of the tests can be considered

relatively low. Even when the host accidentally receives a packet destined for another node,

the host can quickly detect it thanks to the simplicity of its radix tree.

Bit test

Address comparison

off

off off

off

off

on

on on

on

on

図 1.8: The cost of radix tree lookup is bit tests on the internal nodes and a comparison

of addresses at the leaf node

Another improvement intended to avoid linear search is to use a hash technique. A

node calculates in advance a hash value of each address assigned to it, then makes a hash

table. Each entry of the table is a list of addresses that have a same hash value. For an

incoming packet, the node calculates the hash value for the packet's destination address,

and compares the address to each address that belongs to the list for the hash value. If

we have a good hash algorithm, the comparison is fast enough. In some cases, it will be

faster than the radix tree-based comparison. However, if a node is acting as a router, our

approach is more e�cient.

Loop Prevention for Tunneling Techniques

There are some notions of tunneling in advanced internetworking such as IPv6 and IPsec.

For example, IPv6 over IPv4 tunneling[38] is an essential technique during the transition

第 7部 次世代インターネットプロトコル 295

period from IPv4 to IPv6. The IPsec tunnel mode [75] is typically used to construct a

VPN(Virtual Private Network).

To implement such tunnels, it is necessary to encapsulate one packet inside another. The

implementation may use a pseudo network interface, and the output function associated

to the interface receives a packet from a network layer (e.g. IPv4 layer), encrypts and/or

authenticates the packet if necessary, and encapsulates it in an outer header. The input

function, in contrast, decapsulates an incoming packet, decrypts and/or authenticates the

packet, and passes it to a corresponding network layer. When a route for a destination is

con�gured to the pseudo interface, all packets to the destination will be transferred through

the tunnel associated with the pseudo interface.

Such an approach may, however, fall into an in�nite loop of header creation. An in�nite

loop is essentially a sequence of processes which eventually reaches an already passed point.

Since an output to a pseudo network interface may cause an output to the same interface,

the sequence of the outputs has a possibility of an in�nite loop.

As a simple example, suppose that we want to construct an IPv4 IPsec tunnel for a

destination D and that we, perhaps mistakenly, con�gure the pseudo interface, for example

I, with the same destination D. As we already mentioned, a route for destination D is set

up to I. When we try to send a packet to D, the packet is passed to I according to the

routing table, encrypted and/or authenticated in I, and encapsulated into a new header,

whose destination address is also D. Then the encapsulated packet is sent to the IPv4

output routine, which sends the packet to I again. Thus we enter an in�nite loop (Figure

1.9).

D

DD

Loop

Output Routine

(IPv4 layer)

(pseudo interface layer)

Encapsulate/Output
Routine

(Upper layer)

図 1.9: Example of an in�nite loop

296 1998 年度 WIDE 報告書

To deal with this problem, we implemented IPsec tunnel mode not as an interface, but as

a separate routine which is called from a network layer output function only once (Figure

1.10).

D

D

Output Routine

(IPv4 layer)

(Upper layer)

Encapsulate
Routine

(Interface layer)

D’

図 1.10: The IPsec encapsulation routine is called only once to prevent a loop

As a result, an IPsec tunnel can be constructed only once in a single node, though this is

not a strict restriction because IPsec tunnels are not created more than once in a practical

con�guration.

An in�nite loop may occur when constructing a tunnel which encapsulates a network

protocol into a di�erent network protocol, such as an IPv6 over IPv4 tunnel. For example,

suppose that we construct two tunnels. One is an IPv6 over IPv4 tunnel, and the other

is an IPv4 over IPv6 tunnel. Also suppose that the IPv6 over IPv4 tunnel encapsulates a

packet to an IPv6 address D6 into a packet to an IPv4 address D4, and that the IPv4 over

IPv6 tunnel encapsulates a packet to D4 into a packet to D6. If we try to send a packet

to D6 we encounter a loop which in�nitely constructs the two tunnels one after another

(Figure 1.11).

However, such a combination of tunnels like the above example does not appear in a

typical con�guration. Hence we implemented a generic framework consisting of a pseudo

interface and used it to construct IPv6 over IPv4 tunnels. To avoid possible loops, we

introduced a counter in the output function for the interface, which is incremented each

time the function is recursively called. If the counter reaches some limit, the function

discards the packet, records that it detects a loop, and returns an error to the user. The

exibility of the pseudo interface is decreased to some extent by the use of this trick, but

in this instance, we believe robustness should take priority over
exibility.

IPv6 Plug and Play for Mobile Environments

第 7部 次世代インターネットプロトコル 297

Loop

Output Routine

Encapsulate/Output
Routine

(Upper layer)

Output Routine

Encapsulate/Output
Routine

(IPv6 layer) (IPv4 layer)

D6
D4 D6

D6D4D6

図 1.11: An in�nite loop consisted of two tunnels

Plug and Play based on Neighbor Discover Protocol [94][121] is one of IPv6's major

improvements. When a node attaches to an IPv6 network, the node can automatically

con�gure its IPv6 address(es) and discover one or more available routers. Moreover, the

con�guration process needs no state machine in the server. Network managers do not have

to con�gure a special server such as a DHCP server. They only have to con�gure network

pre�xes for routers, which is eventually necessary to achieve global connectivity.

Once a router is con�gured, it periodically advertises the con�gured network pre�xes to

each link attached to the router. Each host on the network receives the advertisements and

con�gures itself using the pre�x(es) contained in the advertisements. A host also regards

the sender of the advertisement as a default router, thus achieving connectivity to the

global IPv6 Internet.

The speci�cation de�nes two types of lifetime for an advertised pre�x. One is preferred

lifetime(default value is 7 days) and the other is valid lifetime(default value is 30 days).

They are used to invalidate pre�xes smoothly. If the preferred lifetime of a pre�x has

expired, the addresses generated by the pre�x should not be used as a connection's source

address unless it is already established. If the valid lifetime of a pre�x has expired, the

addresses generated by the pre�x becomes completely invalid; that is, the addresses must

not be used as a source address for any connections. This mechanism is useful, for example,

when a site is renumbering its addresses.

The default values of the lifetimes are, however, relatively long for mobile nodes. Consider

this problematic case as an example. Suppose that there are two networks, N1 and N2,

and that pre�xes P1 and P2 are advertised in N1 and N2, respectively. Now consider that

a mobile node M moves from N1 to N2. When M attached to N1, an IPv6 address P1:M

was con�gured for M. Then M moves to N2 and con�gures a new address P2:M. If the

movement happens quickly, which is usually the case, the lifetimes of the old pre�x P1 do

298 1998 年度 WIDE 報告書

not expire and the old address P1:M is, as a result, still valid.

Let us assume that M sends a packet to an o�-link node D through a router R in N2.

There are two possible addresses as the source address of the packet; P1:M and P2:M. But

if the former is used and D tries to send a response to it, D will send the response to P1:M.

Since the pre�x P1 lies on the network N1, M is not able to receive the response unless the

host route for P1:M is fully advertised. Figure 1.12 depicts this situation.

M

N2

D

src=P1:M
dst=D

N1

src=D
dst=P1:M

R

address: P1:M
 P2:M

図 1.12: A mobile node can send a packet, but cannot receive responses

There is another problem if M tries to send a packet to a node D in N1 whose address is

P1:D. In this case, since D and M have the same pre�x P1, M will regard D as on-link and

try to send the packet to it directly instead of sending to the neighboring router R(Figure

1.13). But the packet will not reach D because in reality D is o�-link.

One simple solution to these problems is to force the node to discard the old pre�x

and the old address after moving. But this approach may cause an unexpected deletion

of pre�xes and addresses that should remain valid. For instance, suppose that there is a

failure of the router on a network while a laptop computer is suspended. When the laptop's

operation is resumed, it should discard the pre�x and the address that were advertised

before suspension, since there is a possibility that the laptop has moved from the network.

The laptop, however, cannot get a pre�x any more because the router has already stopped;

it therefore fails to communicate with any nodes, even with those within the network.

Thus we implemented a mobility support that is a bit more complicated. We introduced

a data structure for each pre�x, which has a list of routers that advertise the pre�x. Note

that the list may be empty when, for example, all routers that advertise the pre�x are

unreachable. Then we de�ned two states for a pre�x, attached and detached. A pre�x is

called attached if its router list is not empty or if all the pre�xes including the pre�x do not

第 7部 次世代インターネットプロトコル 299

M

N2

N1

D

P1:D

P1:D?

R

address: P1:M
 P2:M

図 1.13: A mobile node regards an o�-link node as on-link by mistake

have a non-empty router list. Otherwise, the pre�x is called detached. A detached pre�x

is not regarded as on-link and the address derived from the pre�x is not used as a source

address even if the lifetimes of the pre�x are not expired.

Based on the above model, we implemented a mechanism in the kernel to control the

state of each advertised pre�x. For instance, if a router turns out to be unreachable,

which can quickly be detected using IPv6 Neighbor Unreachability Detection, the kernel

automatically changes the state of each pre�x advertised by the router.

To return to the above problems, since the pre�x P1 of the mobile node M of Figure 6

is detached after detecting unreachability of the router in N1, the old address P1:M will

be never used as a source address. Also, since the detached pre�x P1 is no longer regarded

as on-link, M will pass a packet to a neighboring router when the packet is destined for

a node in N1. Now let us consider the case of the failure of the router. If the router R

of Figure 6 stops, both P1 and P2 are attached since there is no other pre�x that has an

associated router. In this case, M can only communicate with nodes in N2, and there is no

problem since M can use the addresses derived from the attached pre�xes.

Portability

It is important to ensure the source-level portability of applications on various operating

systems. Portability encourages people to develop a variety of applications, and conse-

quently we have many opportunities to test and improve inter-operability, which is also an

important notion on the Internet.

Application Programming Interfaces (APIs) play a key role to ensure portability. There

300 1998 年度 WIDE 報告書

are two types of API de�ned by IETF: The �rst is the basic API[59], which de�nes some

library functions, data structure, and macros for developing typical TCP and UDP appli-

cations. The other is the advanced API [117], which is designed to develop and support

"advanced" applications such as routing daemons and network management tools. Inter-

faces designed to use IPv6 extension headers are also de�ned in the API.

Since we attach importance to portability, we have quickly adopted the latest version

of these APIs. We have also tried to use the APIs both in the kernel and in userland

applications. For example, all our "advanced" applications such as routing daemons, a

router advertisement daemon, ping, and traceroute use the advanced API.

Adopting the latest speci�cation of such APIs does not necessarily provide portability,

and even may cause confusion due to version mismatches. This is because the speci�cation

tends to change in the early stages of its standardization. We believe, however, that in order

to encourage the early standardization and deployment of the APIs, it is more important

to actively introduce the latest speci�cations than to stick to short-term portability.

1.6.6 Future Plans for New Development

IPv6 and IPsec have already become fairly standardized, but there are still some topics

that are neither well-documented nor fully standardized.

It is di�cult for network managers to renumber their sites, and hence they rarely change

their network providers. Router renumbering[41] is one of the key techniques needed to

remedy this situation. Though its speci�cation has not been fully standardized, we are

now implementing it experimentally and are planning to run it on the WIDE 6bone.

IPv6 Multicast routing is also in the early stages of deployment. Some documentation

for the IPv6 PIM[60][50] exists, but there are few instances of implementation and in-

teroperability between di�erent implementations is not fully established. So far, we have

implemented PIM dense mode for IPv6 and have con�rmed that it works to some extent.

Next, we will have to test it in practical applications and check its interoperability with

other implementations.

1.6.7 Conclusion

The WIDE IPv6 working group organized the KAME Project in order to develop a refer-

ential implementation of advanced networking protocols for BSD variants and to promote

the protocols through their implementation.

Because some of the logic used in BSD variants was not well-suited to the advanced

protocols, we explored di�erent approaches to implementing the KAME network software;

we implemented incoming IPv6 packets processing in an e�ciency-conscious manner. We

第 7部 次世代インターネットプロトコル 301

prevented in�nite IPsec header creation loops by restricting the header construction to

a single instance. In�nite loops in other tunnels such as IPv6 over IPv4 tunnels, mean-

while, was avoided by introducing an upper limit for nesting. IPv6 neighbor discovery was

implemented so that it would be more compatible with mobile stations.

In the future, we plan to continue the project with special emphasis on such areas as

the implementation of more advanced technologies such as router renumbering and IPv6

multicast routing.

1.7 年間を通じての活動

この節では v6 分科会が 1998 年度を通じて主催、および参加した活動内容をまとめる。

8月 17日 � 8月 21日 第 5回 相互接続実験 (ニューハンプシャ大学)

8月 24日 � 8月 28日 第 42回 IETF(シカゴ)

10月 27日 � 10月 30日 IPsec 相互接続実験 (ニューヨーク州)

12月 7日 � 12月 11日 第 43回 IETF(オーランド)

12月 15日 6bone BOF(IPミーティング'98)

1月 21日 マルチホーム BOF(東京大学)

3月 15日 � 3月 19日 第 44回 IETF(ミネアポリス)

302 1998 年度 WIDE 報告書

