
第 4部

ネットワークトラフィック統計情報の収集
と解析

151

第 1章

MAWIワーキンググループ

MAWI(Measurement and Analysis on the WIDE Internet)ワーキンググループは、トラ
フィックデータの収集と解析、また、データの保存と利用に関する活動を行なっている。
回線利用率やプロトコルの分布を示すマクロなトラフィックデータは、故障や問題の検

出を容易にし、バックボーントラフィックの傾向の分析に役立つと同時に、ネットワーク
機器選定や将来のバックボーンの構成、容量設計に欠かせない重要なデータである。
一方、パケットトレースに代表されるミクロなトラフィックデータは、生の記録をもと

にさまざまな情報を抽出することが可能であるため、プロトコル設計、トラフィック理論
をはじめ、あらゆるネットワーク研究にとって貴重なデータとなる。その反面、生データ
にはユーザのプライバシ情報も含まれるため、取り扱いには十分な注意が必要とされる。
現在、MAWIワーキンググループでは、パケットトレースをより有効に利用するため、

プライバシ情報をスクリーニングした、安全に取り扱えるトレースデータの作成を実験中
である。また、これと並行して、複数のサンプリングポイントでの定期的なトレースデータ
の収集、収集したデータをアーカイブするサーバの設置、収集データを自動処理するツー
ルの開発等を進めている。
今回の報告書では、まず、第２章で従来から継続的に行なっている国際線トラフィック

の統計データを示す。
第３章では、（株）KDD研究所との共同研究として行なっている、WIDE国際線のパケッ

トトレース収集について報告する。本研究では、パケットトレースに求められる情報とユー
ザプライバシーの保護について考察し、1999年 4月現在稼働中の実験システムの構成と実
装の詳細、今後の課題について論じる。
第４章では、パケットトレースをもとにウェブサーバの性能解析を行なう手法について

報告する。ウェブサーバの性能評価には、アクセスログをもとにした解析やベンチマーク
を用いた評価が一般的であるが、ここではそれらの問題点を上げて、パケットトレースか
ら実働中のサーバ性能の評価を実現する手法を提案している。本手法を用いて、1998年夏
の甲子園大会のウェブサーバの評価を行ない、ログからの解析と比較した結果と、実験室
環境において異なる CPU性能のサーバを評価した比較結果を示す。

153

第 2章

WIDE国際線のトラフィック

2.1 プロトコル別トラフィック

国際線のトラフィックは、WIDE藤沢NOCとWIDEサンフランシスコNOC間の 1.5Mbps

の国際回線上を通るトラフィックを NNStatを用いて計測した。
表 2.1は、各 IPプロトコルについて、月毎のトラフィック量を 1日当たりで平均したも

のである（単位：キロバイト）。各月ごとに、IN の行は国外から国内に向かうトラフィッ
ク、OUTの行は国内から国外に向かうトラフィックをそれぞれ表している。回線利用率は、
1.5Mbpsの国際回線を用いて 1日に送信できる総トラフィック量に対する、各月の 1日平均
のトラフィック量の割合を求めることにより算出した。図 2.1、図 2.2は、表 2.1をもとに、
国外から国内に向かう平均トラフィック量の推移、国内から国外に向かう平均トラフィック
量の推移をそれぞれグラフ化したものである。
過去 6ヵ月間、月の平均トラフィックが双方向とも頭打ちとなっている、また回線利用率

をみると、国外から国内に向かう方向では、最も利用率が大きい月は 2月で 95.80%、国内
から国外に向かう方向では、最も利用率が大きい月は 1月で 52.52%となっている。利用率
の算出に用いたのが 1日平均のトラフィックであることを考えると、非常に高い利用率で
あるとみなすことができるとともに、定常的に混雑した状況であるといえる。
プロトコル別では、国外から国内に向かう方向では TCPが 94%程度、UDPが 5%程度、

ICMPが 0.5%となっている。国内から国外へ向かう方向では、TCPが 80%程度、UDPが
14%前後、ICMPが 3%となっている。

2.2 TCPポート別トラフィック

表 2.2は、TCPポート別の 1日あたりのトラフィック量の推移をキロバイト単位で表し
たものである。各アプリケーションによるトラフィックは、HTTPによるトラフィックに圧
迫され、それぞれの割合は漸減している。その傾向は、国外から国内向きのトラフィック
で顕著であり、HTTPの割合は 1998年 10月以降 89.79%から 1999年 2月には 92.37%ま
で増加しており、ほとんどすべて HTTPと言えるような状況である。HTTP以外では各ア
プリケーションの占める割合は大きく変化しているわけではない。国内から国外向きのト

154

第 4部 ネットワークトラフィック統計情報の収集と解析 155

表 2.1: 国際線のプロトコル別トラフィック
月 ICMP IGMP IP/IP TCP UDP Other 合計 回線利用率

IN 329,951 25 2,683 12,463,100 498,962 2,225 13,296,945 80.16%
10

OUT 135,943 3,181 220,332 7,357,451 991,102 4,860 8,712,869 52.52%

IN 136,309 8 1,066 13,974,592 531,916 3,468 14,647,359 88.30%
11

OUT 228,910 3,551 32,121 4,340,201 684,084 7,445 5,296,314 31.93%

IN 128,518 37 1,655 13,175,282 909,425 952 14,215,870 85.70%
12

OUT 233,012 639 362 4,542,933 628,546 6,897 5,412,390 32.63%

IN 94,698 9 1,120 12,603,517 877,611 2,817 13,579,772 81.86%
1

OUT 229,221 584 4 5,228,291 1,128,247 10,478 6,596,826 39.77%

IN 90,185 11 643 14,794,601 1,003,207 3,007 15,891,653 95.80%
2

OUT 98,428 585 74 5,172,307 1,212,621 12,180 6,496,194 39.16%

IN 166,186 51 394 14,113,927 611,115 2,924 14,894,596 89.79%
3

OUT 59,502 502 640 4,700,636 775,790 11,422 5,548,492 33.45%

other

IP/IP

IGMP

ICMP

UDP

TCP

month

10 11 12 1 2 3

av
er

ag
e

da
ily

 t
ra

ff
ic

 (
K

B
)

0

5000000

10000000

15000000

図 2.1: 国外から国内向けのプロトコル
別トラフィック量推移 (1日平均)

other

IP/IP

IGMP

ICMP

UDP

TCP

month

10 11 12 1 2 3

av
er

ag
e

da
ily

 t
ra

ff
ic

 (
K

B
)

0

2000000

4000000

6000000

8000000

図 2.2: 国内から国外向けのプロトコル
別トラフィック量推移 (1日平均)

ラフィックは逆の方向と比較して、その 3割程度の量となっている。そのうち、SMTPが
安定したトラフィック量となっているのに対して FTP-Dataは漸減傾向にある。
図 2.3、図 2.4は、表 2.2をグラフ化したものである。HTTPのトラフィックがかなりの高

い割合を占めていることがわかる。言い替えると他のトラフィックは極めて少なく、また
はないに等しいような状態であると言える。過去の報告書で問題とされていたOthersに分
類されるトラフィックは 0.4%前後と極めて少ない。

2.3 UDPポート別トラフィック

表 2.3は、UDPポート別の 1日あたりのトラフィック量の推移をキロバイト単位で表し
たものである。また、図 2.5、図 2.6はそれをグラフ化したものである。

156 1998 年度 WIDE 報告書

表 2.2: TCPポート別トラフィック
HTTP FTP-Data SMTP NNTP FTP Telnet BGP DNS Other

IN 8,932,501 583,529 379,825 13,671 11,099 4,421 4,110 11,255 7,423
10

OUT 4,144,762 412,762 590,093 14,219 13,902 8,386 4,568 10,953 19,176

IN 10,834,400 644,581 418,947 21,699 18,000 3,005 4,174 3,659 7,713
11

OUT 2,456,969 194,010 497,701 11,057 7,419 4,093 4,499 10,380 15,233

IN 10,395,740 645,392 453,677 24,084 24,381 6,835 4,272 7,272 6,362
12

OUT 2,622,526 433,333 494,013 10,144 9,176 4,573 4,935 10,652 17,773

IN 9,878,288 579,585 347,272 22,955 24,129 3,162 4,177 2,380 6,621
1

OUT 3,159,791 379,829 449,655 9,794 7,665 6,750 4,681 12,331 16,315

IN 12,587,621 380,992 417,261 16,892 27,825 3,854 4,019 1,170 6,040
2

OUT 3,010,192 253,665 502,570 7,853 8,366 6,214 4,077 13,420 17,800

IN 11,661,245 501,315 398,994 20,975 27,515 4,234 4,291 1,030 5,221
3

OUT 3,208,628 142,337 528,608 7,277 8,977 4,525 4,721 12,925 16,339

other

DNS

BGP

Telnet

FTP

NNTP

SMTP

FTP−DATA

HTTP

month

10 11 12 1 2 3

av
er

ag
e

da
ily

 t
ra

ff
ic

 (
K

B
)

0

5000000

10000000

図 2.3: 国外から国内向けの TCPポート
別トラフィック量推移 (1日平均)

other

DNS

BGP

Telnet

FTP

NNTP

SMTP

FTP−DATA

HTTP

month

10 11 12 1 2 3

av
er

ag
e

da
ily

 t
ra

ff
ic

 (
K

B
)

0

2000000

4000000

図 2.4: 国内から国外向けの TCPポート
別トラフィック量推移 (1日平均)

どちらの方向に関しても DNSによるトラフィックが相変わらず多く、97%前後までを占
めるようになっている。このような状況では、TCPの場合と同様に、Otherに分類される
トラフィックも他のアプリケーションのトラフィックと同様に極めて少ない割合を示すよう
になってきている。

2.4 まとめ

WIDEの国際線である藤沢-サンフランシスコ線は極めて高い回線利用率となっており、
結果として、TCP・UDPともに HTTPおよび DNSといった特定のアプリケーションのト
ラフィックが他の追随を許さずむしろ圧迫しているような状況になってきている。
これから行われる国際回線の増強に伴う高速化・広帯域化によって、トラフィックの状

第 4部 ネットワークトラフィック統計情報の収集と解析 157

表 2.3: UDPポート別トラフィック
DNS AFS NTP SNMP Other

IN 232,522 39,307 488 105 63,292
10

OUT 829,757 12,660 3,007 2,886 24,795

IN 345,010 25,571 454 68 3,687
11

OUT 548,368 14,274 1,404 177 9,042

IN 766,316 23,781 756 90 4,804
12

OUT 544,096 7,602 1,642 2,016 9,710

IN 722,753 15,015 577 201 10,145
1

OUT 1,044,950 4,320 1,654 2,714 10,559

IN 763,869 9,239 435 240 8,732
2

OUT 1,015,137 4,008 1,533 288 9,296

IN 479,947 6,875 551 169 2,873
3

OUT 641,749 3,194 1,754 138 12,575

other

SNMP

NTP

AFS

DNS

month

10 11 12 1 2 3

av
er

ag
e

da
ily

 t
ra

ff
ic

 (
K

B
)

0

200000

400000

600000

図 2.5: 国外から国内向けの UDPポート
別トラフィック量推移 (1日平均)

other

SNMP

NTP

AFS

DNS

month

10 11 12 1 2 3

av
er

ag
e

da
ily

 t
ra

ff
ic

 (
K

B
)

0

500000

1000000

図 2.6: 国内から国外向けの UDPポート
別トラフィック量推移 (1日平均)

態がどのように変化するかを注目して分析することが必要である。
また回線の有効利用という点から、ICMPや DNSなどトラフィックに多く含まれる crack

と思われる無駄なトラフィックをバックボーン上から排除していくことも重要である。特
定の IPアドレスからのトラフィックが全体の数%にも及ぶという状況 (通常のトラフィック
は全体の 0.1%にも満たない通信が大部分)が日々見られる。今後はこれらを対象とした分
析も必要となる。
これまで使用している NNStatは歴史の長いトラフィック収集のアプリケーションソフ

トウェアであるが、収集の設定に自由度、柔軟性が高く、未だに十分な基本機能を有して
いる。今後のトラフィック収集解析においてもNNStatの長所・短所を検討し改良しつつ利
用して行きたいと考えている。

第 3章

An Internet Tra�c Data Repository

3.1 Introduction

Currently, many issues regarding the quality of services or Internet tra�c models such

as RSVP [27, 133], Di�Serv [23, 95], are under evaluation. However, it is di�cult to verify

these tra�c models and service models based on the actual network tra�c data which is

commonly accessible and to analyze these models with su�cient detail. After taking into

account the current issues involved in tra�c data capturing, this paper suggests a method

for supplying actual tra�c data in order to evaluate these models.

The �rst commonly used tra�c data were captured on October 3rd, 1989 at the Bellcore

Morristown Research and Engineering Facility [79]. The data �les were in ASCII format,

consisting of one 20 byte line for each arriving Ethernet packet. Each of these lines con-

tains a
oating point time stamp and an integer length representing the Ethernet data

length in bytes. The time expressed to six places after the decimal point was intended

to the appearance of microsecond resolution. Timestamps however, are only accurate in

milliseconds due to the actual resolution (4 microseconds) of the hardware clock, jitter in

the inner code loop, and bus contention.

The next generation of tra�c data collections were based on the tcpdump program. Here,

V. Paxson and S. Floy gathered two to four hours of such tra�c at Digital's primary Internet

access point on March 1995. The raw traces were made using tcpdump on a DEC Alpha

running Digital's OSF/1 operating system which includes a kernel �lter with capabilities

similar to those of BPF. Sanitize script was used which renumber hosts and strip out packet

contents in order to address security and privacy concerns. Timestamps have millisecond

precision even though they are reported in �gures using six digits past the decimal point

[103]. The several independent data collections have been made based on almost the same

method. Some of these data addressed speci�c protocols such as HTTP.

The ever increasing amount of Internet tra�c is forcing each Internet service provider or

ISP to analyze whether or not their network resources are su�cient to maintain customers'

satisfaction. The previous tra�c data addressed speci�c protocols or applications and

158

第 4部 ネットワークトラフィック統計情報の収集と解析 159

did not re
ect all tra�c through each ISP. The data should however, give us information

on any application or protocol at any time. The need to capture all packets also arises

from requirements of other approaches such as an academic research community studying

mathematical models of Internet tra�c.

We introduce a new method to create a database which contains actual tra�c data

holding su�cient amounts of information to allow analysis of end-to-end characteristics of

Internet or intranet tra�c without exposing the users' privacy. The required data to be

captured will be described as well as the format of the resulting database.

3.2 Tra�c Data Repository

Under the current operation environments for the Internet, monitoring at intermediate

nodes is usually done by SNMP [30] related query tools to see a simple set of metrics,

such as utilization rates, packet discard rates, etc. for transmission links. This kind of

parameters have an advantage to be monitored without any stress on the networks. The

tra�c data repository, which is also monitored without any stress on the networks, is

intended to provide the operators with more information on the networks to investigate

their services.

3.2.1 Requirements for Tra�c Data Repository

Currently accessible tools and data possess several inherent problems associated with

modeling and simulations of Internet or intranet tra�c. Publicly available tools and public

databases with su�cient information based on impartial evaluation measure might serve

to encourage this type of research.

There are two issues to be considered in tra�c data repository. The �rst problem is

the measuring locations. The current �elds of research, such as management of quality of

service on the Internet, require end-to-end
ow analysis. This means that measuring at

an intermediate node will not be su�cient for analyzing end-to-end tra�c. Although the

currently used intermediate monitoring node is inadequate, it is still the only way for an

Internet service provider to determine service quality and therefore an essential task.

The second problem is to what extent to make measurements at intermediate nodes in

order to monitor or study the tra�c later on with as much information as possible. Other

factors that must be considered are the time precision, amount of data to be recorded for

each packet as well as hiding private information from the measured tra�c data before

making this data available for public use.

After all, the following requirements must be satis�ed:

160 1998 年度 WIDE 報告書

図 3.1: Required Timestamp Precision vs. Packet Transmission Speed of IP Layer

1. All packets must contain as much information as possible.

2. User privacy must be assured.

3. Timestamps must have adequate precision.

Time precision is a critical for performing analysis in the future on the Internet. The

current speed of the major Internet backbones is increasing from 156Mbit/s or 622Mbit/s

to 2.4Gbit/s. It is further assumed that a backbone with a speed in tera bits per second

will be attained within a few years. Since the shortest IP packet is an IGMP packet of 28

bytes long, the minimum timestamp precision must be equal to the resolution to distinguish

this packet from others. This resolution is on the order of 28*8/S where S stands for the

packet transmission speed in bit/s over the IP network layer. Figure 3.1 shows the current

millisecond precision of timestamps will only be adequate for 100kbit/s IP transmission

lines. Future tera bit per second line monitoring will require 3.68E-10 seconds of precision.

3.2.2 Modes of Tra�c Data Capturing

We categorize tra�c capturing into two methods or modes, namely stateless and statefull.

Stateless capturing means a record of a packet does not depend on the previously captured

tra�c data or packets. Processing to make a tra�c data is only done over the information

provided by the current packet. Most of the currently available tools, such as tcpdump, are

第 4部 ネットワークトラフィック統計情報の収集と解析 161

based on this packet-by-packet scheme. Statefull capturing on the other hand records the

information of a packet based on the previously captured packet records. Every capturing

based on identifying
ows is considered as a statefull capturing. Statefull capturing will be

required to compress the captured data with TCP header compression [71], RTP header

compression [31], etc.

Two advantages are known for stateless capturing. Firstly it is simple and does not

require a heavy processing overhead on a capturing machine. Secondly there is no need

to predetermine what higher layer protocols are running through the observed node since

capturing information is uniform for every IP packet. A disadvantage is that it is theoreti-

cally necessary to record entire packets to analyze the tra�c. This requires a large amount

of disk space and also a high speed recording facility for capturing to follow the link speed

which is assumed to be Gbit/s or higher.

On the other hand, statefull capturing is based on the
ow analysis to decide the recording

part of the IP payload and to compress the amount of data. The advantage is that it

requires less disk space and a moderate speed of recording facility, with the introduction

of a high processing overhead for the
ow identi�cation, tracing state transitions of higher

layer protocols, data compression, etc. In addition to these disadvantages, it is assumed to

have a prerequisite knowledge of the captured protocols. Since the evolution of the Internet

protocols and applications is very fast, it is very di�cult to predetermine all the protocols

used in the tra�c through the observed node.

3.3 Data Format

Our current implementation is based on stateless approach. Two data formats to record

tra�c traces are supported in the system. One is a 24byte �xed format for a captured

packet as shown in Figure 3.2. This includes timestamp in 64bit attached by the BPF

driver followed by IP source and destination address in 32bit each, total length in 16bit,

protocol in 8bit copied from the IP header. Other �elds in the IP header are just ignored.

There are one
ag byte and two 16bit �elds as well. The
ags byte is copied from TCP

ags when appropriate. The two 16bit �elds are used to represent source and destination

port number for TCP or UDP, and type and code for ICMP. Some types of ICMP messages

include IP headers of target IP datagrams as well as �rst 64bits of the payloads In this

case, another 24byte record is used to represent the target IP datagram with clearing its

timestamp �eld. This format is intended to make the record small. So monitoring on a

higher speed network would be possible.

The other format supported in the system is shown in Figure 3.3, which is compatible to

PCAP library [86]. This format is not so compact, however, several well-known tools such

162 1998 年度 WIDE 報告書

32 bit destination IP address

32 bit source IP address

16 bit total length (in bytes)8-bit protocol

64 bit timestamp

16 bit source port number16 bit destination port number

0 15 16 31

24 bytes

U

R

G

R

S

T

F

I

N

S

Y

N

P

S

H

A

C

K

Compressed data format

図 3.2: Captured Data in Compressed Format

32 bit captured data length

32 bit packet length

64 bit timestamp

0 15 16 31

16 bytes

PCAP compatible data format

IP Header (20 bytes)

MAC Header

IP options (if any)

ICMP Header (+ 64 bits of target packet header if applicable)

or

TCP Header + TCP options if any

or

UDP Header

 120 bytes

(max)

図 3.3: Captured Data in PCAP Format

as tcpdump can be used with the format. To save the amount of data and not to record

user data, only IP headers (with options if any), TCP headers (with options if any), UDP

headers, and ICMP header (with initial 64bit of target datagram payload where appricable)

are recorded. Each record of the format is not of the �xed length. As TCP options are

recorded with this format, it is suitable for TCP oriented analysis.

As for UDP packets, RTP is now popular to be used over UDP. RTP packets have data

re
ecting end-to-end throughputs for UDP applications, and RTP as well as TCP packets

are very important to capture to understand end-to-end service quality. Since it is very

di�cult to identify an RTP packet based on the UDP payload of the corresponding packet,

Statefull capturing is required to identify RTP packets. When speci�ed in an option, the

program records the �rst 20bytes of UDP payload for this purpose.

第 4部 ネットワークトラフィック統計情報の収集と解析 163

tape device

BPF

ntap tapemonfile system 1

file system 2

図 3.4: Structure of Capturing Software

3.4 Software Structure

The paper then considers the architecture and the design policy of a new tra�c data

repository tool to solve the above problems, describing what parts of IP headers and data

must captured, what timestamp required for what data, etc.

A data compression method for these captured data is also investigated to reduce the

total disk space and to increase the capture speed. The end user's privacy resides in IP

address and port number. This paper further presents an e�ective address scrambler based

on the network interface and the address classes and also shows a naive address scrambling

scheme having a security hole.

As the system intends to capture tra�c data over long period with limited storage

resources, it writes captured data to the �le system while background process copies the �le

to the cartridge tape. Providing the change operation of the tape media, with a mechanical

autochanger or with timely operator assistance, the system can capture the tra�c data for

any period, virtually.

The system consist of two processes as shown in Figure 3.4. ntap process captures the

tra�c through a BPF, converts the data to an appropriate format, and writes the data

to the �le. ntap is con�gured with a list of �le system. When ntap changes the �le to be

output periodically, for example, once an hour, it checks the remaining space of the current

�le system. If necessary, it changes next available �le system.

Another process tapemon checks each �le system periodically. When the growth of �le

system utilization stops, tapemon assumes that ntap program writes to another �le system.

After a few minutes, tapemon dumps the �les in the non-working �le system to the tape.

Before the tape is exhausted, tapemon rewinds the tape and send a noti�cation to the

operator via email.

The software runs on BSD/OS operating system version 3.1 and 4.0. As the system

dependent feature the system assumes is only BPF interface, the software can be easily

ported to other BSD
avored Unix. In order to avoid access collisions, distribution of SCSI

attached devices (hard disks and tape drives) to di�erent SCSI buses is important. In

order to eliminate BPF bu�er overruns, it is necessary to make BPF bu�er size larger. The

default maximum size of BPF bu�er size in BSD/OS was 32kB. This number has been

164 1998 年度 WIDE 報告書

compiled into the BSD/OS kernel and recompilation of the kernel after changing this into

at least 256kB is necessary.

As the Unix operating system is not a realtime operating system, non-blocking close()

system call is not supported. We observed BPF bu�er overruns may happen when we

switched the output �le. This is because there may be large amount of un-
ushed data

in the kernel bu�er and close() requires
ush the data �rst. A technique to avoid this is

to delay �le close operation for a few minutes so that update daemon may perform sync()

system call to
ush the data to the disk asynchronously.

When the captured data is exported, we need to encrypt any �eld related to the users'

privacy. When we randomizing the IP addresses in the captured data, following rules may

apply:

� Need to keep one-to-one mapping, i.e., once a address addr1 is mapped to addr2, any

occurrence of addr1 in the raw captured data should be mapped to addr2.

� Multicast addresses are mapped to multicast addresses.

� Private addresses, Class E addresses, and loopback address are not mapped.

� Use a random number generator to map the addresses.

� Checksum �elds in TCP or UDP headers are cleared.

� IP headers in ICMP payload are also a subject of address mapping. Furthermore,

the initial 64bit of the target datagram of an ICMP message should be removed if it

is not TCP header nor UDP header.

3.5 Experimental Capturing

The rest of the paper is devoted to issues regarding implementation of this repository tool

for BSD UNIX. The data format of captured tra�c is also described. Field experiments

with this tool were performed at a network operation center of WIDE, a Japanese academic

network, for two months. As the WIDE Internet has two international links, we run a

capturing system for each international link.

The con�gurations of the capturing systems are shown in Figure 3.5. The gateway

system to the international link consists of two routers connected by a shared ethernet. A

capturing system is attached to the ethernet to monitor the international tra�c. A system

for a T1 link is equipped with a Pentium-II 333MHz, two 9GB WIDE-SCSI disks, and a

DDS3 (capacity is about 15GB for the captured data) tape drive on another SCSI bus.

第 4部 ネットワークトラフィック統計情報の収集と解析 165

図 3.5: Con�guration of Experimental Network for Tra�c Capturing

For another link of 1.9Mbit/s bandwidth, a system with a Pentium-II 400MHz, two 18GB

WIDE-SCSI disks, and an AIT drive (capacity is about 45GB) is assigned.

In order to check the ability of the system, a similar system with single 9GB WIDE-

SCSI disk and a FDDI interface is tested on a backbone FDDI network of the University

of Tokyo. While the peak tra�c exceeds 20Mbps, the system reports no dropped packet at

BPF layer over more than 10 days with an even worse condition where ntap and tapemon

access �le systems on a single disk.

The cumulative distribution of the packet length for the data captured from 11:00:00 to

12:00:00 on Feb. 22, 1999 is shown in Figure 3.6. According to this data, the average of

the packet length is 361 byte long, and the top two lengths, namely 40 and 1500 byte, are

observed to occupy 41% and 14% of the total number of packets. Packets of 1500 byte long

are notable in our traces. This may re
ect a popular usage of the applications like Web or

FTP in the current Internet. Of course, the characteristics of our traces are very di�erent

from the Bellcore' results [79], but further investigations will be necessary to compare ours

with other traces.

In the middle of this experiment, the bandwidth of the latter international link was

increased from 1.9Mbps to 10Mbps. Hence the resulting data contain a history of the

network behavior from a heavily congested state to a normal state. Some data analyses of

the captured tra�c are also presented.

166 1998 年度 WIDE 報告書

0

10

20

30

40

50

60

70

80

90

100

0 200 400 600 800 1000 1200 1400 1600

図 3.6: Cumulative Distribution of the Packet Length for the Captured Data

図 3.7: Extension of ntap to State-full Capturing

3.6 Discussion and Future Directions

Although the current version is a state-less capturing system, we present a block diagam

of our future state-full version in Figure 3.7 to show that state-full capturing for a giga bit

network will be possible without any disk access bottleneck, using a conventional SCSI disk

drive. The three modules,
ow identi�er, host address scrambler and header compression

need not to be a single process nor run on a single processor.

The �rst module,
ow identi�er, must follow a state diagram of each protocol to identify

each
ow. At a gateway router, a number of
ows will exist to be processed and some of

them may be terminated abnormally. The latter will increase the vertual number of
ows

to be processed. These cause a task of
ow identi�cation to be expensive.

第 4部 ネットワークトラフィック統計情報の収集と解析 167

After the
ow identi�cation, host address scrambling is applied to each packet, which

renumber hosts in order to address security and privacy concerns. This scrambling can be

eliminated if the operator wants to do his job with the actual host addresses.

Then at the next stage after making a secure IP header, the TCP [71] and the RTP

header compression [31] can be applied to all the TCP and RTP packets, which reduces 40

bytes of IP and TCP header into 3 bytes, and also 40 bytes of IP, UDP and RTP header

into 2-4 bytes in average. This means only 8 bytes of time stamp, 2 bytes of
ow ID, 2

bytes of data length, and 2-4 bytes of header data will be enough to record for each packet.

A record of 14-16 bytes for each packet with an average packet length of 361 bytes, solves

the disk access bottleneck.

Assuming 90% of the Internet tra�c is TCP based applications, it may be possible

to capture IP packets through a datalink up to 2.3Gbps with disks attached to Ultra2

SCSI or Wide Untra2 SCSI, assuming that the average sustained transfer rate is around

12MB/s. Thus the disk access speed is not the bottleneck of capturing packets on gigabit

networks. There is, however, a signi�cant processing overhead for
ow identi�cation and

header compression . Specialized hardware devices or parallel processors will be required

for this purpose.

All output lines are preceded by a timestamp. The 64 bit timestamp means that the

maximum observation period will be 213.5 days, measured from the start of capturing,

even if the time precision of one bit is as small as 1.0E-12 second. This is su�cient for

monitoring IP tra�c over future links at tera bit/s speed. There is, however, a limitation

on our current implementation. Firstly, the timestamps attached by the BPF driver in

the UNIX kernel is of struct timeval. This time value is not started from the beginning of

the capturing but is measured between Jan. 1, 1970 and 2038 in the precision of 1 micro

second. Although the clock data returned from this function is 64 bit long, the timestamp

for the current clock time is as accurate as the kernel's clock, that is the order of micro

second. Further more the timestamp re
ects the time the kernel �rst saw the packet. There

is some time lag between when the network interface received the packet from the wire and

when the kernel serviced the `new packet' interrupt. Because of these factors, the accuracy

of timestamp is restricted to the order of several milliseconds.

To overcome this problem, specially designed network interfaces must also be developed

for timestamps. These interfaces must have a function to attach by themselves a timestamp

to each received packet or frame with the nano or pico second order of precision counted

from the beginning of capturing.

A notifying usage of the resulting traces is to estimate the amount of the exchanged

information through the target node. There have been many evidences on the asymmetric

tra�c between the US and Japan, based on the inbound and outbound packet data on the

gateway routers, but there has not been a further detailed analysis on this fact. Assuming

168 1998 年度 WIDE 報告書

the side to initiate the connection receives the valuable information, which is usually the

case for TCP based applications like FTP, TELNET, Web accesses, etc., we can estimate

what amount of information is transferred to which direction during the observed period.

The procedure is very simple. We just have to identify which side �rst sends a TCP packet

with a SYN
ag.

3.7 Conclusion

We present a method to create a database containing real tra�c data, which has su�cient

information to analyze the end-to-end characteristics of Internet or intranet tra�c without

disclosing private end user information. Our current version of a program running on

UNIX implements these features. As we mentioned in the earlier discussions, 　some

improvements for capturing performance and functionality will be required for our program

to be used for links faster than our experimental links. Although far from an ideal tool

in terms of capture speed, it has been used to make traces of WIDE Project tra�c since

January 23, 1999 at Internet gates. All the processed traces are intended to be public and

will be uploaded to our FTP server after completing the current experiment.

第 4章

A WWW Server Performance Measurement

System

4.1 Introduction

In the operation of WWW services, the quality of service is now a �rst priority. Ad-

ministrators of WWW services have to know how their services are working, and try to

maintain their services to ful�ll the service subscribers' requests as much as possible. In

order to improve the quality of the WWW servers technically, their operators want to

aware any changes on the performance indices such as the average and peak numbers of

HTTP [53] requests rate, the storage usages of both physical memory and disks, and the

amount of total tra�c for the services. Through watching these performance indices, the

operators can decide the way of improvement on WWW servers. However, measuring the

performance of the WWW servers is quite hard because of several reasons;

� The WWW servers are ordinarily implemented as application-level programs running

on several computer platforms so that many factors can make in
uences on the server

performance.

� The WWW servers that the operators want to know their performance are likely to

be working as a \running" system, so that suspending their service only for making

benchmark or other performance measurement is almost impossible.

� There are few tools and utilities that can be used for performance evaluation and

tuning of the WWW servers.

As the result, the administrators have to manage their servers only with their intuitions

and experiences. This may cause several di�culties on the performance tuning. Therefore,

the administrators are willing to have several performance indices how the WWW server

su�ciently processes users' requests.

169

170 1998 年度 WIDE 報告書

WWW Server

logging data

files

memories
TCP

IP

Data Link

Socket

(1) Statical Analysis on
 Activity Logging Data

(2)Kernel-Level
 Monitoring

(3)Benchmarks
(4)Customer Survey

Kernel

Internet

図 4.1: Several ways to measure the performance of WWW servers

The goal of our work discussed in this article is to develop a powerful performance

measurement tool called \ENMA" for the WWW servers. As mentioned above, the perfor-

mance measurements through the benchmark or any mechanisms installed inside the server

itself are not practical for applying them to \running" WWW servers. Our approach is,

therefore, to make performance measurement through the packet monitoring. Its funda-

mental idea is to observe the behavior of WWW services from outside, and estimate several

performance indices.

4.2 How Can We Know the WWW Performance?

Several ways to measure the performance of WWW servers have been developed so far:

(1) log data analysis, (2) kernel level monitoring, (3) benchmarks, and (4) customer survey

(see Figure 4.1).

In the method (1), the statistical analysis is applied on the activity logging by WWW

servers. This is a popular way to know the performance of WWW servers. Almost all of the

servers can generate various types of activity logging data as their log �les. The statistical

analysis of these log �les allows us to know the behavior of WWW servers such as the

number of accesses, clients' access patterns, the request processing time, etc. However, this

kind of analysis cannot provide any hints on behaviors that the WWW server invokes inside

the OS kernel such as its memory consumption, the number of disk I/O, the frequency of

the network accesses, etc.

To solve this issue in the method (1), the kernel level monitoring, as the method (2), is

第 4部 ネットワークトラフィック統計情報の収集と解析 171

frequently used. One of the popular ways in many UNIX operating systems is to use a utility

ktrace to monitor the WWW server. With this utility, most of the kernel level behavior

including system calls, I/O, signal processing, and �le system operations can be revealed.

With the other utilities such as kernel debugging utilities and a kernel-level process pro�ler

can be used also for this purpose. However, this method has serious drawbacks: its disk

storage consumption and performance interferences. These kernel-level monitoring utilities

generate a large volume of �les in which kernel-level monitoring data are stored. Therefore,

this method can be applied only for the period short enough the disk storage does not run

out. Even if the huge disks are prepared, still the performance interferences caused by

these utilities cannot be negligible. Since these utilities invokes a large number of disk I/O

for making a log recorded at each system call, therefore, the performance degradation is

quite large. In order to minimize the performance interferences, monitoring the kernel-level

behavior of the WWW servers with \modi�ed" UNIX kernel could be a possible solution.

However, any approaches including kernel modi�cations requires the source code of the

OS. Even if the source code is available, the modi�cation of the kernel is hard because it

requires skills and expertise.

The benchmark is another performance measurement method. For example, the SPECweb96

[40] by The Standard Performance Evaluation Corporation and WebStone [91] are famous

benchmark method for WWW servers. The benchmarks can provide various indices on

the performance of the WWW servers. Especially, the benchmark is helpful to know the

maximum performance of the WWW servers with various con�gurations. However, this

method also has several drawbacks. The benchmark requires both the special benchmark

software and their environment, and they are costly. Especially for the large scale WWW

servers in operation, it is almost impossible to suspend their services only for benchmarks.

If we can prepare them, the benchmark result can indicate the performance of the WWW

servers in the environment specially prepared for the benchmarks. In other words, it is

hard to apply the benchmark to the WWW servers that are in their actual operation.

As the method (4), the customer survey could be the other approach. In many WWW

services, \customer feedback" type of questionnaires are prepared. This method is appro-

priate to know the level of customers' satisfaction, however, they cannot help the server

improvement technically.

Consequently, the methods discussed above are not su�cient for the performance mea-

surement of the \running" servers. It is obvious that a new method for this purpose should

be developed.

The new method we propose here in this article is the performance measurement of

WWW servers through the packet monitoring. The idea of this method is to know the

behaviors of the WWW servers through the observation of the packets generated by both

a WWW server and the WWW clients hooked up to the server. This method has several

172 1998 年度 WIDE 報告書

advantages:

� Modi�cation on OS kernels is not required.

� This method can be applied on any WWW servers even if the servers are in their

actual operation.

� This method does not interfere between the WWW servers and the performance

measurement tools.

However, our approach also has a drawbacks. Since our system cannot see inside of the

WWW server, our system does not obtain any performance indices which are available in

the OS inside. However, in the case we need to examine the WWW server internals, the

method (1) or (2) can be used as a complement.

In the following sections, we discuss the details of our design and implementations of our

system. Moreover, we show our case studies where we apply our system to several WWW

servers.

4.3 Design of Our System

In this section, we describe the design of our system and show how we approach to the

goal of our system.

4.3.1 The Performance Degradation Model

For the WWW server operators, it is quite important to know if the server performance

is degrading. From our experiences on WWW server operations, we developed a simple

model of the performance degradation of the WWW server. This model is a state transition

model, shown in Figure 4.2.

In the state I, as an initial state, a WWW server can provide its service for all the

requests without any overheads. The operators want the WWW server to stay at this state

as long as possible.

If the performance of the server is degraded by some reasons, the state of the server

moves to either the state II or III. In the state II, the server cannot accept all the request

and some of the requests are rejected. If the server is in this state, we can observe:

� The server rejects some TCP [116] connection establishment requests because the

\listen" queue in the socket layer is full.

第 4部 ネットワークトラフィック統計情報の収集と解析 173

Normal

Penalties on
"connection
 establishment"

penalties on
"data delivery"

Saturate

I

II

III

IV

図 4.2: The performance degradation model

� The server accepts all the TCP connection establishment request, however, it rejects

some HTTP requests. This can be caused by some speci�c server con�gurations.

In the state III, on the other hand, the data delivery from the server is sacri�ced. The

server can accept all the requests from the client, however, its data delivery becomes slower.

This situation is frequently observed in the case we access busy WWW servers in the

Internet. The HTTP connection is established but the we have to wait long time to obtain

all the data in a WWW page.

The server may shift its state between the state II and III. However, if the situation is

getting worse, the server's state is �nally moved to the state IV. This state means that the

server is saturated. In this state, the server rejects several accesses randomly, and the data

is also slow to be delivered to the client.

Our system provides several performance indices in order to help the server operators to

know these state transitions of WWW servers.

4.3.2 Performance Index

Through the packet monitoring, we can derive several performance indices. Based on

the model discussed in the previous subsection, our system is designed to measure several

performance indices listed below.

The Number of Concurrent Connections (Nc)

Normally, a WWW server can several HTTP connections in parallel. In the typical

implementation of a WWW server on UNIX platforms, a single daemon process resides on

the memory and is always waiting for HTTP request arrivals. The Number of Concurrent

Connections means a set of HTTP connections that are handled concurrently. If the server

174 1998 年度 WIDE 報告書

client

server

1 2 3 4 5 6
SYN

SYN
+ack

ack

HTTP
Request

Response and Data FIN

ack FIN

ack

A B
C

図 4.3: Performance Indices

is in the state II or IV, the number of concurrent connections is limited to the certain

number or just decreased.

Connection Continuation Time (Tc)

Connection Continuation Time is de�ned as the period from TCP connection establish-

ment to its shutdown. More precisely, the period from the time when the �rst SYN packet

(the packet #1 in Figure 4.3) transmitted to a server by a client is observed to the time

when the server's ACK packet (the packet #6 in Figure 4.3) corresponding to the last FIN

packet generated by the client is monitored. The Connection Continuation Time in the

state III or IV is much longer than one in the state I.

Note that this Connection Continuation Time is much longer than the connection time

derived from either analysis on the WWW server log �les. Almost all of the WWW server

implementations, the time when the server calls accept() system call is recorded as the

connection start time, and the connection end time is correspondent to the time when

close() system call is processed. However, after the close() system call, the actual data

delivery in the TCP layer is still going on, because the data is stored in the queue in the

socket layer and the close() system call is immediately returned (see Figure 4.3).

Response Time (Tr)

The de�nition of Response Time is the period between an HTTP request packet from

a client and its HTTP response packet from a server. However, this de�nition is slightly

di�erent from the generic de�nition of RTT (Round Trip Time). Since we discuss the

behavior of WWW services through the packet monitoring, we use the period A in Figure

4.3. Therefore, the Response Time is normally shorter than the RTT, in general. This can

be considered as a sign of the transition to the state III and IV.

Data Transfer Time (Td)

第 4部 ネットワークトラフィック統計情報の収集と解析 175

Shared Memory

Data File

Real Time
Monitoring

Statistical
Analysis

Analysis Workbench

Packet
Monitoring

Connection
Analyzer

Network

Graph

Daemon

図 4.4: ENMA components

Data Transfer Time is de�ned as the period from the time when the �rst HTTP data

packet transmitted by a server is observed to the time when the last data HTTP packet

generated by a server is detected (The period B in Figure 4.3) . Note that the Data

Transfer Time includes the period for exchanges of FIN packets and their ACK, because

these packets sometimes include the actual WWW data. This can be also considered as a

sign of the transition to the state III and IV.

Connection Setup Time (Ts)

We de�ne Connection Setup Time as the period between when a server receives the �rst

SYN packet (the packet #1 in Figure 4.3) and when the server sends a SYN+ACK packet

back to the client (the packet #2 in Figure 4.3). In this period, the server allocates the

memory for the socket, then put the SYN packet into the SYN-RCVD queue in the kernel

[20]. Ts indicates the performance of the TCP/IP implementation and its platform.

4.3.3 Components

ENMA consists of two components: ENMA Daemon and Performance Analysis Work-

bench (see Figure 4.4)

ENMA Daemon

The ENMA Daemon is in charge of the \real time" packet monitoring. It is a single

program which consists of two modules: a packet monitor and a connection analyzer.

The packet monitor captures all the packets in any HTTP connections observed on the

network to which the ENMA system is attached. Since each captured packet is a data-link

176 1998 年度 WIDE 報告書

frame, the packet capture strips a data-link header from the captured frame, and obtains an

IP datagram in the frame. The obtained IP datagram is passed to the connection analyzer.

The connection analyzer is a core module of ENMA. The important function which the

connection analyzer provides is to record the time when each packet is observed. Further-

more, the connection analyzer provides following functions:

� By the information in both IP and TCP headers in the packet, the connection analyzer

distinguishes each TCP connection and tracks down its state transitions. This state

transition analysis is used for calculation of performance indices listed in Section

4.3.3.

� The connection analyzer counts up the number of IP datagrams observed in each TCP

connection. The total length of the payload in the IP datagram is also recorded.

These measures are recorded separately for the upstream (from the client to the

server) and the downstream (from the server to the client).

� The total length of the TCP payload is also recorded separately for the upstream and

the down stream.

The connection analyzer writes these information to a single data �le. This data �le is

used for the further statistical analysis by Performance Analysis Workbench. Note that the

size of the data �le is much smaller than �les generated by either kernel-level monitoring

or the command tcpdump, because a single data entry for a single TCP connection in the

�le is around 150 bytes. Therefore, we can use ENMA to monitor the WWW server for

much longer.

The connection analyzer also provides the shared memory for other programs in Perfor-

mance Analysis Workbench in order to enable them to make a realtime data visualization

and analysis.

Performance Analysis Workbench

Performance Analysis Workbench is a set of programs which enable us to make various

analysis on data that the ENMA Daemon provides. There are two kinds of programs in

this workbench;

� The programs which make analyses on the data �le provided by the ENMA Daemon.

The statistical analysis tool is one of kind of programs. These programs read the

data �le and perform the data analysis in batch style.

� The programs which use the shared memory provided by the ENMA Daemon and

make data analysis in realtime.

第 4部 ネットワークトラフィック統計情報の収集と解析 177

4.4 Implementation

We tried to implement our system as a portable system for several UNIX platforms.

Currently, the ENMA Daemon was implemented in ANSI C using the GNU compiler (gcc)

on FreeBSD 2.2.7. However, we can make it as a \platform-independent" program with

using LBL's packet capture library. Programs in the Performance Analysis Workbench

were implemented as shell scripts, AWK programs, and C programs. These program are

also portable. In this section, we provide several technical notes on our implementation of

the ENMA system.

4.4.1 Packet Monitor module

The packet monitor module in the current implementation uses the LBL's packet capture

library (libpcap [76]) to capture the packets on the network. The library provides a common

API for both the Berkeley Packet Filter (BPF [87]) on many BSD variants and the Network

Monitoring Protocol (the packet snooper) on Sun's Solaris and SGI's IRIX.

4.4.2 Connection Analyzer

In the connection analyzer, we had to implement a module to monitor the TCP state

transitions of each TCP connection. This module uses the sequence number, acknowledg-

ment number, and
ags in TCP headers for tracking down all the state transitions. The

algorithm which we use in the connection analyzer is shown in Figure 4.5.

In this algorithm, the connection analyzer allocates a block of memories for each connec-

tion when its SYN packet is observed. This memory block is used as a memo for recording

the state for each TCP connections. In the case the TCP connection is shut down normally,

the memory block is released and the connection analyzer writes several performance mea-

sures listed in the Section 4.3 to the data �le. However, there are several cases where the

memory blocks are not released. These cases can happen in the following situations:

� The client tries to establish the TCP connection, however, the server rejects the

request. In this case, since the client sends some SYN packets to the server, the

connection analyzer allocates a memory block. This situation may cause by lack of

system resources (e.g., the listen queue in the socket layer) in the server.

� The server has been clashed during the TCP connection is established. In this case,

the client tries to keep the connection so that the client does not send any FIN or

RST packets to the server. Therefore, the connection analyzer cannot release the

memory block.

178 1998 年度 WIDE 報告書

YES

Packet Droped

ACK?

Are SS and CS
ESTABLISHED?

NO

NO

NO

NO

NO

ACK of SYN+ACK?

First FIN packet?

Second FIN packet?

YES

NO

NO

NO

TCP?

CS is FIN_WAIT_1
SS is CLOSE_WAIT

Release memory block
and write the data file

CS is ESTABLISHED
SS is SYN_RCVD

Allocate
memory
block

RST?

SYN+
ACK?

SYN?

FIN?

CS is LAST_ACK
SS is TIME_WAIT

SS is
ESTABLISHED

TCP analysis module

Packet monitoring module

SS is
FIN_WAIT_2YES

YES

YES

YES

YES

YES

YES

CS: Client State
SS: Server State

Get TCP
Flags

YES

NO

NO

Release memory block
and write the data file

図 4.5: The connection analysis algorithm

� The packet monitor module misses captures of FIN and/or RST messages. In this

case, a TCP connection was established but neither FIN nor RST packets are observed

on the connection. Therefore, the connection analyzer cannot release the memory

block.

In order to handle these cases listed above, the connection analyzer has a garbage col-

lection mechanism for these \unreleased" memory blocks. In the current implementation,

the connection analyzer tries to �nd any memory blocks that were not updated in the last

24 hours.

4.4.3 Performance Analysis Workbench

The Performance Analysis Workbench consists of two modules: the statistical data col-

lecting module and the visualization module. All the modules are implemented in ANSI

C.

The statistical data collecting module obtains the statistical data through shared mem-

ory. This module is used as an interface for other modules for \real-time" analysis. All the

other modules have to obtain data through this statistical data collecting module. This

module is quite simple and light weighted.

第 4部 ネットワークトラフィック統計情報の収集と解析 179

The visualization module is a X-window application program in order to view the data in

various forms. The data is provided by the statistical data collection module through BSD's

socket interface. Since the ENMA daemon consumes large amount of system resources so

that running both the ENMA daemon and visualization program on the same machine

may cause performance interferes. In the worst case, the ENMA daemon cannot dump all

the packet from the network, therefore, the statistical analysis is less accurate. In order to

avoid this situation, we implemented the Performance Analysis Workbench as separated

modules.

4.5 Case Studies

In order to verify our implementation we applied our system to several \running" systems.

4.5.1 Case 1: The WWW Server

We measured the WWW server which provided various information and \live" video

streams about the 80th National High-School Baseball Games of Japan in August, 1998.

This event is very famous and popular in Japan so that the WWW server got over 32

million hits per day. We applied our system to this server for 16 days.

System Con�guration

The target WWW server host was Sun Enterprise 450 server with dual CPU (300MHz

Ultra SPARC processors) and 512MB of memory. The WWW server program was Apache

1.3.1 running on Solaris 2.6. This system was installed on the server segment (100BaseT).

Our system was hooked up to the service segment and monitored the server.

Our system on which the ENMA daemon was running was an Intel platform (PentiumII

300MHz processor) with 64MB memory.

Evaluations

Figure 4.6 shows the frequency distribution of Connection Continuation Time (Tc). The

analysis based on the log �le generated by the WWW server reveals that Tc for the most

connections is 1 millisecond, while 20 millisecond is from our ENMA system. As mentioned

in Section 4.3.3, the result from the WWW log �le is quite di�erent from one from our

ENMA system.

The log �le generated by the WWW server is the activity logging of the WWW server

as one of application programs on the system. In other words, the log �le is an application

level logging. The bu�er size in the socket layer of Solaris 2.6 was con�gured as 8 Kbytes.

Since almost all of the WWW objects that the server handled were under 8Kbytes as shown

180 1998 年度 WIDE 報告書

1

10

100

1000

10000

100000

1e+06

1e+07

0.001 0.01 0.1 1 10 100 1000 10000100000

F
re

qu
en

cy

Connection Continuation Time(sec)

ENMA
WWW Server

図 4.6: The frequency distribution of

Connection Continuation Time

0

0.2

0.4

0.6

0.8

1

100 1000 10000 100000

C
D

F

object size(bytes)

図 4.7: The cumulative distributed func-

tion of the WWW objects

in Figure 4.7, a single write() system call in the WWW server can put entire data of each

WWW object into the socket bu�er. Therefore, the server can process each HTTP request

around 1 millisecond; the sequence of system calls 1 for request handling are processed and

terminated immediately. Tc obtained from the log �le by the WWW server means that

the connection continuation time for each HTTP connection in the application layer.

On the other hand, Tc by ENMA includes the HTTP request processing plus its con-

nection establishment and shutdown procedures in TCP layer. These requires at least 3

RTT. In other words, Tc derived by ENMA is the connection continuation time in the

TCP layer. Therefore, the results reveal the di�erences.

The analysis on the number of concurrent connections (Nc) is shown in Figure 4.8 and

4.9. Since Tc by the WWW log �le is di�erent from one by ENMA, the analysis of Nc

is also di�erent; from the WWW server log �le, 550 connection is in the peak, however,

13,000 connections were observed by ENMA.

As our results, therefore, the analysis through ENMA is more accurate than the result

through the performance analysis on the WWW server's log �les. Our result is more helpful

to design and/or improve the network where the WWW server is located.

4.5.2 Case 2: Slow WWW servers

We conducted the other experiment for testing the performance measurement of the

WWW server. As mentioned in Section 4.3, both the Response Time (Tr) and the Con-

1In the Apache server, each HTTP request is processed through the sequence of system calls : accept()
for establishing the HTTP connection, read() for read HTTP request from the socket, write() for sending
the WWW object, and close() for shutting down the connection.

第 4部 ネットワークトラフィック統計情報の収集と解析 181

0

5000

10000

15000

0 20000 40000 60000 80000

nu
m

be
r

of
 c

on
ne

ct
io

ns

time(sec)

図 4.8: The number of concurrent con-

nection by ENMA log

0

200

400

600

0 20000 40000 60000 80000

nu
m

be
r

of
 c

on
ne

ct
io

ns

time(sec)

図 4.9: The number of concurrent con-

nection by WWW server log

nection Setup Time (Ts) are expected as indices to re
ect the performance of the WWW

server.In this case study, we tried to con�rm these value can be used as performance indexed

of WWW server.

System Con�guration

In this case study, we setup two WWW servers in our laboratory: the Apache [120] server

running on Prntium II 200 MHz processor and one of the 80486DX2 66 MHz processor.

The operating systems for these servers are FreeBSD 2.2.7. The benchmark software we

developed is con�gured with the other system connected to the same network segment

where the WWW server is located. The benchmark software is quite simple; the program

tries to access several WWW objects on the WWW server at random. In this case, we

measured Tc, Ts, and Tr for 10,000 accesses.

Results

Figure 4.10,4.11,4.12 show the results of our measurements. By these three graphs, we

can easily read the di�erences on the performance between the WWW server on Pentium

II and one on 80486DX2 66MHz. Our ENMA system can show the di�erences of WWW

server's performance easily.

4.6 Discussions

We designed and implemented the ENMA system as discussed in the previous sections.

However, our system is a kind of \alpha version" of the products. It is obvious that there

are several limitations on our system as well as some extensions to improve our system.

182 1998 年度 WIDE 報告書

図 4.10: The frequency of the connection

continuation time

図 4.11: The frequency of the connection

setup time

図 4.12: The frequency of the response

time

4.6.1 Technical Issues

Dropping the packet through monitoring is a signi�cant technical issue. Because of the

design of ENMA system, dropping the packet at the monitoring may cause large in
uences

on the performance analysis. Currently, the ENMA tries to grab all the packets as much as

possible, however, there may be several packets dropped. There are solutions for decreasing

the number of dropped packets:

� Using a faster computer with more memory as our ENMA system may improve the

ENMA itself, however this solution cannot be used for any situations such as ENMA

hooked up to Gigabit Ethernet or other higher bandwidth networks.

� Developing a new implementation of ENMA on lighter operating system such as

DOS is possible solution. In general, the packet monitoring using UNIX operating

第 4部 ネットワークトラフィック統計情報の収集と解析 183

systems cause several problems in the case we apply them to the multi hundreds

Mbps or more broadband networks. With this reason, the OC-3 packet monitoring

tool called \OC3MON" [18] for example is implemented on DOS because of several

considerations on OS overhead. Therefore, if we apply the ENMA to the Gigabit

Ethernet or other high speed LAN, we have to re-implement ENMA on other lighter

OS platforms.

The tracking down the sequence number in TCP header is the other technical issue. In

the current implementation, ENMA does not handle the sequence number. Since changing

the packet order may cause serious penalty on TCP performance, it is the better to track

the sequence number in the TCP header.

The measuring the number of request rejected in TCP layer is the other technical issue.

With the heavy loaded WWW server, some SYN packets are once received by the WWW

server system but rejected at TCP layer. These phenomena is frequently observed at heavy

loaded servers. It is better to monitor these phenomena by ENMA to allow the system

managers to know if the system is saturated.

4.7 Concluding Remarks

In this paper, we describe several reasons why the new method for measuring the per-

formance of the WWW server is required. Our proposed method is based on the packet

monitoring to reveal all the behavior of the WWW server and derive several performance

indices through the monitoring. The method has been implemented as our ENMA system.

The ENMA can measure performance indices such as Connection Setup Time, Connection

Continuation Time, The Number of Concurrent Connections, etc. As mentioned in Section

4.5, we applied ENMA system to several WWW servers and con�rmed the efectiveness of

its implementation.

184 1998 年度 WIDE 報告書

