40

ot oootdodootddd
HRERN

151

U 10

MAwWILUOOOOoOood

MAWI(Measurement and Analysis on the WIDE Internet) 0000000000 00O
gububobobboooouobooboobobbooobbbbuoobbbboooo
gbbobbubobdobboobbbbbbbobobobboboobbbbbboad
gboobuooooooobobobbooooobobobboooooooobbboboboooad
gboboboogoboobobbobboboooubooobbbuoboobbon
gboobobubbogogbobbbouoboooobobbouobbbobobooboboon
gooodbobbbbbbboodoboobbbbbobobobooooboboobn
gbogbogoobdgbooboooobooooooboooobbbobuoooooouo
ggobbobobobooboboobobooboooboobooooobooooon
OOooMAWIOOOOOOoooooooooboboboobooobooobooooooo
gbbooooobbbbodouodobobdoobbbooooobobbobbbboood
gbobogobboobbobdooguouboobbobuooobboboooboooba
gbobdobuogbubuogoooboooobboboboooobooooagobooad
guoogbobobooood
gbbbobbboooodobbuoooobboobobobbooouooobobdaod
gboboooooooo
Oooo0@mookKDboooooooooooboooboboooowibEooooooo
gboubogbobodbbobbooobuobdbobuobooooobobbboood
gogubbobbboogbbodaobbbigegt 40000000 00b0boooobadg
gboobooogobobooobbbon
gbbodoboobobbooobbooodoobbuooooobboboooooogao
gbbbbooobbuooooobuobooooboboobbboobooobooooogd
gobobbobodgboboobbbbboobbobbbbooobabboboobbo
goodbuogbbbooobbooobboobobooooboobooogesun
gbobobuoooobbooobobboooooboobooobboobobobobod
OOooooooobocpUObOOOODObODOOObDOODOOnO

153

U 20

WIDE DU QOO0 oo odnd

2.1 O0O0OO0obOOouoboboo

O0b0b0Oo0o0oooooOowIDEO DO NOCO WIDEDO D OOODOOO NOCOO 1.5Mbps
OOO000O0bO0000b0oubO NNStatgooooooo

O21000IpO0000O00D0OOOOOOO0O0ODOO0ODOOO10O00OO0O00bOO0Od
goboobbboogdooombooboboINOOoboobbbbooobbonbon
goovrgoooobouooboboooboobooobboobbobobobbobobobooooon
LS5Mbps DO O DOOOODODO 1000000000 DODOO0ODDOOODODODOOO 1000
gobobbbbooobobboobobbbbbobo 2100 22000 2100000
gboboboobbbooooouoooboboboboboboobboobbboboboba
gbboboobooooooobbuooooo

gbebUdbgobudotbooiododuoooboobooboobbuoobo
000000000000 0000000000000000000 200 95.80%000
000000000000 D0O0oO0O0o0oO0oOoOooD 100 5252%0 000000000
gboboobuogdgb 1oboaobbbooobobbbbuobooooboooboboood
gbbuogdgbobooougbbuooboobbbbdooobbboooadd

00000000000000000000000 TCPO 94%000UDPO 5%000
ICMPO 0.5%000000000000000000O00OOOTCPO 80%000UDPO
14%000ICMPO 3%0 000000

2.2 TCPUOUOOUOOOOOOO

O2200TCpUbol1ooboooobooboboboooooobbobboboon
gboogbbooooobooboobuooobboboooHETTPODOO0ODDOODDODO
gbuogbdobbooobooobobbboooobboboooboboobobaogd
O00000OO0OHTTPOOODO 19980 10000 89.79%0 0 19990 2000 92.37%0
gobobbobboobbogbboaTTPOO0O0ODLOOOLDDOOODOOHETTPOOODDO
goboggobooougobbbbooobbboobboobobobbbboboaod

154

U 40 gboodoobbbbobbbbboodobbo 155

g 21l:0000000000b0400400a4d

O [ICMP [IGMP | IP/IP [TCP [UDP | Other | OO 00000 |
o | IN [329,951 25 | 2,683 | 12,463,100 | 498,962 | 2,225 || 13,296,945 80.16%
OUT | 135,943 | 3,181 | 220,332 | 7,357,451 | 991,102 | 4,860 || 8,712,869 52.52%
11 | N [['136,309 8| 1,066 | 13,974,592 | 531,916 | 3,468 || 14,647,359 88.30%
OUT | 228,910 [3,551 | 32,121 | 4,340,201 | 684,084 | 7,445 | 5296,314 31.93%
1o | IN][128518 37| 1,655 | 13,175,282 | 909,425 | 952 || 14,215,870 85.70%
OUT | 233,012 | 639 362 | 4,542,933 | 628,546 | 6,897 || 5,412,390 32.63%
L L IN || 94,698 9 | 1,120 | 12,603,517 | 877,611 [2,817 || 13,579,772 81.86%
OUT | 229,221 | 584 4| 5,228,291 | 1,128,247 | 10,478 || 6,596,326 39.77%
o | IN] 90,185 11 643 | 14,794,601 | 1,003,207 | 3,007 || 15,891,653 95.80%
OUT || 98,428 | 585 74 | 5,172,307 | 1,212,621 | 12,180 || 6,496,194 39.16%
5 | IN 166,186 51 394 | 14,113,927 | 611,115 | 2,924 || 14,894,596 89.79%
OUT || 59,502 [502 640 | 4,700,636 | 775,790 | 11,422 || 5,548,492 33.45%
4 . H on B other
15000000 — o 8000000 - PP
~ | — —— | vy A 1 B v
%mooooou* icMP £ 6000000 | ‘- - icMP
e D | R —
- T T T T T T . T T T T T T
021 000000ooo0oooodo 022 000000000000400
0000000000 (o000) 0000000000 @aooo)

ooooobogoooobobooboooosooobooboboboboobooosSMTPO
gbbobooouooobbbooguobbbO Fre-Datal DO OODOOOO

02300 240 00 220000000000000HTTPOO0ODOOODOODOOO
gobobbbooouooobooobbobbobobboobbbobuouoooooo
gooobboboobodboobbooobbooboooooooboOonoOg Othersd O
00000000000 04% 0000000000

2.3 UDPUOUO0OO0OOOOOO

0230 0UbpO0O00O0 10000000 OOO0OODDODOOO0ObLDOObLbDOnOn
gobobooouabooan 2500 260 000000000000000

156 1998 00O WIDE 000

022 TCO000OO0DOOOO

| HTTP | FTP-Data | SMTP [NNTP | FTP | Telnet | BGP | DNS | Other
IN || 8932501 [583,529 | 379,825 | 13,671 [11,009 | 4,421 | 4,110 [11,255 | 7,423

10

OUT || 4,144,762 | 412,762 | 590,003 | 14,219 | 13,902 | 8,336 | 4,568 | 10,953 | 19,176
1y | IN | 10,834,400 | 644,581 | 418,047 | 21,699 | 18,000 | 3,005 | 4,174 | 3,659 | 7,713
OUT || 2,456,969 | 194,010 | 497,701 | 11,057 | 7,419 | 4,093 | 4,499 | 10,380 | 15,233
1o | IN 10,395,740 | 645,392 | 453,677 | 24,084 | 24,381 | 6,835 | 4,272 | 7,272 | 6,362
OUT || 2,622,526 | 433,333 | 494,013 | 10,144 | 9,176 | 4,573 | 4,935 | 10,652 | 17,773
| [IN | 9878288 | 579,585 | 347,272 | 22,055 | 24,129 | 3,162 | 4,177 | 2,380 | 6,621
OUT || 3,150,791 | 379,829 | 449,655 | 9,794 | 7,665 | 6,750 | 4,681 | 12,331 | 16,315
, | IN [12,587,621 | 380,992 | 417,261 | 16,892 | 27,825 | 3,854 [4,019 | 1,170 | 6,040
OUT || 3,010,192 | 253,665 | 502,570 | 7,853 | 8,366 | 6,214 | 4,077 | 13,420 | 17,800
5 | IN_|[11,661,045 | 501,315 | 398,094 | 20,975 | 27,515 | 4,234 | 4,291 | 1,030 | 5,221
OUT || 3,208,628 | 142,337 | 528,608 | 7,277 | 8,977 | 4,525 | 4,721 | 12,925 | 16,339

— B oner 1 B oner

= —— Ol o e B ons

g o e — . BGP . “woom] . BGP

E ::a i - — Z:m

:2 B e B — - B e
i B o £ B oo

- T T T T T T ° T T T T T T
023 000000000 TCPODOO 024 000000000 TCPOOO
OoOoOooooooo (1ooo) Oo0O0oooooooo (1oon)

00000000000 DNSOODOOODODDOOOOO0ODoooooDoYy™»oooooo
gbodooboboooboobooobooTrceooboooboodother oo g
goddobogbooobobbbboobbbbbbbooboobobbabbodon
gogbobogdgd

24 0OUOO

wibeOoOoOooOoooo-ooobobboobooboobbobooboobod
OoooooTecpOoUDPOOD HTTPOUOD DNSOODOOOOOoOOOoOOOoOoooOoo
gbggduboooggoouoboboogoooooobbboooobooon
gobbobboobobbbobudouooobobobboooonoooooboboo

%

;

average dally traffic (KB)

;

°
L

40

gboodoobbbbobbbbboodobbo

023 UbPO0O0OOOOOOODO

| DNS | AFS [NTP | SNMP | Other
o LN 232,522 | 39,307 | 488 | 105 | 63,292
OUT || 829,757 | 12,660 | 3,007 | 2,386 | 24,795
| N 345,010 | 25,571 | 454 68 | 3,687
OUT || 548,368 | 14,274 | 1,404 | 177 | 9,042
o | N 766,316 | 23,781 | 756 90 | 4,804
OUT || 544,096 | 7,602 | 1,642 | 2,016 | 9,710
IN 722,753 | 15,015 | 577 | 201 | 10,145

1
OUT [[1,044,950 | 4,320 | 1,654 | 2,714 | 10,559
IN 763,869 | 9,239 | 435 | 240 | 8,732

2
OUT || 1,015,137 | 4,008 | 1,533 | 288 | 9,296
, | IN 479,947 | 6,875 | 551 169 | 2,873
OUT || 641,749 | 3,194 | 1,754 | 138 | 12,575

B oner
B sawe
NTP
B ars

DNS

025 000000000 UDPOOO
O0o0ooooO0o0o 1000)

1000000 —

157

B otner
W save
NTP
B ars

DNS

026000000000 UDPOOO
oooooooOoOoo (10ooo)

gobogubobbboobobooobooooboboooobbn

OO00oDO00ooOooOobOoboOoOoICMPO DNSOODODODOOODOOOOODO crack
gogobbbbboduoobbbbooooobbobobobbboooooboboboobbbn
OO0 POO0O0O0OCOOOO0O0O00OOOO0O%O0O0000000((OOODOOOOO
ooo0o01%000b0O0O0O00000)b0oooooOU0ooOUUooooooooo
gbooogoogd

O000000000 NNStatODOODOOOoOOOOOoooooooooboooooog
guoogdobboobboooobboobooobobooboooobobboboboooD
OO000b0o0bOoobobOobobbOobO NNStatDOobbogooboboboog

gogubogobbobdaogo

0 30

An Internet Traffic Data Repository

3.1 Introduction

Currently, many issues regarding the quality of services or Internet traffic models such
as RSVP [27, 133], DiffServ [23, 95], are under evaluation. However, it is difficult to verify
these traffic models and service models based on the actual network traffic data which is
commonly accessible and to analyze these models with sufficient detail. After taking into
account the current issues involved in traffic data capturing, this paper suggests a method
for supplying actual traffic data in order to evaluate these models.

The first commonly used traffic data were captured on October 3rd, 1989 at the Bellcore
Morristown Research and Engineering Facility [79]. The data files were in ASCII format,
consisting of one 20 byte line for each arriving Ethernet packet. Each of these lines con-
tains a floating point time stamp and an integer length representing the Ethernet data
length in bytes. The time expressed to six places after the decimal point was intended
to the appearance of microsecond resolution. Timestamps however, are only accurate in
milliseconds due to the actual resolution (4 microseconds) of the hardware clock, jitter in
the inner code loop, and bus contention.

The next generation of traffic data collections were based on the tepdump program. Here,
V. Paxson and S. Floy gathered two to four hours of such traffic at Digital’s primary Internet
access point on March 1995. The raw traces were made using tcpdump on a DEC Alpha
running Digital’s OSF/1 operating system which includes a kernel filter with capabilities
similar to those of BPF. Sanitize script was used which renumber hosts and strip out packet
contents in order to address security and privacy concerns. Timestamps have millisecond
precision even though they are reported in figures using six digits past the decimal point
[103]. The several independent data collections have been made based on almost the same
method. Some of these data addressed specific protocols such as HT'TP.

The ever increasing amount of Internet traffic is forcing each Internet service provider or
ISP to analyze whether or not their network resources are sufficient to maintain customers’

satisfaction. The previous traffic data addressed specific protocols or applications and

158

U 40 gboodoobbbbobbbbboodobbo 159

did not reflect all traffic through each ISP. The data should however, give us information
on any application or protocol at any time. The need to capture all packets also arises
from requirements of other approaches such as an academic research community studying
mathematical models of Internet traffic.

We introduce a new method to create a database which contains actual traffic data
holding sufficient amounts of information to allow analysis of end-to-end characteristics of
Internet or intranet traffic without exposing the users’ privacy. The required data to be

captured will be described as well as the format of the resulting database.

3.2 Traffic Data Repository

Under the current operation environments for the Internet, monitoring at intermediate
nodes is usually done by SNMP [30] related query tools to see a simple set of metrics,
such as utilization rates, packet discard rates, etc. for transmission links. This kind of
parameters have an advantage to be monitored without any stress on the networks. The
traffic data repository, which is also monitored without any stress on the networks, is
intended to provide the operators with more information on the networks to investigate

their services.

3.2.1 Requirements for Traffic Data Repository

Currently accessible tools and data possess several inherent problems associated with
modeling and simulations of Internet or intranet traffic. Publicly available tools and public
databases with sufficient information based on impartial evaluation measure might serve
to encourage this type of research.

There are two issues to be considered in traffic data repository. The first problem is
the measuring locations. The current fields of research, such as management of quality of
service on the Internet, require end-to-end flow analysis. This means that measuring at
an intermediate node will not be sufficient for analyzing end-to-end traffic. Although the
currently used intermediate monitoring node is inadequate, it is still the only way for an
Internet service provider to determine service quality and therefore an essential task.

The second problem is to what extent to make measurements at intermediate nodes in
order to monitor or study the traffic later on with as much information as possible. Other
factors that must be considered are the time precision, amount of data to be recorded for
each packet as well as hiding private information from the measured traffic data before
making this data available for public use.

After all, the following requirements must be satisfied:

160 1998 00O WIDE 000

Not Measureable

104] Measurceable

Precision of Timestamp (Second)

10-10]
10-1]

10-12

1l.'lé 1‘0“ 1Il.'l5 ?06 I.‘IJ? ;DS I‘IJlj ?Elfd ;DH 1“012 I.|D13 1‘014 ;Dfs ?016 10”

Transmission Speed of IP Layer (5 bills)

[0 3.1: Required Timestamp Precision vs. Packet Transmission Speed of IP Layer

1. All packets must contain as much information as possible.
2. User privacy must be assured.

3. Timestamps must have adequate precision.

Time precision is a critical for performing analysis in the future on the Internet. The
current speed of the major Internet backbones is increasing from 156Mbit /s or 622Mbit /s
to 2.4Gbit/s. It is further assumed that a backbone with a speed in tera bits per second
will be attained within a few years. Since the shortest IP packet is an IGMP packet of 28
bytes long, the minimum timestamp precision must be equal to the resolution to distinguish
this packet from others. This resolution is on the order of 28*8/.S where S stands for the
packet transmission speed in bit/s over the IP network layer. Figure 3.1 shows the current
millisecond precision of timestamps will only be adequate for 100kbit/s IP transmission

lines. Future tera bit per second line monitoring will require 3.68E-10 seconds of precision.

3.2.2 Modes of Traffic Data Capturing

We categorize traffic capturing into two methods or modes, namely stateless and statefull.
Stateless capturing means a record of a packet does not depend on the previously captured
traffic data or packets. Processing to make a traffic data is only done over the information

provided by the current packet. Most of the currently available tools, such as tcpdump, are

U 40 gboodoobbbbobbbbboodobbo 161

based on this packet-by-packet scheme. Statefull capturing on the other hand records the
information of a packet based on the previously captured packet records. Every capturing
based on identifying flows is considered as a statefull capturing. Statefull capturing will be
required to compress the captured data with TCP header compression [71], RTP header
compression [31], etc.

Two advantages are known for stateless capturing. Firstly it is simple and does not
require a heavy processing overhead on a capturing machine. Secondly there is no need
to predetermine what higher layer protocols are running through the observed node since
capturing information is uniform for every IP packet. A disadvantage is that it is theoreti-
cally necessary to record entire packets to analyze the traffic. This requires a large amount
of disk space and also a high speed recording facility for capturing to follow the link speed
which is assumed to be Gbit/s or higher.

On the other hand, statefull capturing is based on the flow analysis to decide the recording
part of the IP payload and to compress the amount of data. The advantage is that it
requires less disk space and a moderate speed of recording facility, with the introduction
of a high processing overhead for the flow identification, tracing state transitions of higher
layer protocols, data compression, etc. In addition to these disadvantages, it is assumed to
have a prerequisite knowledge of the captured protocols. Since the evolution of the Internet
protocols and applications is very fast, it is very difficult to predetermine all the protocols

used in the traffic through the observed node.

3.3 Data Format

Our current implementation is based on stateless approach. Two data formats to record
traffic traces are supported in the system. One is a 24byte fixed format for a captured
packet as shown in Figure 3.2. This includes timestamp in 64bit attached by the BPF
driver followed by IP source and destination address in 32bit each, total length in 16bit,
protocol in 8bit copied from the IP header. Other fields in the IP header are just ignored.
There are one flag byte and two 16bit fields as well. The flags byte is copied from TCP
flags when appropriate. The two 16bit fields are used to represent source and destination
port number for TCP or UDP, and type and code for ICMP. Some types of ICMP messages
include IP headers of target IP datagrams as well as first 64bits of the payloads In this
case, another 24byte record is used to represent the target IP datagram with clearing its
timestamp field. This format is intended to make the record small. So monitoring on a
higher speed network would be possible.

The other format supported in the system is shown in Figure 3.3, which is compatible to

PCAP library [86]. This format is not so compact, however, several well-known tools such

162

as tepdump can be used with the format. To save the amount of data and not to record
user data, only TP headers (with options if any), TCP headers (with options if any), UDP
headers, and ICMP header (with initial 64bit of target datagram payload where appricable)
are recorded. Each record of the format is not of the fixed length. As TCP options are

1998 00O WIDE 000

Conpressed data format

0 1516

64 bit tinestanp

[

32 bit source IP address

24 bytes

32 bit destination |P address

B
s

R
s

1)
R

A
c

16 bit total length (in bytes)8-bit protocol ‘

3
I l
16 bit source port nunber(16 bit destination port nunber

0 3.2: Captured Data in Compressed Format

PCAP conpati bl e data format
0 1516

31

64 bit tinestanp

—

32 bit captured data |l ength

16 bytes

32 bit packet length

—

MAC Header

L

| P Header (20 bytes)

IPoptions (if any)

(T

120 bytes

or
TCP Header + TCP options if any
or
UDP Header

% 1 QW Header (+ 64 bits of target packet header if applicable)

(max)

e e
f——

0 3.3: Captured Data in PCAP Format

recorded with this format, it is suitable for TCP oriented analysis.

As for UDP packets, RTP is now popular to be used over UDP. RTP packets have data
reflecting end-to-end throughputs for UDP applications, and RTP as well as TCP packets
are very important to capture to understand end-to-end service quality. Since it is very
difficult to identify an RTP packet based on the UDP payload of the corresponding packet,
Statefull capturing is required to identify RTP packets. When specified in an option, the

program records the first 20bytes of UDP payload for this purpose.

U 40 gboodoobbbbobbbbboodobbo 163

o, ~_apemn
\ / tape device

BPF

O 3.4: Structure of Capturing Software

3.4 Software Structure

The paper then considers the architecture and the design policy of a new traffic data
repository tool to solve the above problems, describing what parts of IP headers and data
must captured, what timestamp required for what data, etc.

A data compression method for these captured data is also investigated to reduce the
total disk space and to increase the capture speed. The end user’s privacy resides in IP
address and port number. This paper further presents an effective address scrambler based
on the network interface and the address classes and also shows a naive address scrambling
scheme having a security hole.

As the system intends to capture traffic data over long period with limited storage
resources, it writes captured data to the file system while background process copies the file
to the cartridge tape. Providing the change operation of the tape media, with a mechanical
autochanger or with timely operator assistance, the system can capture the traffic data for
any period, virtually.

The system consist of two processes as shown in Figure 3.4. ntap process captures the
traffic through a BPF, converts the data to an appropriate format, and writes the data
to the file. ntap is configured with a list of file system. When ntap changes the file to be
output periodically, for example, once an hour, it checks the remaining space of the current
file system. If necessary, it changes next available file system.

Another process tapemon checks each file system periodically. When the growth of file
system utilization stops, tapemon assumes that ntap program writes to another file system.
After a few minutes, tapemon dumps the files in the non-working file system to the tape.
Before the tape is exhausted, tapemon rewinds the tape and send a notification to the
operator via email.

The software runs on BSD/OS operating system version 3.1 and 4.0. As the system
dependent feature the system assumes is only BPF interface, the software can be easily
ported to other BSD flavored Unix. In order to avoid access collisions, distribution of SCSI
attached devices (hard disks and tape drives) to different SCSI buses is important. In
order to eliminate BPF buffer overruns, it is necessary to make BPF buffer size larger. The

default maximum size of BPF buffer size in BSD/OS was 32kB. This number has been

164 1998 00O WIDE 000

compiled into the BSD/OS kernel and recompilation of the kernel after changing this into
at least 256kB is necessary.

As the Unix operating system is not a realtime operating system, non-blocking close()
system call is not supported. We observed BPF buffer overruns may happen when we
switched the output file. This is because there may be large amount of un-flushed data
in the kernel buffer and close() requires flush the data first. A technique to avoid this is
to delay file close operation for a few minutes so that update daemon may perform sync()
system call to flush the data to the disk asynchronously.

When the captured data is exported, we need to encrypt any field related to the users’

privacy. When we randomizing the [P addresses in the captured data, following rules may

apply:

e Need to keep one-to-one mapping, i.e., once a address addr! is mapped to addr2, any

occurrence of addri in the raw captured data should be mapped to addr?.
e Multicast addresses are mapped to multicast addresses.
e Private addresses, Class E addresses, and loopback address are not mapped.

e Use a random number generator to map the addresses.
¢ Checksum fields in TCP or UDP headers are cleared.

¢ IP headers in ICMP payload are also a subject of address mapping. Furthermore,
the initial 64bit of the target datagram of an ICMP message should be removed if it
is not T'CP header nor UDP header.

3.5 Experimental Capturing

The rest of the paper is devoted to issues regarding implementation of this repository tool
for BSD UNIX. The data format of captured traffic is also described. Field experiments
with this tool were performed at a network operation center of WIDE, a Japanese academic
network, for two months. As the WIDE Internet has two international links, we run a
capturing system for each international link.

The configurations of the capturing systems are shown in Figure 3.5. The gateway
system to the international link consists of two routers connected by a shared ethernet. A
capturing system is attached to the ethernet to monitor the international traffic. A system
for a T1 link is equipped with a Pentium-II 333MHz, two 9GB WIDE-SCSI disks, and a
DDS3 (capacity is about 15GB for the captured data) tape drive on another SCSI bus.

U 40 gboodoobbbbobbbbboodobbo 165

Feinrend
KD AerialdBlwi

IEiRaswTe

O 3.5: Configuration of Experimental Network for Traffic Capturing

For another link of 1.9Mbit /s bandwidth, a system with a Pentium-II 400MHz, two 18GB
WIDE-SCSI disks, and an AIT drive (capacity is about 45GB) is assigned.

In order to check the ability of the system, a similar system with single 9GB WIDE-
SCSI disk and a FDDI interface is tested on a backbone FDDI network of the University
of Tokyo. While the peak traffic exceeds 20Mbps, the system reports no dropped packet at
BPF layer over more than 10 days with an even worse condition where ntap and tapemon

access file systems on a single disk.

The cumulative distribution of the packet length for the data captured from 11:00:00 to
12:00:00 on Feb. 22, 1999 is shown in Figure 3.6. According to this data, the average of
the packet length is 361 byte long, and the top two lengths, namely 40 and 1500 byte, are
observed to occupy 41% and 14% of the total number of packets. Packets of 1500 byte long
are notable in our traces. This may reflect a popular usage of the applications like Web or
FTP in the current Internet. Of course, the characteristics of our traces are very different
from the Bellcore’ results [79], but further investigations will be necessary to compare ours

with other traces.

In the middle of this experiment, the bandwidth of the latter international link was
increased from 1.9Mbps to 10Mbps. Hence the resulting data contain a history of the
network behavior from a heavily congested state to a normal state. Some data analyses of

the captured traffic are also presented.

166 1998 00O WIDE 000

100

90

80 [

70

60 [

50 [

40 |

30

20

L L L L L L L
0 200 400 600 800 1000 1200 1400 1600

0 3.6: Cumulative Distribution of the Packet Length for the Captured Data

f L ™
|Flmnr Identifier ‘ ntap

¥

| Host Adress Scrambler ‘

¥

| Header Compression ‘

\, 1 p,
Y

| File Systems ‘

[0 3.7: Extension of ntap to State-full Capturing

3.6 Discussion and Future Directions

Although the current version is a state-less capturing system, we present a block diagam
of our future state-full version in Figure 3.7 to show that state-full capturing for a giga bit
network will be possible without any disk access bottleneck, using a conventional SCSI disk
drive. The three modules, flow identifier, host address scrambler and header compression
need not to be a single process nor run on a single processor.

The first module, flow identifier, must follow a state diagram of each protocol to identify
each flow. At a gateway router, a number of flows will exist to be processed and some of
them may be terminated abnormally. The latter will increase the vertual number of flows

to be processed. These cause a task of flow identification to be expensive.

U 40 gboodoobbbbobbbbboodobbo 167

After the flow identification, host address scrambling is applied to each packet, which
renumber hosts in order to address security and privacy concerns. This scrambling can be
eliminated if the operator wants to do his job with the actual host addresses.

Then at the next stage after making a secure IP header, the TCP [71] and the RTP
header compression [31] can be applied to all the TCP and RTP packets, which reduces 40
bytes of IP and TCP header into 3 bytes, and also 40 bytes of IP, UDP and RTP header
into 2-4 bytes in average. This means only 8 bytes of time stamp, 2 bytes of flow ID, 2
bytes of data length, and 2-4 bytes of header data will be enough to record for each packet.
A record of 14-16 bytes for each packet with an average packet length of 361 bytes, solves
the disk access bottleneck.

Assuming 90% of the Internet traffic is TCP based applications, it may be possible
to capture IP packets through a datalink up to 2.3Gbps with disks attached to Ultra2
SCSI or Wide Untra2 SCSI, assuming that the average sustained transfer rate is around
12MB/s. Thus the disk access speed is not the bottleneck of capturing packets on gigabit
networks. There is, however, a significant processing overhead for flow identification and
header compression . Specialized hardware devices or parallel processors will be required
for this purpose.

All output lines are preceded by a timestamp. The 64 bit timestamp means that the
maximum observation period will be 213.5 days, measured from the start of capturing,
even if the time precision of one bit is as small as 1.0E-12 second. This is sufficient for
monitoring IP traffic over future links at tera bit/s speed. There is, however, a limitation
on our current implementation. Firstly, the timestamps attached by the BPF driver in
the UNIX kernel is of struct timeval. This time value is not started from the beginning of
the capturing but is measured between Jan. 1, 1970 and 2038 in the precision of 1 micro
second. Although the clock data returned from this function is 64 bit long, the timestamp
for the current clock time is as accurate as the kernel’s clock, that is the order of micro
second. Further more the timestamp reflects the time the kernel first saw the packet. There
is some time lag between when the network interface received the packet from the wire and
when the kernel serviced the ‘new packet’ interrupt. Because of these factors, the accuracy
of timestamp is restricted to the order of several milliseconds.

To overcome this problem, specially designed network interfaces must also be developed
for timestamps. These interfaces must have a function to attach by themselves a timestamp
to each received packet or frame with the nano or pico second order of precision counted
from the beginning of capturing.

A notifying usage of the resulting traces is to estimate the amount of the exchanged
information through the target node. There have been many evidences on the asymmetric
traffic between the US and Japan, based on the inbound and outbound packet data on the

gateway routers, but there has not been a further detailed analysis on this fact. Assuming

168 1998 00O WIDE 000

the side to initiate the connection receives the valuable information, which is usually the
case for TCP based applications like FTP, TELNET, Web accesses, etc., we can estimate
what amount of information is transferred to which direction during the observed period.
The procedure is very simple. We just have to identify which side first sends a TCP packet
with a SYN flag.

3.7 Conclusion

We present a method to create a database containing real traffic data, which has sufficient
information to analyze the end-to-end characteristics of Internet or intranet traffic without
disclosing private end user information. Owur current version of a program running on
UNIX implements these features. As we mentioned in the earlier discussions, [some
improvements for capturing performance and functionality will be required for our program
to be used for links faster than our experimental links. Although far from an ideal tool
in terms of capture speed, it has been used to make traces of WIDE Project traffic since
January 23, 1999 at Internet gates. All the processed traces are intended to be public and

will be uploaded to our FTP server after completing the current experiment.

1 40

A WWW Server Performance Measurement

System

4.1 Introduction

In the operation of WWW services, the quality of service is now a first priority. Ad-
ministrators of WWW services have to know how their services are working, and try to
maintain their services to fulfill the service subscribers’ requests as much as possible. In
order to improve the quality of the WWW servers technically, their operators want to
aware any changes on the performance indices such as the average and peak numbers of
HTTP [53] requests rate, the storage usages of both physical memory and disks, and the
amount of total traffic for the services. Through watching these performance indices, the
operators can decide the way of improvement on WWW servers. However, measuring the

performance of the WWW servers is quite hard because of several reasons;

e The WWW servers are ordinarily implemented as application-level programs running
on several computer platforms so that many factors can make influences on the server

performance.

e The WWW servers that the operators want to know their performance are likely to
be working as a “running” system, so that suspending their service only for making

benchmark or other performance measurement is almost impossible.

e There are few tools and utilities that can be used for performance evaluation and
tuning of the WWW servers.

As the result, the administrators have to manage their servers only with their intuitions
and experiences. This may cause several difficulties on the performance tuning. Therefore,
the administrators are willing to have several performance indices how the WWW server

sufficiently processes users’ requests.

169

170 1998 00O WIDE 000

T i] B
— I> (1) Statical Analysis on
t logging data Activity Logging Datz
l Kernel E > (2)Kernel-Level
j Socket Monitoring
memories
TCP
@% IP
- Data Link
files

AN

(g '
; > (3)Benchmarks

(4)Customer Survey ?

0 4.1: Several ways to measure the performance of WWW servers

The goal of our work discussed in this article is to develop a powerful performance
measurement tool called “ENMA” for the WWW servers. As mentioned above, the perfor-
mance measurements through the benchmark or any mechanisms installed inside the server
itself are not practical for applying them to “running” WWW servers. Our approach is,
therefore, to make performance measurement through the packet monitoring. Its funda-
mental idea is to observe the behavior of WWW services from outside, and estimate several

performance indices.

4.2 How Can We Know the WWW Performance?

Several ways to measure the performance of WWW servers have been developed so far:
(1) log data analysis, (2) kernel level monitoring, (3) benchmarks, and (4) customer survey
(see Figure 4.1).

In the method (1), the statistical analysis is applied on the activity logging by WWW
servers. This is a popular way to know the performance of WWW servers. Almost all of the
servers can generate various types of activity logging data as their log files. The statistical
analysis of these log files allows us to know the behavior of WWW servers such as the
number of accesses, clients’ access patterns, the request processing time, etc. However, this
kind of analysis cannot provide any hints on behaviors that the WWW server invokes inside
the OS kernel such as its memory consumption, the number of disk 1/O, the frequency of
the network accesses, etc.

To solve this issue in the method (1), the kernel level monitoring, as the method (2), is

U 40 gboodoobbbbobbbbboodobbo 171

frequently used. One of the popular ways in many UNIX operating systems is to use a utility
ktrace to monitor the WWW server. With this utility, most of the kernel level behavior
including system calls, I/O, signal processing, and file system operations can be revealed.
With the other utilities such as kernel debugging utilities and a kernel-level process profiler
can be used also for this purpose. However, this method has serious drawbacks: its disk
storage consumption and performance interferences. These kernel-level monitoring utilities
generate a large volume of files in which kernel-level monitoring data are stored. Therefore,
this method can be applied only for the period short enough the disk storage does not run
out. Kven if the huge disks are prepared, still the performance interferences caused by
these utilities cannot be negligible. Since these utilities invokes a large number of disk I/O
for making a log recorded at each system call, therefore, the performance degradation is
quite large. In order to minimize the performance interferences, monitoring the kernel-level
behavior of the WWW servers with “modified” UNIX kernel could be a possible solution.
However, any approaches including kernel modifications requires the source code of the
OS. Even if the source code is available, the modification of the kernel is hard because it
requires skills and expertise.

The benchmark is another performance measurement method. For example, the SPECweb96
[40] by The Standard Performance Evaluation Corporation and WebStone [91] are famous
benchmark method for WWW servers. The benchmarks can provide various indices on
the performance of the WWW servers. Especially, the benchmark is helpful to know the
maximum performance of the WWW servers with various configurations. However, this
method also has several drawbacks. The benchmark requires both the special benchmark
software and their environment, and they are costly. Especially for the large scale WWW
servers in operation, it is almost impossible to suspend their services only for benchmarks.
If we can prepare them, the benchmark result can indicate the performance of the WWW
servers in the environment specially prepared for the benchmarks. In other words, it is
hard to apply the benchmark to the WWW servers that are in their actual operation.

As the method (4), the customer survey could be the other approach. In many WWW
services, “customer feedback” type of questionnaires are prepared. This method is appro-
priate to know the level of customers’ satisfaction, however, they cannot help the server
improvement technically.

Consequently, the methods discussed above are not sufficient for the performance mea-
surement of the “running” servers. It is obvious that a new method for this purpose should
be developed.

The new method we propose here in this article is the performance measurement of
WWW servers through the packet monitoring. The idea of this method is to know the
behaviors of the WWW servers through the observation of the packets generated by both
a WWW server and the WWW clients hooked up to the server. This method has several

172 1998 00O WIDE 000

advantages:

e Modification on OS kernels is not required.

¢ This method can be applied on any WWW servers even if the servers are in their

actual operation.

¢ This method does not interfere between the WWW servers and the performance

measurement tools.

However, our approach also has a drawbacks. Since our system cannot see inside of the
WWW server, our system does not obtain any performance indices which are available in
the OS inside. However, in the case we need to examine the WWW server internals, the
method (1) or (2) can be used as a complement.

In the following sections, we discuss the details of our design and implementations of our
system. Moreover, we show our case studies where we apply our system to several WWW

SEeTrvers.

4.3 Design of Our System

In this section, we describe the design of our system and show how we approach to the

goal of our system.

4.3.1 The Performance Degradation Model

For the WWW server operators, it is quite important to know if the server performance
is degrading. From our experiences on WWW server operations, we developed a simple
model of the performance degradation of the WWW server. This model is a state transition
model, shown in Figure 4.2.

In the state I, as an initial state, a WWW server can provide its service for all the
requests without any overheads. The operators want the WWW server to stay at this state
as long as possible.

If the performance of the server is degraded by some reasons, the state of the server
moves to either the state II or III. In the state II, the server cannot accept all the request

and some of the requests are rejected. If the server is in this state, we can observe:

e The server rejects some TCP [116] connection establishment requests because the

“listen” queue in the socket layer is full.

U 40 gboodoobbbbobbbbboodobbo 173

Penalties on
"connection
establishment"

penalties on
"data delivery"

[0 4.2: The performance degradation model

e The server accepts all the TCP connection establishment request, however, it rejects

some HTTP requests. This can be caused by some specific server configurations.

In the state III, on the other hand, the data delivery from the server is sacrificed. The
server can accept all the requests from the client, however, its data delivery becomes slower.
This situation is frequently observed in the case we access busy WWW servers in the
Internet. The HTTP connection is established but the we have to wait long time to obtain
all the data in a WWW page.

The server may shift its state between the state II and III. However, if the situation is
getting worse, the server’s state is finally moved to the state IV. This state means that the
server is saturated. In this state, the server rejects several accesses randomly, and the data
is also slow to be delivered to the client.

Our system provides several performance indices in order to help the server operators to

know these state transitions of WWW servers.

4.3.2 Performance Index

Through the packet monitoring, we can derive several performance indices. Based on
the model discussed in the previous subsection, our system is designed to measure several

performance indices listed below.

The Number of Concurrent Connections (Nc)

Normally, a WWW server can several HI'TP connections in parallel. In the typical
implementation of a WWW server on UNIX platforms, a single daemon process resides on
the memory and is always waiting for HT'TP request arrivals. The Number of Concurrent

Connections means a set of HT'TP connections that are handled concurrently. If the server

174 1998 00O WIDE 000

HTTP
Request

client >
SYN ack ack | FIN
112 3 4 15 6
f;{;\li F’zesp?nse ;:md Data FIN ack
server >
<+A> < B

vy

A

~
(%

O 4.3: Performance Indices

is in the state II or IV, the number of concurrent connections is limited to the certain

number or just decreased.

Connection Continuation Time (T¢)

Connection Continuation Time is defined as the period from TCP connection establish-
ment to its shutdown. More precisely, the period from the time when the first SYN packet
(the packet #1 in Figure 4.3) transmitted to a server by a client is observed to the time
when the server’s ACK packet (the packet #6 in Figure 4.3) corresponding to the last FIN
packet generated by the client is monitored. The Connection Continuation Time in the
state IIT or IV is much longer than one in the state I.

Note that this Connection Continuation Time is much longer than the connection time
derived from either analysis on the WWW server log files. Almost all of the WWW server
implementations, the time when the server calls accept() system call is recorded as the
connection start time, and the connection end time is correspondent to the time when
close() system call is processed. However, after the close() system call, the actual data
delivery in the TCP layer is still going on, because the data is stored in the queue in the

socket layer and the close() system call is immediately returned (see Figure 4.3).

Response Time (T7)

The definition of Response Time is the period between an HTTP request packet from
a client and its HT'TP response packet from a server. However, this definition is slightly
different from the generic definition of RTT (Round Trip Time). Since we discuss the
behavior of WWW services through the packet monitoring, we use the period A in Figure
4.3. Therefore, the Response Time is normally shorter than the RTT, in general. This can

be considered as a sign of the transition to the state III and IV.

Data Transfer Time (7d)

U 40 gboodoobbbbobbbbboodobbo 175

Shared Memory

Daemon === Analysis Workbenct
Connection) \ Real Time
Analyzer Monitoring
e Statisti_cal
Analysis
Packet Data File
Monitoring Graph
A

[> - Network <]

0 4.4: ENMA components

Data Transfer Time is defined as the period from the time when the first HT'TP data
packet transmitted by a server is observed to the time when the last data HT'TP packet
generated by a server is detected (The period B in Figure 4.3) . Note that the Data
Transfer Time includes the period for exchanges of FIN packets and their ACK, because
these packets sometimes include the actual WWW data. This can be also considered as a
sign of the transition to the state III and IV.

Connection Setup Time (Ts)

We define Connection Setup Time as the period between when a server receives the first
SYN packet (the packet #1 in Figure 4.3) and when the server sends a SYN+ACK packet
back to the client (the packet #2 in Figure 4.3). In this period, the server allocates the
memory for the socket, then put the SYN packet into the SYN-RCVD queue in the kernel
[20]. Ts indicates the performance of the TCP /IP implementation and its platform.

4.3.3 Components

ENMA consists of two components: ENMA Daemon and Performance Analysis Work-
bench (see Figure 4.4)

ENMA Daemon

The ENMA Daemon is in charge of the “real time” packet monitoring. It is a single
program which consists of two modules: a packet monitor and a connection analyzer.
The packet monitor captures all the packets in any HTTP connections observed on the

network to which the ENMA system is attached. Since each captured packet is a data-link

176 1998 00O WIDE 000

frame, the packet capture strips a data-link header from the captured frame, and obtains an
IP datagram in the frame. The obtained IP datagram is passed to the connection analyzer.

The connection analyzer is a core module of ENMA. The important function which the
connection analyzer provides is to record the time when each packet is observed. Further-

more, the connection analyzer provides following functions:

e By the information in both IP and TCP headers in the packet, the connection analyzer
distinguishes each TCP connection and tracks down its state transitions. This state
transition analysis is used for calculation of performance indices listed in Section
4.3.3.

e The connection analyzer counts up the number of IP datagrams observed in each TCP
connection. The total length of the payload in the IP datagram is also recorded.
These measures are recorded separately for the upstream (from the client to the

server) and the downstream (from the server to the client).

¢ The total length of the TCP payload is also recorded separately for the upstream and

the down stream.

The connection analyzer writes these information to a single data file. This data file is
used for the further statistical analysis by Performance Analysis Workbench. Note that the
size of the data file is much smaller than files generated by either kernel-level monitoring
or the command tcpdump, because a single data entry for a single TCP connection in the
file is around 150 bytes. Therefore, we can use ENMA to monitor the WWW server for
much longer.

The connection analyzer also provides the shared memory for other programs in Perfor-
mance Analysis Workbench in order to enable them to make a realtime data visualization

and analysis.

Performance Analysis Workbench

Performance Analysis Workbench is a set of programs which enable us to make various
analysis on data that the ENMA Daemon provides. There are two kinds of programs in
this workbench;

e The programs which make analyses on the data file provided by the ENMA Daemon.
The statistical analysis tool is one of kind of programs. These programs read the

data file and perform the data analysis in batch style.

e The programs which use the shared memory provided by the ENMA Daemon and

make data analysis in realtime.

U 40 gboodoobbbbobbbbboodobbo 177

4.4 Implementation

We tried to implement our system as a portable system for several UNIX platforms.
Currently, the ENMA Daemon was implemented in ANSI C using the GNU compiler (gcc)
on FreeBSD 2.2.7. However, we can make it as a “platform-independent” program with
using LBL’s packet capture library. Programs in the Performance Analysis Workbench
were implemented as shell scripts, AWK programs, and C programs. These program are
also portable. In this section, we provide several technical notes on our implementation of
the ENMA system.

4.4.1 Packet Monitor module

The packet monitor module in the current implementation uses the LBL’s packet capture
library (libpcap [76]) to capture the packets on the network. The library provides a common
APT for both the Berkeley Packet Filter (BPF [87]) on many BSD variants and the Network
Monitoring Protocol (the packet snooper) on Sun’s Solaris and SGI's IRIX.

4.4.2 Connection Analyzer

In the connection analyzer, we had to implement a module to monitor the TCP state
transitions of each TCP connection. This module uses the sequence number, acknowledg-
ment number, and flags in TCP headers for tracking down all the state transitions. The
algorithm which we use in the connection analyzer is shown in Figure 4.5.

In this algorithm, the connection analyzer allocates a block of memories for each connec-
tion when its SYN packet is observed. This memory block is used as a memo for recording
the state for each TCP connections. In the case the TCP connection is shut down normally,
the memory block is released and the connection analyzer writes several performance mea-
sures listed in the Section 4.3 to the data file. However, there are several cases where the

memory blocks are not released. These cases can happen in the following situations:

e The client tries to establish the TCP connection, however, the server rejects the
request. In this case, since the client sends some SYN packets to the server, the
connection analyzer allocates a memory block. This situation may cause by lack of

system resources (e.g., the listen queue in the socket layer) in the server.

¢ The server has been clashed during the TCP connection is established. In this case,
the client tries to keep the connection so that the client does not send any FIN or
RST packets to the server. Therefore, the connection analyzer cannot release the

memory block.

178 1998 00O WIDE 000

TCP analysis module

YES Release memory blocl
and write the data file

YES CS is ESTABLISHED
SSis SYN_RCVD

Allocate
memory
block

Packet monitoring module
I

|

TCP
S

Packet Droped CSis FIN_WAIT_1

vES™ "] SS is CLOSE_WAIT

NO
Are SS and CS CS is LAST_ACK
ESTABLISHED? SSis TIME_WAIT
NO
YES

ACK of SYN+ACES SSis
CS: Client State ESTABLISHED|

NO
SS: Server State
First FIN packet?

is
YES™EIN._ WAIT 2
NO
Second FIN packet?
YES»| Release memory blodk
and write the data file

i

[0 4.5: The connection analysis algorithm

e The packet monitor module misses captures of FIN and/or RST messages. In this
case, a TCP connection was established but neither FIN nor RST packets are observed

on the connection. Therefore, the connection analyzer cannot release the memory

block.

In order to handle these cases listed above, the connection analyzer has a garbage col-
lection mechanism for these “unreleased” memory blocks. In the current implementation,
the connection analyzer tries to find any memory blocks that were not updated in the last
24 hours.

4.4.3 Performance Analysis Workbench

The Performance Analysis Workbench consists of two modules: the statistical data col-
lecting module and the visualization module. All the modules are implemented in ANSI
C.

The statistical data collecting module obtains the statistical data through shared mem-
ory. This module is used as an interface for other modules for “real-time” analysis. All the
other modules have to obtain data through this statistical data collecting module. This

module is quite simple and light weighted.

U 40 gboodoobbbbobbbbboodobbo 179

The visualization module is a X-window application program in order to view the data in
various forms. The data is provided by the statistical data collection module through BSD’s
socket interface. Since the ENMA daemon consumes large amount of system resources so
that running both the ENMA daemon and visualization program on the same machine
may cause performance interferes. In the worst case, the ENMA daemon cannot dump all
the packet from the network, therefore, the statistical analysis is less accurate. In order to
avoid this situation, we implemented the Performance Analysis Workbench as separated

modules.

4.5 Case Studies

In order to verify our implementation we applied our system to several “running” systems.

4.5.1 Case 1: The WWW Server

We measured the WWW server which provided various information and “live” video
streams about the 80th National High-School Baseball Games of Japan in August, 1998.
This event is very famous and popular in Japan so that the WWW server got over 32
million hits per day. We applied our system to this server for 16 days.

System Configuration

The target WWW server host was Sun Enterprise 450 server with dual CPU (300MHz
Ultra SPARC processors) and 512MB of memory. The WWW server program was Apache
1.3.1 running on Solaris 2.6. This system was installed on the server segment (100BaseT).
Our system was hooked up to the service segment and monitored the server.

Our system on which the ENMA daemon was running was an Intel platform (PentiumII
300MHz processor) with 64MB memory.

Evaluations

Figure 4.6 shows the frequency distribution of Connection Continuation Time (T¢). The
analysis based on the log file generated by the WWW server reveals that Tc for the most
connections is 1 millisecond, while 20 millisecond is from our ENMA system. As mentioned
in Section 4.3.3, the result from the WWW log file is quite different from one from our
ENMA system.

The log file generated by the WWW server is the activity logging of the WWW server
as one of application programs on the system. In other words, the log file is an application
level logging. The buffer size in the socket layer of Solaris 2.6 was configured as 8 Kbytes.
Since almost all of the WWW objects that the server handled were under 8 Kbytes as shown

180 1998 00O WIDE 000

tex07 " ENMA ——
le+06 | 1 08 |
100000 |
3 L 06
€ 10000 m
2 i ©
g 1000} (i 04l
. N
100F /|
J 0.2}
10 B/]
ol] 0

100 1000 10000 10000

1 . . . i
0.001 0.01 0.1 1 10 100 1000 10000100000 . .
object size(bytes)

Connection Continuation Time(sec)

0 4.6: The frequency distribution of [4.7: The cumulative distributed func-
Connection Continuation Time tion of the WWW objects

in Figure 4.7, a single write() system call in the WWW server can put entire data of each
WWW object into the socket buffer. Therefore, the server can process each HT'TP request
around 1 millisecond; the sequence of system calls * for request handling are processed and
terminated immediately. T'c¢ obtained from the log file by the WWW server means that
the connection continuation time for each HI'TP connection in the application layer.

On the other hand, Tc by ENMA includes the HTTP request processing plus its con-
nection establishment and shutdown procedures in TCP layer. These requires at least 3
RTT. In other words, Tc derived by ENMA is the connection continuation time in the
TCP layer. Therefore, the results reveal the differences.

The analysis on the number of concurrent connections (Nc) is shown in Figure 4.8 and
4.9. Since T'c by the WWW log file is different from one by ENMA, the analysis of Nc
is also different; from the WWW server log file, 550 connection is in the peak, however,
13,000 connections were observed by ENMA.

As our results, therefore, the analysis through ENMA is more accurate than the result
through the performance analysis on the WWW server’s log files. Our result is more helpful
to design and/or improve the network where the WWW server is located.

4.5.2 Case 2: Slow WWW servers

We conducted the other experiment for testing the performance measurement of the
WWW server. As mentioned in Section 4.3, both the Response Time (7r) and the Con-

!In the Apache server, each HTTP request is processed through the sequence of system calls : accept()
for establishing the HTTP connection, read() for read HTTP request from the socket, write() for sending
the WWW object, and close() for shutting down the connection.

U 40 gboodoobbbbobbbbboodobbo 181

15000 T T T T 600

2 2
2 S
g 10000 B 400
c c
c c
3 3
5 5
&8 5000 | 2 200t
€ 1S
=] =]
c c

0 : : : : 0 b : :

0 20000 40000 60000 80000 0 20000 40000 60000 80000
time(sec) time(sec)

O 4.8: The number of concurrent con- O 4.9: The number of concurrent con-
nection by ENMA log nection by WWW server log

nection Setup Time (T's) are expected as indices to reflect the performance of the WWW
server.In this case study, we tried to confirm these value can be used as performance indexed
of WWW server.

System Configuration

In this case study, we setup two WWW servers in our laboratory: the Apache [120] server
running on Prntium IT 200 MHz processor and one of the 80486DX2 66 MHz processor.
The operating systems for these servers are FreeBSD 2.2.7. The benchmark software we
developed is configured with the other system connected to the same network segment
where the WWW server is located. The benchmark software is quite simple; the program
tries to access several WWW objects on the WWW server at random. In this case, we

measured Tc, Ts, and Tr for 10,000 accesses.

Results
Figure 4.10,4.11,4.12 show the results of our measurements. By these three graphs, we

can easily read the differences on the performance between the WWW server on Pentium
IT and one on 80486DX2 66MHz. Our ENMA system can show the differences of WWW

server’s performance easily.

4.6 Discussions

We designed and implemented the ENMA system as discussed in the previous sections.
However, our system is a kind of “alpha version” of the products. It is obvious that there

are several limitations on our system as well as some extensions to improve our system.

182 1998 00O WIDE 000

3000 .
Pentiumll ——

Fentiumll ——
400 1
2500

2000

1300

Frequency
]
(=]
Frequency

1000

100 f b
800

\n, ' i\
A
L i] | R 1
1 1

f
n.ood 0.0 0.1 1 i0
Connection Continuation Time(sec)

0.
Connection Setup Time(msec)

0 4.10: The frequency of the connection 0 4.11: The frequency of the connection

continuation time setup time
350 -
Pentiumll ——
300
250
EE 200
]
8 150}
L
100
50
i L e

0
n.om 0.0 0.1 1 10
Respaonse Time(10msec)

0 4.12: The frequency of the response

time

4.6.1 Technical Issues

Dropping the packet through monitoring is a significant technical issue. Because of the
design of ENMA system, dropping the packet at the monitoring may cause large influences
on the performance analysis. Currently, the ENMA tries to grab all the packets as much as

possible, however, there may be several packets dropped. There are solutions for decreasing

the number of dropped packets:

e Using a faster computer with more memory as our ENMA system may improve the
ENMA itself, however this solution cannot be used for any situations such as ENMA
hooked up to Gigabit Ethernet or other higher bandwidth networks.

e Developing a new implementation of ENMA on lighter operating system such as

DOS is possible solution. In general, the packet monitoring using UNIX operating

U 40 gboodoobbbbobbbbboodobbo 183

systems cause several problems in the case we apply them to the multi hundreds
Mbps or more broadband networks. With this reason, the OC-3 packet monitoring
tool called “OC3MON” [18] for example is implemented on DOS because of several
considerations on OS overhead. Therefore, if we apply the ENMA to the Gigabit
Ethernet or other high speed LAN, we have to re-implement ENMA on other lighter
OS platforms.

The tracking down the sequence number in TCP header is the other technical issue. In
the current implementation, ENMA does not handle the sequence number. Since changing
the packet order may cause serious penalty on TCP performance, it is the better to track
the sequence number in the TCP header.

The measuring the number of request rejected in TCP layer is the other technical issue.
With the heavy loaded WWW server, some SYN packets are once received by the WWW
server system but rejected at TCP layer. These phenomena is frequently observed at heavy
loaded servers. It is better to monitor these phenomena by ENMA to allow the system

managers to know if the system is saturated.

4.7 Concluding Remarks

In this paper, we describe several reasons why the new method for measuring the per-
formance of the WWW server is required. Our proposed method is based on the packet
monitoring to reveal all the behavior of the WWW server and derive several performance
indices through the monitoring. The method has been implemented as our ENMA system.
The ENMA can measure performance indices such as Connection Setup Time, Connection
Continuation Time, The Number of Concurrent Connections, etc. As mentioned in Section
4.5, we applied ENMA system to several WWW servers and confirmed the efectiveness of

its implementation.

184 1998 00O WIDE 000

